Exercise 1 : Fixpoints
Consider the following syntax for types:

\[A, B ::= a | A \lor B | A \land B | A \rightarrow B | \top | \bot | \text{Fix}_a.A \]

where the last three constructs are the constants true, false, and a fixpoint construct that binds \(a \) in \(A \). Types are quotiented by \(a \)-renaming, and by the equation \(\text{Fix}_a.A = \{ \text{Fix}_a.A \setminus \{a\} \} \).

Using that syntax for types, we work in Curien-Herbelin-Wadler calculus; we just give ourselves the constant term \(\star : \top \) and the constant continuation \(\text{top} : \bot \).

1. Let \(A \) be an arbitrary type. Give a closed term of type \(\top \lor (A \land a) \).
2. Give a closed term of type \(\text{Fix}_a.(\top \lor (A \land a)) \).
3. Given a term \(t \) of type \(A \), give a term of type \(\text{Fix}_a.(\top \lor (A \land a)) \) that has \(t \) as one of its sub-terms.
4. Assuming \(A \) is non-empty, describe infinitely many terms of type \(\text{Fix}_a.(\top \lor (A \land a)) \).
5. Let \(A\text{List} \) be an abbreviation for \(\text{Fix}_a.(\top \lor (A \land a)) \). Give a term \(\text{El} : A\text{List} \) representing the empty list and a construct \(\text{Cons} \) such that \(\text{Cons}(t, l) : A\text{List} \) represents the list of head \(t \) and of tail \(l \).
6. Assume that you now have a mechanism for raising exceptions: a term constant \(\text{Exception} : \bot \). Give a typing derivation for \(\langle \text{Exception} \bullet \text{top} \rangle \).
7. Consider the usual reduction system for Curien-Herbelin-Wadler calculus.
 Write a term \(\text{head} \) that returns the head of a non-empty list:
 i.e. such that \(\langle \text{head} \bullet \text{Cons}(t, l) :: e \rangle \rightarrow^* \langle l \bullet e \rangle \)
 and that raises an exception when applied to the empty list \(\langle \text{head} \bullet \text{El} :: e \rangle \rightarrow^* \langle \text{Exception} \bullet \text{top} \rangle \)
 Give a typing for \(\text{head} \).
8. Similarly, write a term \(\text{tail} \) that returns the head of a non-empty list:
 i.e. such that \(\langle \text{tail} \bullet \text{Cons}(t, l) :: e \rangle \rightarrow^* \langle l \bullet e \rangle \)
 and that raises an exception when applied to the empty list \(\langle \text{tail} \bullet \text{El} :: e \rangle \rightarrow^* \langle \text{Exception} \bullet \text{top} \rangle \)
 Give a typing for \(\text{tail} \).
9. Let \(c \) be a command and \(y \) a variable not free in \(c \).
 What are the CBV-reducts and normal forms of \(\langle \text{head} \bullet \text{El} :: \mu y.c \rangle \)?
 What are the CBN-reducts and normal forms of \(\langle \text{head} \bullet \text{El} :: \mu y.c \rangle \)?