Logique et Calculabilité INF551

Dr. Stéphane Lengrand,

Stephane.Lengrand@Polytechnique.edu

Cours 5 Les théorèmes de Church et Gödel

I. Résumé des épisodes précédents

Logique des prédicats

- Syntaxe, Notion de démonstration
- Sémantique, Notion de modèle

Rappel:

- Ce n'est pas parce qu'on a $\mathcal{T} \vdash A \lor \neg A$ (cf tiers exclu) que l'on a soit $\mathcal{T} \vdash A$ soit $\mathcal{T} \vdash \neg A$
- Mais dans tout modèle (bivalué) de $\mathcal T$ on a soit $[\![A]\!]=1$ soit $[\![\neg A]\!]=1$
- Une proposition (close) A est indéterminée dans une théorie $\mathcal T$ si ni A ni $\neg A$ ne sont prouvables dans $\mathcal T$ (s'il existe à la fois des modèles de $\mathcal T$ où $[\![A]\!]=1$ et d'autres où $[\![\neg A]\!]=1$)
- Théorème de complétion : Toute théorie cohérente peut être complétée en une théorie cohérente où toute proposition close est déterminée

Questions de décidabilité

Def : Un sous-ensemble de \mathbb{N}^n (ou d'un ensemble \mathcal{C} équipé d'une injection vers \mathbb{N}) est décidable si sa fonction caractéristique est calculable.

Def : La dérivation qui justifie qu'une fonction de \mathbb{N}^n dans \mathbb{N} est calculable est appelé programme. Ce programme calcule ladite fonction.

Il peut être représentée par un arbre (2-articulé) étiqueté par les symboles π_i^n , Z^n , Succ, \circ_m^n , μ^n and Rec^n or $+, \times, \chi_{\leq}$

L'ensemble des programmes vient donc avec une notion de calculabilité

 Def : Un programme f termine en $q\in\mathbb{N}$ si q est dans le domaine de la fonction calculée par f

Théorème de l'arrêt : l'ensemble des couples (f,q), où f est un programme et q un entier, tels que f termine en q, est indécidable.

II. Théorème de Church

Deux manières de résoudre des problèmes

Est-ce que 4 est pair?

Trouver une démonstration dans l'arithmétique de la proposition close

$$A = \exists x (4 = 2 \times x)$$

– Appliquer le programme $Rec^1(\circ^0_1(S,Z^0),Rec^2(\circ^1_1(S,Z^1),Z^3))$ à l'entier 4. C'est-à-dire calculer g(4) avec

$$g(0)$$
 := 1
 $g(n+1)$:= 1 si $g(n) = 0$
 $g(n+1)$:= 0 si $g(n) = 1$

On a un algorithme qui décide si A est prouvable dans l'arithmétique.

Jusqu'où peut-on aller?

Existe-t-il un algorithme générique qui décide si une proposition est prouvable dans l'arithmétique?

Formalisons la question.

Les propositions de l'arithmétique (comme tous les arbres articulés) peuvent se numéroter ($\lceil A \rceil \in \mathbb{N}$)

La fonction qui à toute proposition close A associe 1 si $\mathcal{PA} \vdash A$ et associe 0 si $\mathcal{PA} \not\vdash A$ est-elle calculable ?

Et la théorie des ensembles (même chose avec $ZF \vdash A$)?

Et la logique des prédicats (même chose avec $\vdash A$)?

Des raisons d'espérer ?...ou pas

Le théorème de Presburger :

La fonction qui à toute proposition close A associe 1 si $\mathcal{P}res \vdash A$ et associe 0 si $\mathcal{P}res \not\vdash A$ est calculable.

Le théorème de Church

Il n'existe pas d'algorithme qui décide si une proposition est prouvable dans l'arithmétique

(La fonction qui à toute proposition close A associe 1 si $\mathcal{PA} \vdash A$ et associe 0 si $\mathcal{PA} \not\vdash A$ n'est pas calculable.)

Il n'existe pas d'algorithme qui décide si une proposition est prouvable dans la logique des prédicats sans axiomes

Réduire le problème à celui de l'arrêt

L'idée.

Par l'absurde : si un tel algorithme existait...

... il permettrait de décider la prouvabilité des prop. de la forme

"Le programme f termine en n"

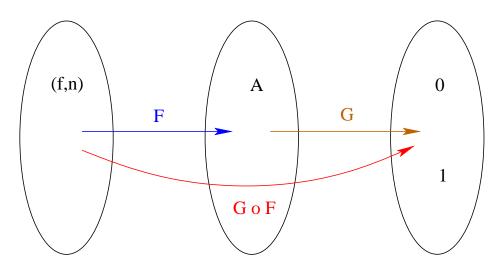
Or, ceci contredirait le théorème de l'arrêt.

