Submission Submission should be via MMS in the form of a single COQ vernacular file, named “CS3202tutorial1.v”. An initial template version of this file has been prepared for you. It should be added to, and regularly saved, during the course of your lab work, and then uploaded to MMS.

Deadline Friday 16th February 2007, by MIDNIGHT.

Credit This tutorial contributes to the 10% of the overall coursework grade allocated for tutorials.

Rubric You are reminded of the University’s rules governing Academic Fraud. You may of course work with colleagues in discussing how to go about solving these problems, but any work which you submit MUST be your own, except where you EXPLICITLY reference the work of others.

Task 1: Using Coq

1. (a) login to a JH lab machine
 (b) fire up WWW browser (otherwise the built-in WWW help subsystem of coqide will not work…)
 (c) get a terminal window
 (d) type coqide at the prompt
 (e) check browser-based help is working, check the online tutorial and the reference manual.

2. (a) download CS3202tutorial1.v and CS3202.v from Studres/Tutorials
 (b) open CS3202tutorial1.v in coqide
 (c) check the effects of the compilation buttons and observe coqide’s answers in the bottom-right window.
 (d) What is the role of the dot .?
The concrete syntax for the connectives is
\(\wedge \) for \(\land \) (e.g. \(A \wedge B \)), \(\lor \) for \(\lor \) (e.g. \(A \lor B \)), \(\Rightarrow \) for \(\Rightarrow \) (e.g. \(A \Rightarrow B \)), and, in these tutorials, \(\bot \) for \(\bot \) and \(\neg \) for \(\neg \) (e.g. \(\neg A \)).

The constructors for proof-trees are, in these tutorials,

\(\wedge \)-introduction: \[
\begin{array}{c}
A \\
B \\
\hline
A \wedge B
\end{array}
\]

\(\wedge \)-elimination:
\[
\begin{array}{c}
A \wedge B \\
A \\
\hline
B
\end{array}
\]

\(\lor \)-introduction:
\[
\begin{array}{c}
A \\
\hline
A \lor B
\end{array}
\]

\(\lor \)-elimination:
\[
\begin{array}{c}
A \lor B \\
C \\
\hline
\begin{array}{c}[A] \\
\hline
\end{array} \\
\end{array}
\]

\(\Rightarrow \)-introduction:
\[
\begin{array}{c}
B \\
\hline
A \Rightarrow B
\end{array}
\]

\(\Rightarrow \)-elimination:
\[
\begin{array}{c}
A \Rightarrow B \\
A \\
\hline
B
\end{array}
\]

\(\bot \)-elimination:
\[
\begin{array}{c}
\bot \\
\hline
A
\end{array}
\]

\(\neg \)-introduction:
\[
\begin{array}{c}
A \\
\hline
\neg A
\end{array}
\]

Discharging the leaves called \(x \) and labelled with \(A \) in a proof \(t \) is written

\[
\text{fun } x:A => t
\]

Task 2: Proving

- Check (and understand) the proof of \(A \vdash A \).

 I assume the hypotheses of the syntactic entailment relation by giving them names (aka variables). Here, there is just the assumption \(A \), which I name \(H \).

 Hypothesis \(H:A \).

 Now I give a proof-term for the tree concluding \(A \) from these assumptions. It can thus use the variables declared for the assumptions, and guess what it is in this case...

 Check \(H \).

- Check (and understand) the proof of \(A \wedge B \vdash B \wedge A \).

 Here, there is just the assumption \(A \wedge B \), which I name \(H_{AB} \).

 Hypothesis \(H_{AB} : A \wedge B \).
Now I give a proof-term for the tree concluding $B \land_A$ from the assumption. It can thus use H_{AB}. Let’s start with a proof-term for a tree concluding A:

Check $\text{and}_1 A B H_{AB}$.

Let’s continue with a proof-term for a tree concluding B:

Check $\text{and}_e A B H_{AB}$.

Here is my proof-term for a tree concluding $B \land A$:

Check $\text{and}_i B A (\text{and}_e A B H_{AB}) (\text{and}_1 A B H_{AB})$.

• Check (and understand) the proof of $A \lor B \vdash B \lor A$

Here, there is just the assumption $A \lor B$, which I name H_0.

Hypothesis $H_0: A \lor B$.

Now I give a proof-term for the tree concluding $B \land A$ from the assumption. It can thus use H_0. Let’s start with a proof-term for a tree concluding $B \land A$ under the local assumption of A (called H_1) that I discharge:

Check $\text{fun} H_1: A \Rightarrow \text{or}_i B A H_1$.

Note that H_1 is not visible after the discharge. Check H_1. fails! Let’s continue with a proof-term for a tree concluding $B \land A$ under the local assumption of B (called H_2) that I discharge:

Check $\text{fun} H_2: B \Rightarrow \text{or}_i B A H_2$.

Again, the variable H_2 is not visible (and in fact I could have called it H_1 without clash.)

Now here is my proof-term for a tree concluding $B \land A$:

Check

\[
\text{or}_e A B (B \land_A) \\
H_0 \ (\text{fun} H_1: A \Rightarrow \text{or}_i B A H_1) \ (\text{fun} H_2: B \Rightarrow \text{or}_i B A H_2).
\]

• Prove $(A \land B) \land C \vdash A \land (B \land C)$

Assume $(A \land B) \land C \vdash A$ by giving it the name H_1:

Hypothesis $H_1: (A \land B) \land C$.

Now it’s your job to find a proof-term for $A \land (B \land C)$ using H_1!

• Prove $A, (A \Rightarrow B), (B \Rightarrow C) \vdash C$

• Prove $(A \Rightarrow B), (B \Rightarrow C) \vdash A \Rightarrow C$

• Prove $(A \lor B) \lor C \vdash A \lor (B \lor C)$

• Prove $A \Rightarrow \bot \vdash (\neg A)$

• Prove $\neg (\neg A) \vdash A \Rightarrow \bot$

• Prove $? \vdash ((A \Rightarrow B) \Rightarrow B) \Rightarrow A$

• Check whether it is a tautology. Conclusion?