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Poor old Socrates

® Socrates is a man

e All men are mortal

® Socrates is mortal
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e All men are mortal: Vim.H (m) = M (m)
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What do we need? In the language:

e terms, to denote objects of an (often implicit) universe of speech:

Socrates, S
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Formally, these are functions, turning individual things into propositions
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What do we need? In the language:

e terms, to denote objects of an (often implicit) universe of speech:

Socrates, S

e predicates, to make statements about these objects:
mis a man: H(m)

Formally, these are functions, turning individual things into propositions

® substitution, to speak about a (more) particular instance:
“H(m) plus S equals H(S)”
Trickier than you think!
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What do we need? In the reasoning:

e introduction and elimination rules for V and 3
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What do we need? In the reasoning:

e introduction and elimination rules for V and -
to prove or use wff of the form V, P(x) or Az, P(x)
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Terms

e Well-bracketed expressions / trees,

denoting “things in the current context” that we are allowed to talk about.
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Terms

e Well-bracketed expressions / trees,

denoting “things in the current context” that we are allowed to talk about.

e Leaves: (labelled with) constants

or (free) variables, “things we don’t know about yet”

Example: Natural numbers, constants: 0, 1, variables n, m as in

Vn,n=0V (dm,n=m + 1)

JHM+SL: CS3202 Lecture 5 Slide 4



Terms

e Well-bracketed expressions / trees,

denoting “things in the current context” that we are allowed to talk about.

e Leaves: (labelled with) constants

or (free) variables, “things we don’t know about yet”

Example: Natural numbers, constants: 0, 1, variables n, m as in

Vn,n=0V (dm,n=m + 1)

e Internal nodes: (labelled with) function symbols
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Terms

e Which variables are allowed to appear in terms is relative to the current

context.
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Terms

e Which variables are allowed to appear in terms is relative to the current
context.

Example: in m + 1 above, m was introduced in the current context by the
quantifier 3m
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Terms

e Which variables are allowed to appear in terms is relative to the current

context.

Example: in m + 1 above, m was introduced in the current context by the

quantifier 3m

e As usual, we represent term-trees as well-bracketed strings (a.k.a.

expressions). Example: (n + m) +n/

JHM+SL: CS3202 Lecture 5 Slide 5



Terms

e Which variables are allowed to appear in terms is relative to the current

context.
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e As usual, we represent term-trees as well-bracketed strings (a.k.a.
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e In general, we use x, v, 2 for variables, ¢, u, v for terms, f, g for function

symbols
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Predicates

® ...are just what you think (in CoQ):

e functions from one type (the universe of speech) to Prop (the type of
propositions)

MyUniverse -> ... -> MyUniverse -> Prop
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Predicates
® ...are just what you think (in CoQ):

e functions from one type (the universe of speech) to Prop (the type of
propositions)

MyUniverse -> ... -> MyUniverse -> Prop

e Given a priori as a set of predicate symbols p, g, r, . ..

(similar to constants and function symbols for terms)
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Predicates

... are just what you think (in CoQ):

functions from one type (the universe of speech) to Prop (the type of
propositions)

MyUniverse -> ... -> MyUniverse -> Prop

Given a priori as a set of predicate symbols p. g, r, . ..

(similar to constants and function symbols for terms)
Again, arity = number of arguments (potentially 0!)

Examples: from the one above, = (arity 2), or in maths & (arity 2),
with infix notation.

When applied: t = uwandt € u

JHM+SL: CS3202 Lecture 5 Slide 6



Predicates

... are just what you think (in CoQ):

functions from one type (the universe of speech) to Prop (the type of
propositions)

MyUniverse -> ... -> MyUniverse -> Prop

Given a priori as a set of predicate symbols p. g, r, . ..

(similar to constants and function symbols for terms)
Again, arity = number of arguments (potentially 0!)

Examples: from the one above, = (arity 2), or in maths & (arity 2),
with infix notation.

