
Part II
Barbanera and Berardi's proof of strong normalisation for 2nd-order classical logic

Barbanera and Berardi's calculus is a 1-sided version of Curien-Herbelin-Wadler's: terms and
continuations are merged into 1 syntax (this gives half as many cases to treat in your proofs).

Types A,B,C, . . . ::= α | α⊥ | A ∨B | A ∧B | ∃α.A | ∀α.A
Terms t, u, v, . . . ::= x | µx.p | inj1(t) | inj2(t) | 〈t, u〉 | 〈_, t〉 | Λ_.t
Commands p ::= 〈t • u〉

Negation:

(α⊥)
⊥

:= α

(A ∧B)
⊥

:= A⊥ ∨B⊥

(A ∨B)
⊥

:= A⊥ ∧B⊥

(∀α.A)
⊥

:= ∃α.A⊥

(∃α.A)
⊥

:= ∀α.A⊥

Typing rules:

Γ `̀̀ x :A
(x : A) ∈ Γ

Γ, x : A `̀̀ p

Γ `̀̀ µx.p :A⊥
Γ `̀̀ t :A Γ `̀̀ u :A⊥

Γ `̀̀ 〈t • u〉

Γ `̀̀ t :A Γ `̀̀ u :B

Γ `̀̀ 〈t, u〉 :A ∧B

Γ `̀̀ t :Ai
Γ `̀̀ inji(t) :A1 ∨A2

Γ `̀̀ t :B

Γ `̀̀ Λ_.t :∀α.B
α 6∈ FV(Γ)

Γ `̀̀ u :
{
B�α
}
A

Γ `̀̀ 〈_, u〉 :∃α.A
The following reduction rules apply anywhere in terms and commands:

〈µx.p • t〉 −→ {t�x}p
〈〈t1, t2〉 • inji(t)〉 −→ 〈ti • t〉
〈Λ_.t • 〈_, u〉〉 −→ 〈t • u〉

〈t • µx.p〉 −→ {t�x}p
〈inji(t) • 〈t1, t2〉〉 −→ 〈t • ti〉
〈〈_, u〉 • Λ_.t〉 −→ 〈u • t〉

Let Var denote the set of term variables, and SN (resp. SNc) denote the set of strongly normalising
terms (resp. commands) for the reduction relation induced by the above rules.
Notice that the calculus does not satisfy con�uence, with the obvious critical pair:

〈µx.p1 • µy.p2〉
↙ ↘

{µy.p2�x}p1 {µx.p1�y}p2

Exercise 1 : Orthogonality and saturation

We start with a few de�nitions:
� t ⊥ u if 〈t • u〉 ∈ SNc

� A pair (U ,V) of sets of terms is

� orthogonal if ∀t ∈ U ,∀u ∈ V, t ⊥ u
� saturated if the following two conditions hold

1. Var ⊆ U and Var ⊆ V
2. {µx.〈t • u〉 | ∀v ∈ V, {v�x}t ⊥ {v�x}u} ⊆ U and
{µx.〈t • u〉 | ∀v ∈ U , {v�x}t ⊥ {v�x}u} ⊆ V.

1. [*] Brie�y justify (no full proof required) why

� (U ,Var) is orthogonal if and only if U ⊆ SN.

Correction : Assume (U ,Var) is orthogonal; for all u ∈ U , take x ∈ Var; since u ⊥ x we
have u ∈ SN. Conversely for all u ∈ U ⊆ SN and x ∈ Var, 〈u • x〉 ∈ SNc.

� If {v�x}〈t • u〉 ∈ SNc then we have 〈t • u〉 ∈ SNc.

Correction : As reduction is stable under substitution, an in�nite reduction sequence
starting from 〈t • u〉 would provide one starting from {v�x}〈t • u〉.

� If {v�x}〈t • u〉 ∈ SNc and v ∈ SN is not of the form µx.p,
then we have 〈v • µx.〈t • u〉〉 ∈ SNc and 〈µx.〈t • u〉 • v〉 ∈ SNc.

