Cheat Sheet 1

Proof General

Ctrl-C Ctrl-EnterCtrl-X Ctrl-FGoto the cursorOpen a fileCtrl-X Ctrl-SCtrl-X Ctrl-CSaveQuit

Basic notations

Logic	Prop
Τ,⊥	True, False
$\neg p$	~ p
$p \wedge q$	р /\ q
$p \lor q$	р \/ q
a = b	a = b
$a \neq b$	a <> b
$p \Rightarrow q$	p -> q
$p \Leftrightarrow q$	p <-> q
$\forall x \in A . \forall y . q(x, y)$	forall (x:A) y, q x y
$\exists x \in A . p(x)$	exists x:A, p x

Paper	Coq
Lemma 1. For all nat- ural numbers n and m if $m \leq n$ then the following equation holds:	Theorem good_name : forall n m, m <= n -> n - m + m = n.
n-m+m=n	Proof. (* your proof *)
<i>Proof.</i> Trivial \Box	Qed.

Basic commands

Require Import ssreflect ssrbool.

Load libraries ${\tt ssreflect}$ and ${\tt ssrbool}$

Variable name : type. Declares a variable

Theorem name : statement. State a theorem

Proof.

Start the proof of a theorem

Qed.

Terminate the proof of a theorem

Terminology

Context	$\begin{cases} P : nat \rightarrow Prop \\ x : nat \\ h : P x \end{cases}$	
$The \ bar$		
Goal	$\begin{cases} forall y, y = x \rightarrow P y \end{cases}$	T
	``	
	Stack Cor	nclusion

Top is the head of the stack, here ${\tt y}$

Basic proof commands

done.

Prove the goal by trivial means, or fail

 \rightarrow 0 <= n

move=> x px. Introduce x and P x naming them x and px

		x : T
forall x,	\rightarrow	px : P x
P x -> Q x -> G		Q x -> G

(move=> x _. to throw away P x completely)
move: x px.
Generalise x and px

(move: x (px). to leave a copy of px in the context) apply: H.

Apply ${\tt H}$ to the current goal

 $\begin{array}{c} H : A \rightarrow B \\ =====\\ B \end{array} \longrightarrow \begin{array}{c} ====\\ A \end{array}$

case: ab.

Eliminate the conjunction, disjunction or absurd

\	=====
	> B -> G
ab : A \setminus B ========	
G A -> G	B -> G
ab : False \rightarrow G	
case: exg3. Eliminate the existential quantified	cation
exg3 : exists n, 3 < n = ======= \rightarrow G	======= forall n, 3 < n -> G
<pre>case: x. Perform a case analysis on x</pre>	
$\begin{array}{ccc} x : nat \\ \hline \\ = = = = = = \\ P x \end{array} \longrightarrow \begin{array}{c} = = = = = \\ P 0 \end{array}$	======= forall x, P (S x)
elim: x. Perform an induction on x	
$\begin{array}{ccc} x : nat & & =======\\ ===& & \rightarrow & P & 0\\ P & x & & & P & 0 \end{array}$	 forall x, P x -> P (S
split. Prove a conjunction	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	======= В
left. Prove a disjunction choosing the 3	left part.

x)

A \/ B	ightarrow A

right.

Prove a disjunction choosing the right part.

 $\begin{array}{cccc} \bullet & \bullet & \bullet & \bullet \\ A \setminus / B & \bullet & B \end{array}$

exists n.

Prove an existence giving a witness.

n : nat	n : nat
	\rightarrow =======
exists x, P x	Рп

rewrite Eab.

Rewrite with Eab left to right

Eab : a = b	Eab : a = b
_	\rightarrow ====================================
Ра	Рb

rewrite -Eab.

Rewrite with Eab right to left

Eab : a = b	Eab : a = b
_	\rightarrow ===============================
Рb	Ра

have pa : P a.

Open a new goal for P a. Once resolved introduce a new entry in the context for it named pa

а:Т	a : T	a : T
a . 1 		pa : P a
	\rightarrow ========	========
G	Ра	G

suffices pa : P a.

Open a new goal with an extra item in the context for $P\ a$ named pa. When resolved, it asks to prove $P\ a$

а:Т	a : T , pa : P a	a : T
	\rightarrow para	
G	G	Pa

Notations for natural numbers: nat

```
"n.+1 :: " := (S n)
"n.-1 :: " := (predn n)
m + n := (addn m n)
m * n := (muln m n)
m <= n := (leq m n)
```