When applied: t = uwandt € u

JHM+SL: CS3202 Lecture 5 Slide 6



Extended WFF

e Well-bracketed expressions / trees,

JHM+SL: CS3202 Lecture 5 Slide 7



Extended WFF

e Well-bracketed expressions / trees,

e Leaves: predicates applied to their arguments. Example: n = 0

JHM+SL: CS3202 Lecture 5 Slide 7



Extended WFF

e Well-bracketed expressions / trees,

e Leaves: predicates applied to their arguments. Example: n = 0

e Internal nodes: logical connectives (as in propositional logic) A, V, =, L

JHM+SL: CS3202 Lecture 5 Slide 7



Extended WFF

e Well-bracketed expressions / trees,

e Leaves: predicates applied to their arguments. Example: n = 0

e Internal nodes: logical connectives (as in propositional logic) A, V, =, L

or quantifiers+variable, YV (arity 1), dx (arity 1)

JHM+SL: CS3202 Lecture 5 Slide 7



Extended WFF

e Well-bracketed expressions / trees,
e Leaves: predicates applied to their arguments. Example: n = 0

e Internal nodes: logical connectives (as in propositional logic) A, V, =, L

or quantifiers+variable, YV (arity 1), dx (arity 1)
x I1s bound by the quantifier.

Its name is irrelevant: In, —=(n = 0) means the same as Im, =(m = 0)

JHM+SL: CS3202 Lecture 5 Slide 7



Extended WFF
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or quantifiers+variable, YV (arity 1), dx (arity 1)
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Its name is irrelevant: In, —=(n = 0) means the same as Im, =(m = 0)

e We consider wff up to / modulo sound renaming of bound variables (a.k.a.

(-equivalence)
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Extended WFF

Well-bracketed expressions / trees,

Leaves: predicates applied to their arguments. Example: n = 0

Internal nodes: logical connectives (as in propositional logic) A, V, —, L
or quantifiers+variable, YV (arity 1), dx (arity 1)

x I1s bound by the quantifier.

Its name is irrelevant: In, —=(n = 0) means the same as Im, =(m = 0)
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Tricky. We want to avoid name clashes.

Example: Vm, dn, =(n = m) is not the same as Vm, 3m, —(m = m)
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Substitution

looks (usually) just what you think
but beware!

need to define what it is to be free and bound in an expression,

formula, etc.
FV(Vx : AM)=rv(M)\ {x}

lots of room to make mistakes. .. so go to the machine for

assistance. ..

Note: a variable can be substituted for a term which may refer to other
variables (possibly be a variable). Example:

vm,—(n = 0){n — m + 1} becomes Vm, =(m + 1 = 0)

In other words 7 is not (yet) substituted for a “value”, i.e. a term

without (free) variables (all leaves are constants).
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Substitution

e onterms
r{r — t} =t
yiz =t} =y
flug,..., up){r —t} = flur{x —t}, ..., Un{x — t})
on wff

(Vy, A){z — t} =Vy, (A{z —t})  zFyygFV)
(Jy, A){z — t} =3y, (A{z —1t}) zFyygFrv)
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Inference rules for V

e \We extend Natural Deduction with the following rules:
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xr & FV(open leaves)
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Inference rules for

e -introduction:

A{x =t}
Jx, A
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Inference rules for

e -introduction:

A{x =t}
Jx, A

5-elimination:

4]

dx, A C’
C

x & FV(C') U FV(open leaves)
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Intuition about d-elim: an alternative?

e Standard dJ-elimination:

4]

Jx, A C’
C

xr & FV(C') U FV(open leaves)
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Intuition about d-elim: an alternative?

