
Cheat Sheet 2

Searching in existing libraries

Search _ (_ + _) "mul" modn.

Search lemmas whose name contains the string mul

and whose statement mentions the infix plus opera-
tion and contains the constant modn. caveat : always
put an underscore after Search

Specializing assumptions

move/(_ x):h => h

Specialise h to x

P : nat -> Prop

x : nat

h : forall n, P n

===================

G

→

P : nat -> Prop

x : nat

h : P x

=================

G

case and rewrite under -> and forall

case can be applied when head of stack is a formula C of
the form A/\B, A\/B, (forall x:nat,A), or False, but
also when such a formula is buried under a series of impli-
cations (goals will be generated accordingly). Example:
case:h

h : A -> B/\C

==============

D

→ ============

B -> C -> D

======

A

rewrite h can be applied when h labels a formula of
the form x=y, but also when x=y is buried under a se-
ries of implications (goals will be generated accordingly)
and universal quantifiers (attempts at instantiation will
be made). Example:
rewrite h

y : nat

h : forall x, A -> S x = y

============================

P (S 0)

→

y : nat

h : forall x, A ->

S x = y

===================

P y

y : nat

h : forall x, A ->

S x = y

===================

A

Definitions, and new uses of rewrite

Rewrite works not only on equalities but also equiva-
lences.

rewrite h0

Apply equivalence h0 to goal (left-to-right).

h0: A <-> B

=============

A/\C

→
h0: A <-> B

=============

B/\C

Definition name (x : T): type := body

Add a function name with a parameter x of type T, pro-
ducing output of type type whose definition is body

E.g. Definition double (a:nat):nat := 2*a

rewrite /double

Unfold the definition of double

==============

double 3 = 6
→ =========

2*3 = 6

Notations and control on rewrite

move:Eab => ->

does the same as rewrite Eab

Eab : a = b

=============

P a

→
Eab : a = b

=============

P b

move:Eab => <-

does the same as rewrite -Eab

rewrite {2}Eab

rewrites 2nd occurence found (left-to-right)
can be written move:Eab => {2}->

Eab : a = b

=============

P a /\ Q a

→
Eab : a = b

=============

P a /\ Q b

rewrite ?Eab

rewrites as many times as possible

rewrite !Eab

rewrites as many times as possible, at least once

rewrite n!Eab

rewrites exactly n times

rewrite n?Eab

rewrites at most n times

The above can be combined:
rewrite -2?{1}Eab

rewrites at most 2 times, from right-to-left, the first
occurence that is found (each time)
can be written move:Eab => 2?{1}<-

Also works with unfolding of definitions
rewrite {2}/double

Unfold the 2nd occurence of the definition of double

Higher order proof commands
& compact syntax for case

cmd0 ; cmd1
Run cmd0. Then run cmd1 on every goals coming
from cmd0.

cmd0 ; [cmd1| . . . |cmdn]
Run cmd0. Then run cmd1,. . . ,cmdn respectively on
the n goals coming from cmd0.

cmd0 => [h | x xs]

does the same as
cmd0 ; case ; [move => h | move => x xs]

cmd in hyp1 |- *

Synonym for move: hyp1;cmd; move=> hyp1. If
|- * is not given, then the goal is left untouched

do ? cmd
Repeat cmd as many times as possible

do ! cmd
Repeat cmd as many times as possible (at least once)

do n cmd
Repeat cmd exactly n times

do n? cmd
Repeat cmd at most n times

by cmd
Run cmd and then run done

cmd1 ; first cmd2
Run cmd1. Run cmd2 only on the fist resulting goal

cmd ; last first.

Run cmd then reorder the resulting goals putting the
last one first

Examples

move => [| x xs] //

Reason by cases on Top. In the first branch do noth-
ing, in the second one pop two assumptions naming
them x and xs. Then get rid of trivial goals. Note
that, since only the first branch is trivial, one can
write => [// | x xs] too. caveat : Immediately af-
ter case and elim it does not perform any case analy-
sis, but can still introduce different names in different
branches

=========

forall s : seq nat,

0 < size s -> P s

→

x : nat

xs : seq nat

=========

0 < size (x :: xs)

-> P (x :: xs)

cmd => [x Hx | y] ->

Perform a case analysis on Top. In the first branch
push the first two assumptions on the stack naming
them x and Hx; in the second and last branch push
Top naming it y. Then rewrite with Top left to right
and discard the equation

cmd => {2}<- // /= hyp

Rewrite with Top right to left but affect only its second
occurrence. Then try to run done on every open goal,
then simplify (clean up) the statement of the goal. Fi-
nally discard hyp removing it from the context