Il faut donc exprimer le proposition "Le programme f termine en n" sous la forme d'une proposition arithmétique.

Réduire le problème à celui de l'arrêt

Soit G la fonction qui à toute proposition close A associe 1 si $\mathcal{PA} \vdash A$ et associe 0 si $\mathcal{PA} \not\vdash A$

Soit F une fonction calculable qui à tout (f,n) associe une proposition A telle que $\mathcal{PA} \vdash A$ ssi le programme f termine en n



Si G était calculable, $G \circ F$ le serait aussi et déciderait du problème de l'arrêt.

Construisons une telle fonction calculable ${\cal F}$

Pour tout programme f de \mathbb{N}^n dans \mathbb{N} , on construit une proposition A, dont les variables libres sont parmi x_1,\ldots,x_n,y telle que

$$f(p_1,...,p_n) = q$$
 ssi
$$\mathcal{P}\mathcal{A} \vdash (\underline{p_1}/x_1,...,\underline{p_n}/x_n,\underline{q}/y)A$$

$$\begin{array}{c} {}^p \text{ fois} \\ \text{où } \underline{p} = S(\dots S \ (0) \dots) \end{array}$$

Notation
$$A[\underline{p_1},...,\underline{p_n},\underline{q}]$$
 pour $(\underline{p_1}/x_1,...,\underline{p_n}/x_n,\underline{q}/y)A$

On dit que A représente f

Sept d'un coup

$$\begin{array}{ll} f=Z^n & y=0 \\ f=S & y=S(x_1) \\ f=\pi_i^n & y=x_i \\ f=+ & y=x_1+x_2 \\ f=\times & y=x_1\times x_2 \\ f=\chi_{\leq} & (y=1 \land \exists z\ (x_2=x_1+z)) \lor (y=0 \land \neg \exists z\ (x_2=x_1+z)) \\ f=\circ_m^n(g,g_1,\ldots,g_m) \\ \exists y_1\ldots\exists y_m\ B[y_1,\ldots,y_m,y] \land B_1[x_1,\ldots,x_n,y_1] \land \ldots \land B_m[x_1,\ldots,x_n,y_m] \\ \text{où } B,B_1,\ldots,B_m \text{ représentent resp. } g,g_1,\ldots,g_m \end{array}$$

La minimisation

f construite par minimisation de g

Soit B une formule qui représente g

On définit

$$A=(\forall z\ (z< y\Rightarrow \exists w\ (\neg w=0 \land B[x_1,...,x_n,z,w]))) \land B[x_1,...,x_n,y,0]$$
 où $x< y$ est $\exists z\ y=x+S(z)$

Le théorème de représentation

Les trois assertions suivantes sont équivalentes :

$$f(p_1,...,p_n) = q$$

$$\mathcal{P}\mathcal{A} \vdash A[\underline{p_1},...,\underline{p_n},\underline{q}]$$

$$A[\underline{p_1},...,\underline{p_n},\underline{q}] \text{ valide dans } \mathbb{N}$$

(i) \Rightarrow (ii) : récurrence sur la construction de f

Nécessite de montrer e.g.

Si (p/x)A prouvable alors $\exists x\ A$ prouvable

Si $(\underline{0}/x)A$, ..., $(\underline{p}/x)A$ prouvables alors $\forall x\ (x\leq\underline{p}\Rightarrow A)$ prouvable

- (ii) ⇒ (iii) : correction du système de preuve
- (iii) \Rightarrow (i) : si valide dans $\mathbb N$ alors il existe des entiers qui. . .

Corollaires et Théorème de Church

Les trois assertions suivantes sont équivalentes :

$$f$$
 termine en $p_1,...,p_n$
$$\mathcal{P}\mathcal{A} \vdash \exists y A[\underline{p_1},...,\underline{p_n},y]$$

$$\exists y A[\underline{p_1},...,\underline{p_n},y] \text{ valide dans } \mathbb{N}$$

Notez que la fonction F qui au programme f associe A est calculable

L'ensemble des propositions prouvables dans l'arithmétique n'est pas décidable (CQFD)

III. Les extensions du Théorème de Church

Langages pauvres

Rappel : On a traduit π_2^3 en $y=x_2$, Z^3 en y=0, S en y=S(x)

Ceci nécessite que le langage ait des symboles $0, =, S, \dots$

Et la théorie des ensembles ZF?