e Standard dJ-elimination:
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Jx, A C’
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Jx, A
4 A
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C C
- x ¢ FV(C') U FV(open leaves)
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Use of the side-condition

e Writing P(x) for a wif A depending on z,

P(x)
Va, P(x)
is a proof for P(x) F Vx, P(x)
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Example of theorem

o Vz,(p(z) = q(z)) - (Vy,p(y)) = V2,q(2)
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Example of theorem

e Vz, (p(z) = q(z)) F (Vy,p(y)) = Vz,q(2)
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(Vy, p(y)) =Vz,4q(2)
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Example of theorem

e Vz, (p(z) = q(z)) F (Vy,p(y)) = Vz,q(2)
Proof:

vz, (p(z) = q())
p(z) = q(2) p(z)
q(z)
Vz,q(2)
(Vy.p(y)) =Vz,4q(z)

since p(z) = q(2) is (p(z) = q(z)){z — 2}
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Example of theorem

o Vz,(p(z) = q(z)) - (Vy,p(y)) = V2,q(2)

o Ve, (o(z) = a(@))  Vy,p(v)
p(z) = q(2) p(z)
q(z)
Vz,q(2)
(Vy.p(y)) =Vz,4q(z)

since p(z) = q(2) is (p(z) = q(z)){z — 2}
and p(z) is (p(y) {y — =}
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Example of theorem

o Vz,(p(z) = q(z)) - (Vy,p(y)) = V2,q(2)

o Ve, (o(z) = a(@))  Vy,p(v)
p(z) = q(2) p(z)
q(z)
Vz,q(2)
(Vy.p(y)) =Vz,4q(z)

*

since p(z) = q(2) is (p(z) = q(z)){z — 2}
and p(z) is (p(y) {y — =}

Note that the step x is correct because
2 & FV(Vz, (p(x) = q(x))) UFV(Vy, p(y))
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Example of theorem

o Jz, (p(x) Vq(r)) - Fy,p(y)) V (Fz,q(2))
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Example of theorem

o Jz, (p(x) Vq(r)) - Fy,p(y)) V (Fz,q(2))

Proof:

(Fy, p(y)) V (Fz,q(2))
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Example of theorem

o Jz, (p(x) Vq(r)) - Fy,p(y)) V (Fz,q(2))

Proof:

Jz,p(z) V q() (Fy, p(y)) V (Fz,9(2))
(Fy, p(y)) V (Fz,q(2))
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Example of theorem
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Example of theorem

o Jz, (p(x) Vq(r)) - Fy,p(y)) V (Fz,q(2))

Proof:
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Jy, p(y)
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JHM+SL: CS3202 Lecture 5 Slide 15



Example of theorem

o Jz, (p(x) Vq(r)) - Fy,p(y)) V (Fz,q(2))

Proof:
()]
Jy, p(y) 3z, q(2)
p(x)Va(x)]  By,p(y)) vV (32,q(2))  Fy,p(y)) Vv (3z,q(2))
Jz,p(x) V q(x) (Fy,p(y)) V (32, 4(2))

(Fy, p(y)) V (Fz,q(2))

since p(x) is (p(y)){y — =}

JHM+SL: CS3202 Lecture 5 Slide 15



Example of theorem
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Example of theorem

o Jz, (p(x) Vq(r)) - Fy,p(y)) V (Fz,q(2))

Proof:
p(z)] q()]
Jy, p(y) 3z, q(2)
p(x)Va(x)]  By,p(y)) vV (32,q(2))  Fy,p(y)) Vv (3z,q(2))
Jz,p(x) V q(x) (Fy,p(y)) V (32, 4(2)) .

(Fy, p(y)) V (Fz,q(2))

since p(z) is (p(y){y — =} and ¢(x) is (¢(2)){z — =}
Note that the step x is correct because

r € FV((Jy,p(y)) V (3z,q(2))) and at that point there is no open assumption
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p(x)Va(x)]  By,p(y)) vV (32,q(2))  Fy,p(y)) Vv (3z,q(2))
Jz,p(x) V q(x) (Fy,p(y)) V (32, 4(2)) .