Correction : If {v�x}〈t • u〉 ∈ SNc then from the previous point 〈t • u〉 ∈ SNc and
µx.〈t • u〉 ∈ SN, so as v ∈ SN as well, an in�nite reduction sequence starting from 〈v •
µx.〈t • u〉〉 has to reduce, at some point, the top-level redex, and the only possible way is
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to
{
v′�x
}
〈t′ • u′〉 for some reduced forms t′, u′, v′ of t, u, v; this would provide an in�nite

reduction sequence from {v�x}〈t • u〉.
A similar reasoning proves 〈µx.〈t • u〉 • v〉 ∈ SNc, or alternatively we can use the symetry of
the calculus: given the reduction rules, a command 〈u•v〉 ∈ SNc if and only if〈v•u〉 ∈ SNc.

2. Given an orthogonal pair (U ,V) of non-empty sets, prove that U ⊆ SN and V ⊆ SN.

Correction : For all u ∈ U , take v the non-empty set V; since u ⊥ v we have u ∈ SN. Same
argument for V.

Exercise 2 : Saturated extensions of simple pairs

A set of terms is said to be simple if it is non-empty and it contains no term of the form µx.t.
In this exercise we want to build a �saturating� function satur, i.e. a function such that, for any
orthogonal pair (U ,V) of simple sets, satur(U ,V) is a saturated and orthogonal pair of sets (U ′,V ′)
that extends (U ,V) (i.e. such that U ⊆ U ′ and V ⊆ V ′).
1. For every set U of terms, we de�ne a function

ΦU (W) := U ∪ Var ∪ {µx.〈t • u〉 | ∀v ∈ W, {v�x}t ⊥ {v�x}u}
Prove that ΦU is anti-monotonic (i.e. if W ⊆W ′ then ΦU (W) ⊇ ΦU (W ′)).
Correction : IfW ⊆W ′ then for any t, u, ∀v ∈ W ′, {v�x}t ⊥ {v�x}u implies ∀v ∈ W, {v�x}t ⊥ {v�x}u,
so ΦU (W ′) ⊆ ΦU (W).

2. Given two sets of terms U and V, prove that ΦU◦ΦV admits a �xed point
(a set U ′ such that ΦU (ΦV(U ′)) = U ′).
Correction : From the previous question, ΦU◦ΦV is a monotonic set transformation, so it
admits the �xpoint

⋃
n∈N(ΦU◦ΦV)n(∅).

3. Let U ′ be a �xed point of ΦU◦ΦV , and let V ′ := ΦV(U ′). Prove the following:
U ′ = U ∪ Var ∪ {µx.〈t • u〉 | ∀v ∈ V ′, {v�x}t ⊥ {v�x}u}
V ′ = V ∪ Var ∪ {µx.〈t • u〉 | ∀v ∈ U ′, {v�x}t ⊥ {v�x}u}

Correction : Just by unfolding the de�nitions: the �rst equality is the unfolding of the
�xpoint equality U ′ = ΦU◦ΦV(U ′); then second one is the unfolding of V ′ := ΦV(U ′).

4. Prove that the pair (U ′,V ′) is saturated and extends (U ,V).

Correction : This can be read directly on the above equations.

5. [*] Assume that (U ,V) is an orthogonal pair of simple sets;
prove that the pair (U ′,V ′) is orthogonal.

Correction : First, notice that as U and V are assumed simple, they are in particular non-
empty and, by Ex.1-Q.2, U ⊆ SN and V ⊆ SN.

Second, by induction on n ∈ N, notice that (ΦU◦ΦV)n(∅) ⊆ SN and ΦV(ΦU◦ΦV)n(∅) ⊆ SN

(each induction step uses Ex.1-Q.1.2).

Third, we conclude from this that U ′ ⊆ SN and V ′ ⊆ SN.

Now let u ∈ U ′ and v ∈ V ′. We show u ⊥ v by case analysis on the di�erent subsets composing
U ′ and V ′:

u\v V Var
{µx.〈v1 • v2〉

| ∀u ∈ U ′, {u�x}v1 ⊥ {u�x}v2}

U (U ,V) assumed
orthogonal

1 2

Var 1 No reduction 2
{µx.〈u1 • u2〉

| ∀v ∈ V ′, {v�x}u1 ⊥ {v�x}u2} 3 3 4

1: By Ex.1-Q.1.1, (U ,Var) and (V,Var) are orthogonal pairs.