Une proposition Succ[x,y]

 $\forall z \ (z \in y \Leftrightarrow (z \in x \lor z = x))$

mais pas de symbole S

Plus généralement :

Soit \mathcal{L}_0 un langage dans lequel on peut construire des propositions

- -N, "être un entier"
- *Null*, "être zéro"
- *Succ*, "être le successeur de...",
- *Plus*, "être la somme de ... et ...",
- *Mult*, "être la multiplication de ... et ..."
- -Eq, "être deux entiers égaux"

Langages pauvres

Par ailleurs, a-t-on besoin de tout \mathcal{PA} pour le théorème de Church? (nombre d'axiome infini à cause du schéma de récurrence)

Def: Soit \mathcal{T}_0 la théorie qui (grosso modo) exprime avec N, Null, Succ, Plus, Mult, Eq les axiomes de \mathcal{PA} (+, ×, =) mais sans la récurrence (voir poly). Example :

$$\forall x \forall y \forall x' \forall y' \ ((N[x] \land N[y] \land Succ[x, x'] \land Succ[y, y'] \land Eq[x', y']) \Rightarrow Eq[x, y])$$

Idée:

 \mathcal{T}_0 suffisante pour les constructions nécessaires au th. de représentation

Def : \mathbb{N} -modèle : toute extension de $(\mathbb{N},0,(n\mapsto n+1),+,\times,=)$ où \mathbb{N} interprète N, 0 interprète Null, $n\mapsto n+1$ interprète Succ, + interprète Plus, \times interprète Mult, = interprète Eq

Théories riches dans langages pauvres

Théorème : Soit \mathcal{T} une théorie dans \mathcal{L}_0 , qui a un \mathbb{N} -modèle et dans laquelle on peut prouver \mathcal{T}_0 La prouvabilité dans cette théorie est indécidable

Preuve:

on adapte la représentation des fonctions calculables en remplaçant

- -(S(t)/x)A par $\exists x \ Succ[x,t] \land A$
- -(0/x)A par $\exists x \ Null[x] \land A$
- -t = u par Eq[t, u]

— ...

On adapte le théorème de représentation avec \mathcal{T} et son \mathbb{N} -modèle à la place de \mathcal{PA} et \mathbb{N} . Pour le prouver on utilise le fait que \mathcal{T} prouve \mathcal{T}_0 .

Application : La prouvabilité dans ZF est indécidable.

Et les extensions incohérentes ? e.g. on ajoute l'axiome \perp à \mathcal{T}_0 ?

Théories pauvres dans langages pauvres

Théorème:

La prouvabilité dans la théorie vide (dans le langage \mathcal{L}_0) est indécidable

Preuve:

Soit H la conjonction des axiomes de \mathcal{T}_0 (le nombre d'axiomes est fini!)

A prouvable dans \mathcal{T}_0

ssi

 $H \Rightarrow A$ prouvable dans la théorie vide

Exemples:

- Langage avec un symbole de prédicat binaire R

indécidable

Langage avec un symbole de prédicat à plusieurs arguments

indécidable

Langage avec un symbole de prédicat unaire et un symbole de fonction à plusieurs

arguments indécidable

Des théories décidables

Le calcul des prédicats sans axiomes est indécidable

Mais si les symboles sont régis par certains axiomes :

On peut récupérer la décidabilité

Exemple: Presburger (arithmétique avec + seulement)

Exemple : la géométrie d'Euclide

Une application surprenante : le 10ème problème de Hilbert

Équation polynomiale.

Exemple : $X^7 + X^5 - 2 = 0$ ou $X^2 - 2 = 0$

Peut-on décider si une telle équation a une solution dans $\mathbb N$?

$$a_n X^n + a_{n-1} X^{n-1} + \dots + a_0 = 0$$

Oui:

$$1 + (a_{n-1}/a_n)1/X + \dots + (a_0/a_n)1/X^n = 0$$

Pour X assez grand, chaque terme (sauf 1) est <1/n en valeur absolue.

Donc la somme est non nulle.

On énumère et teste tous les entiers inférieurs à ce X.

Le dixième problème de Hilbert :

Peut-on généraliser cet algorithme aux équations polynomiales multivariées?

Une application surprenante : le 10ème problème de Hilbert

La proposition de l'arithmétique Le programme f termine en n

On peut lui donner la forme
$$\exists x_1 \dots \exists x_n \ (t=u)$$

La prouvabilité dans l'arithmétique des propositions de cette forme est indécidable (Théorème de Matiyasevich, 1970)

Remarque : t et u sont des polynômes en $x_1, ..., x_n$!