(Fy, p(y)) V (Fz,q(2))

since p(z) is (p(y){y — =} and ¢(x) is (¢(2)){z — =}
Note that the step x is correct because

r € FV((Jy,p(y)) V (3z,q(2))) and at that point there is no open assumption
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Example of theorem

e (Jy,p(y)) V (F2,q(2)) = Fz, (p(z) V q(x))

JHM+SL: CS3202 Lecture 5 Slide 16



Example of theorem

e (Jy,p(y)) V (F2,q(2)) = Fz, (p(z) V q(x))

Proof:

3z, (p(x) V q(z))
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Example of theorem

e (Jy,p(y)) V (F2,q(2)) = Fz, (p(z) V q(x))

Proof:

(Fy, p(y))V(3z,q(2)) Jz, (p(z) V q(x)) 3z, (p(z) V q(x))
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Example of theorem

e (Jy,p(y)) V (F2,q(2)) = Fz, (p(z) V q(x))

Proof:

Fy.p(y)] 3z, (p(x) V q(x))

(Fy, p(y))V(3z,q(2)) Jz, (p(z) V q(x)) 3z, (p(z) V q(x))

3z, (p(x) V q(z))
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Example of theorem

e (Jy,p(y)) V (F2,q(2)) = Fz, (p(z) V q(x))

Proof:
p(y)]
p(y) V q(y)
Fy.p(y)] Fz, (p(x) V q())
(Jy, p(y))V(3z, q(2)) Jz, (p(x) V q(x)) dz, (p(z) V q(z))
Jz, (p(z) V q(z))
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Example of theorem

e (Jy,p(y)) V (F2,q(2)) = Fz, (p(z) V q(x))

Proof:
p(y)]
p(y) V q(y)
Fy.p(y)] 3z, (p(z) vV q(z))  [2.9(2)]
(Jy, p(y))V(3z, q(2)) Jz, (p(x) V q(x)) dz, (p(z) V q(z))
Jz, (p(z) V q(z))
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Example of theorem

e (Jy,p(y)) V (F2,q(2)) = Fz, (p(z) V q(x))

Proof:
p(y)]
p(y) V q(y)
Fy.p(y)] Fz, (p(x) Va(z))  [H2.4(2)] 3z, (p(z) V q(2))
(Jy, p(y))V(3z, q(2)) Jz, (p(x) V q(x)) dz, (p(z) V q(z))
Jz, (p(z) V q(z))
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Example of theorem

e (Jy,p(y)) V (F2,q(2)) = Fz, (p(z) V q(x))

Proof:
p(y)]
p(y) V q(y) p(z) V q(z)
Fy.p(y)] Fz, (p(x) Va(z))  [H2.4(2)] 3z, (p(z) V q(2))
(Jy, p(y))V(3z, q(2)) Jz, (p(x) V q(x)) dz, (p(z) V q(z))
Jz, (p(z) V q(z))

since p(y) V q(y) is (p(z)
and p(z) V q(z) is (p(z) V
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Example of theorem

e (Jy,p(y))V (F2,q(2)) - Fz, (p(z) V q(x))

Proof:
p(y)]
p(y) V q(y) p(z) V q(z)
Fy.p(y)] Fz, (p(x) Va(z))  [F2.4(2)] 3z, (p(z) V q(2))
(Fy, p(y))V(3z, q(2)) Jz, (p(z) V q(x)) z, (p(w)VQ(fb))*
Jz, (p(z) V q(z))

since p(y) V q(y) is (p(z) V q(x) {7 — y}

and p(z) V q(2) is (p(z) V q(x) {2 — =}
Again, the two J-elim are correct: the bound variable y (resp. z) is not free

in the conclusion 3z, (p(x) V q(x)) & no open assumption
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Again, the two J-elim are correct: the bound variable y (resp. z) is not free

in the conclusion 3z, (p(x) V q(x)) & no open assumption
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Questions?
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