2 and 3: By Ex.1-Q.1.3.

4: This is the interesting case: u = µx.〈u1 • u2〉 and v = µx.〈v1 • v2〉.
Assume there is an in�nite reduction sequence from 〈µx.〈u1 • u2〉 • µy.〈v1 • v2〉〉. As both
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µx.〈u1 • u2〉 ∈ U ′ ⊆ SN and µy.〈v1 • v2〉 ∈ V ′ ⊆ SN, the reduction sequence must reduce the

top-level redex at some point, to either
{
µy.〈v1′•v2′〉�x

}
〈u1′ • u2′〉 or

{
µx.〈u1′•u2′〉�y

}
〈v1′ • v2′〉

for some reduced forms u1′, u2′, v1′, v2′ of u1, u2, v1, v2.

We treat both cases:
{
µy.〈v1′•v2′〉�x

}
〈u1′ • u2′〉 is a reduced form of {v�x}〈u1 • u2〉, which is in

SN;
{
µx.〈u1′•u2′〉�y

}
〈v1′ • v2′〉 is a reduced form of {u�y}〈v1 • v2〉, which is in SN.

We �nally de�ne satur(U ,V) := (U ′,V ′).

Exercise 3 : Semantics

The general idea: a type A is interpreted

� �rst as an orthogonal pair of simple sets [A]σ = ([A]
+
σ , [A]

−
σ )

� then as an orthogonal and saturated pair of sets JAKσ = (JAK+σ , JAK−σ )

where we write P+ (resp. P−) for the �rst (resp. second) component of a pair P.

Let H be the set of all orthogonal pairs of simple sets (of terms).
A valuation σ is a mapping from type variables to H.
1. Given some sets of terms U and V, we de�ne the following set constructions:

inj1(U) := {inj1(t) | t ∈ U} 〈U ,V〉 := {〈u, v〉 | u ∈ U , v ∈ V}
inj2(U) := {inj2(t) | t ∈ U}
〈_,U〉 := {〈_, u〉 | u ∈ U} Λ_.U := {Λ_.u | u ∈ U}

Prove that those sets are always simple if U and V are non-empty.

Correction : None of these sets contains any term of the form µx.c, and none of them is
empty if U and V are non-empty.

We de�ne the following semantics [_]
_

and J_K
_

:

[α]+σ := σ(α)+ [α]−σ := σ(α)−

[A ∨B]+σ := inj1(JAK+σ ) ∪ inj2(JBK+σ ) [A ∨B]−σ := 〈JAK−σ , JBK−σ 〉
[∃α.A]+σ := 〈_,

⋃
h∈H JAK+σ,α 7→h〉 [∃α.A]−σ := Λ_.

⋂
h∈H JAK−σ,α 7→h

([A]+σ , [A]−σ ) := (
[
A⊥
]−
σ
,
[
A⊥
]+
σ

) if A of the form α⊥, A1 ∧A2, ∀α.A

(JAK+σ , JAK−σ ) := satur([A]+σ , [A]−σ ) if A of the form α, A1 ∨A2, ∃α.A
(JAK+σ , JAK−σ ) := (

q
A⊥

y−
σ
,
q
A⊥

y+

σ
) if A of the form α⊥, A1 ∧A2, ∀α.A

2. Prove that if [A]σ = (U ,V) then
[
A⊥
]
σ

= (V,U), and if JAKσ = (U ,V) then
q
A⊥

y
σ

= (V,U).

Correction : If A of the form α, A1 ∨ A2, ∃α.A, the �rst point is by line 4 and the second
point is by line 6. If A of the form α⊥, A1 ∧A2, ∀α.A, it is the same lines again, noticing the

involutivity of negation: A⊥
⊥

= A.

3. Prove that [A]σ,α 7→[B]σ
=
[{
B�α
}
A
]
σ
and JAKσ,α 7→[B]σ

=
q{

B�α
}
A

y
σ
.

Correction : By induction on A.

4. [*] Prove, by induction on A, that [A]σ is an orthogonal pair of simple sets and JAKσ is a
saturated and orthogonal pair extending [A]σ.

Correction : For A = α, the �rst point is by de�nition of H.
For A = A1 ∨A2 or A = ∃α.A′, [A]σ is a pair of simple sets by Q.1.