 $\exists x_1 \dots \exists x_n \ (t=u) \text{ est prouvable ssi}$

t-u est un polynôme multivarié qui admet une racine entière.

Conséquence: Pas d'algorithme pour les équations polynomiales multivariées!

IV. Après la pluie, le beau temps : La semi-décidabilité

Décidabilité d'une fait d'être une dérivation

Soit E un ensemble (qui s'injecte dans \mathbb{N})

Def: Une famille $f_1, f_2, ...$ de règles sur E est dite effective si l'ensemble $\mathcal R$ des listes $b, a_1, ..., a_n$ t.q. $b=f_i(a_1, \ldots, a_n)$ (pour un certain f_i) est décidable

Théorème : Si la famille de règles f_1, f_2, \ldots est effective, l'ensemble des dérivations selon f_1, f_2, \ldots est décidable

Preuve:

Algo. analyse récursivement l'arbre donné en argument. Nœud étiqueté par b et enfants étiquetés par a_1,\ldots,a_n on vérifie a_1,\ldots,a_n,b est dans l'ensemble RVérification à chaque nœud

Semi-décidabilité du fait d'être dérivable

F ensemble des éléments de E dérivables par f_1, f_2, \ldots

Théorème : Si la famille de règles f_1, f_2, \ldots est effective,

F est semi-décidable

Preuve:

Soit f(x,y)=1 si x est le numéro d'une dérivation dont la racine est y, et f(x,y)=0 sinon.

Selon théorème précédent, f est calculable.

Soit g(y) le plus petit entier x tel que !f(x,y) = 0

Soit g^\prime la composée de g avec la fonction constante égale à 1

Si y appartient à F, alors g'(y)=1, sinon g' n'est pas définie en y

Semi-décidabilité de la prouvabilité

Les règles de la logique des prédicats forment une famille effective.

Théorème : Soit $\mathcal T$ une théorie dont les axiomes forment un sous-ensemble décidable des propositions

L'ensemble des propositions prouvables dans ${\mathcal T}$ est semi-décidable.

Preuve : Soit
$$ax(p) = 1$$
 si $p = \lceil A_1 \wedge \ldots \wedge A_n \rceil$ avec A_1, \ldots, A_n axiomes de \mathcal{T} , et $ax(p) = 0$ sinon. ax est calculable.

Soit f' la fonction calculable

$$f'(n, \lceil A \rceil) = ax(hd(n)) \&\& f(tl(n), (\lceil \Rightarrow \rceil; hd(n); \lceil A \rceil))$$
 et $g(\lceil A \rceil)$ plus petit entier n t.q. $!f'(n, \lceil A \rceil) = 0$

On énumère tous les entiers, jusqu'à en trouver un qui encode un certain nombre (fini) d'axiomes de $\mathcal T$ et une preuve de A utilisant ces axiomes.

Si A est prouvable dans \mathcal{T} , cet entier finira bien par sortir sinon la recherche se poursuit à l'infini

V. Le théorème de Gödel

Chercher simultanément une démonstration de A et de $\neg A$

$$g(\lceil A \rceil) = \text{plus petit entier } x \text{ t.q. } !(f'(x, \lceil A \rceil) || f'(x, \lceil \neg \rceil; \lceil A \rceil)) = 0$$

Les 4 possibilités

- 1. Si A est prouvable et $\neg A$ n'est pas prouvable g termine et retourne une démonstration de A
- 2. Si $\neg A$ est prouvable et A n'est pas prouvable g termine et retourne une démonstration de $\neg A$
- 3. Si ni A ni $\neg A$ ne sont prouvables g ne termine pas
- 4. Si A et $\neg A$ sont tous les deux prouvables

Le théorème de Gödel

Théorème : Soit ${\mathcal T}$ une extension de ${\mathcal T}_o$

qui a un \mathbb{N} -modèle et où les axiomes sont décidables.

Il existe une proposition A telle que ni A ni $\neg A$ ne soit prouvable

Preuve: Sinon, la fonction g serait totale,

et la fonction (totale) calculable $A \mapsto f'(g(\lceil A \rceil), \lceil A \rceil)$ coinciderait avec la fonction caractéristique de l'ensemble des théorèmes de \mathcal{T} .

A mettre en perspective avec le théorème de complétion.

Où est le problème?

En PC: Variations sur le théorème de Gödel

La prochaine fois : le calcul comme une suite de petits pas

Questions?