To prove that [A1 ∨A2]σ is orthogonal, let u ∈ inj1(JA1K
+
σ )∪inj2(JA2K

+
σ ) and v ∈ 〈JA1K

−
σ , JA2K

−
σ 〉.

We have u = inji(u0) with u0 ∈ JAiK
+
σ for either i = 1 or i = 2, while v = 〈v1, v2〉 with

v1 ∈ JA1K
−
σ and v2 ∈ JA2K

−
σ .

Now the induction hypothesis gives that JA1Kσ and JA2Kσ are orthogonal pairs extending the

pairs [A1]σ and [A2]σ of non-empty sets. So JA1K
+
σ , JA2K

+
σ , JA1K

−
σ , JA2K

−
σ are themselves non-

empty, and by Ex.1-Q.2 they are all included in SN. Hence, u and v are in SN. So an in�nite
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reduction sequence starting from 〈u • v〉 must reduce the top-level redex at some point, to
〈u′0 • v′i〉 for some reduced forms u′0, v

′
i of u0, vi. This gives an in�nite reduction sequence from

〈u0 • vi〉 which contradicts the orthogonality of JAiKσ.

To prove that [∃α.A′]σ is orthogonal, let u ∈ 〈_,
⋃
h∈H JAK+σ,α 7→h〉 and v ∈ Λ_.

⋂
h∈H JAK−σ,α 7→h.

We have u = 〈_, u0〉 with u0 ∈ JA′K+σ,α 7→h0
for some h0 ∈ H, while v = Λ_.v0 with v0 ∈

JA′K−σ,α 7→h for any h ∈ H, in particular h = h0.

Now the induction hypothesis gives that JA′Kσ,α 7→h0
is an orthogonal pair extending the pair

[A′]σ,α 7→h0
of non-empty sets. So JA′K+σ,α 7→h0

and JA′K−σ,α 7→h0
are themselves non-empty, and

by Ex.1-Q.2 they are each included in SN. Hence, u and v are in SN. So an in�nite reduction
sequence starting from 〈u • v〉 must reduce the top-level redex at some point, to 〈u′0 • v′0〉 for
some reduced forms u′0, v

′
0 of u0, v0. This gives an in�nite reduction sequence from 〈u0 • v0〉

which contradicts the orthogonality of JA′Kσ,α 7→h0
.

For A = α⊥, A = A1 ∧ A2, or A = ∀α.A′, [A]σ is an orthogonal pair of simple sets because it

is (
[
A⊥
]−
σ
,
[
A⊥
]+
σ

).

For A = α, A = A1∨A2 or A = ∃α.A′, JAKσ is a saturated and orthogonal pair extending [A]σ
by Ex.2-Q.4 and Ex.2-Q.5.

For A = α⊥, A = A1 ∧ A2, A = ∀α.A′, JAKσ a saturated and orthogonal pair extending JAKσ
because it is (

q
A⊥

y−
σ
,
q
A⊥

y+

σ
).

Exercise 4 : Proof of Strong Normalisation

A substitution ρ is a mapping from term variables to terms. Applying a substitution ρ to a term t
(in a capture-avoiding way) yields a term denoted tρ. For each typing context Γ we de�ne the set

JΓKσ := {ρ | ∀(x :A) ∈ Γ, ρ(x) ∈ JAK+σ }
1. [*] Prove the Adequacy Lemma:

If Γ `̀̀ t :A, then for all valuation σ and all substitutions ρ ∈ JΓKσ we have tρ ∈ JAK+σ .
Correction : By induction on the typing tree, with the following statement for commands:
If Γ `̀̀ c, then for all valuation σ and all substitutions ρ ∈ JΓKσ we have cρ ∈ SNc.

�

Γ `̀̀ x :A
(x : A) ∈ Γ

Let σ be a valuation and ρ ∈ JΓKσ. We have xρ = ρ(x) ∈ JAK+σ by assumption that ρ ∈ JΓKσ.

�

Γ, x : A `̀̀ p

Γ `̀̀ µx.p :A⊥

Let σ be a valuation and ρ ∈ JΓKσ. We need to show (µx.p)ρ ∈ JAK+σ . Let us rewrite (µx.p)ρ
as µx.(pρ) (avoiding variable capture). Since JAKσ is a saturated pair (Ex.3-Q.4), it su�ces

to show that for all v ∈ JAK−σ , we have {v�x}(pρ) ∈ SNc. Let v ∈ JAK−σ =
q
A⊥

y+

σ
(Ex.3-Q.2).

Notice that {v�x}(pρ) = p(ρ, x 7→ v), and that (ρ, x 7→ v) ∈
q
Γ, x :A⊥

y
σ
. The induction

hypothesis concludes want we want.

�

Γ `̀̀ t :A Γ `̀̀ u :A⊥

Γ `̀̀ 〈t • u〉
Let σ be a valuation and ρ ∈ JΓKσ. The induction hypothesis gives tρ ∈ JAK+σ and uρ ∈q
A⊥

y+

σ
= JAK−σ . Since JAKσ is an orthogonal pair (Ex.3-Q.4), (〈t • u〉)ρ = 〈tρ • uρ〉 ∈ SNc.

�
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Γ `̀̀ t :A Γ `̀̀ u :B

Γ `̀̀ 〈t, u〉 :A ∧B
Let σ be a valuation and ρ ∈ JΓKσ. The induction hypothesis gives tρ ∈ JAK+σ and uρ ∈
JBK+σ . So 〈tρ, uρ〉 ∈ [A ∧B]

+
σ , and since JA ∧BKσ extends [A ∧B]σ (Ex.3-Q.4), we have

(〈t, u〉)ρ = 〈tρ, uρ〉 ∈ JA ∧BK+σ .

�

Γ `̀̀ t :Ai
Γ `̀̀ inji(t) :A1 ∨A2

Let σ be a valuation and ρ ∈ JΓKσ. The induction hypothesis gives tρ ∈ JAiK
+
σ . So inji(tρ) ∈

[A1 ∨A2]
+
σ , and since JA1 ∨A2Kσ extends [A1 ∨A2]σ (Ex.3-Q.4), we have (inji(t))ρ = inji(tρ) ∈

JA1 ∨A2K
+
σ .

�

Γ `̀̀ t :B

Γ `̀̀ Λ_.t :∀α.B
α 6∈ FV(Γ)

Let σ be a valuation and ρ ∈ JΓKσ. Since α /∈ FV(Γ), JΓKσ = JΓKσ,α 7→h for any h ∈
H. So we can apply the induction hypothesis to obtain tρ ∈ JBK+σ,α 7→h for any h ∈ H.
So Λ_.tρ ∈ [∀α.B]

+
σ , and since J∀α.BKσ extends [∀α.B]σ (Ex.3-Q.4), we have (Λ_.t)ρ =

Λ_.tρ ∈ J∀α.BK+σ .

�

Γ `̀̀ t :
{
B�α
}
A

Γ `̀̀ 〈_, t〉 :∃α.A
Let σ be a valuation and ρ ∈ JΓKσ. So we can apply the induction hypothesis to obtain

tρ ∈
q{

B�α
}
A

y+

σ
, so by Ex.3-Q.3, tρ ∈ JAK+σ,α 7→[B]σ

. In other words, tρ ∈ JAK+σ,α 7→h for the

particular choice of h = [B]σ, and by Ex.3-Q.4, h ∈ H. So 〈_, tρ〉 ∈ [∃α.A]
+
σ , and since

J∃α.AKσ extends [∃α.A]σ (Ex.3-Q.4), we have 〈_, t〉ρ = 〈_, tρ〉 ∈ J∃α.AK+σ .

2. [*] Prove Strong Normalisation: If Γ `̀̀ t :A then t ∈ SN.
(Hint: choose a valuation σ and a substitution ρ appropriately.)

Correction : Take σ to map every type variable α to the orthogonal pair (Var,Var) of simple
sets. Take ρ to be the identity substitution mapping every term variable to itself. We have
ρ ∈ JΓKσ since for every type B, JBKσ is saturated (Ex.3-Q.4), so Var ⊆ JBK+σ , and therefore

for every declaration x :B in Γ, ρ(x) = x ∈ JBK+σ .

The Adequacy Lemma gives tρ ∈ JAK+σ , and as tρ = t and JAK+σ ⊆ SN we have t ∈ SN.
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