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(Ground) Sat-Modulo-Theories problems

Trying to determine whether a collection of formulæ has a model
(sat) or not (unsat).
Formulae are here
I built without quantifiers
I defined as terms of sort bool

. . . terms being those of multi-sorted first-order logic, i.e. built with
(free) variables and symbols declared with input and output sorts,
e.g.

f : s1 → s2
+,× : (Q× Q)→ Q
is_prime : N→ bool
=s : (s × s)→ bool
≤: (Q× Q)→ bool
∨,∧ : (bool× bool)→ bool
. . .
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(Ground) Sat-Modulo-Theories problems

Trying to determine whether a collection of formulæ has a model
(sat) or not (unsat).
Formulae are here
I built without quantifiers
I defined as terms of sort bool

The question of satisfiability is asked respectively to a range of
theories T1, . . . , Tk , which may impose or restrict the way each sort
and each symbol is interpreted:
For instance,
I the Boolean theory imposes that sort Bool be interpreted as
{true, false} and ∨,∧ be interpreted with the usual truth
tables, etc.

I Linear Rational Arithmetic imposes that + be interpreted in
the intuitive way, but does not know anything about ×, etc
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Traditional approaches

When the only theory involved is the Boolean one,
then this is SAT-solving.
Can be addressed by (clausification+) DPLL/CDCL.

In presence of other theories, a popular architecture is
DPLL(

⋃n
i=1 Ti), where

I a front-end is a SAT-solver running DPLL/CDCL;
I it is interfaced with a backend that combines decision

procedures for the theories T1, . . . , Tn
(usually by the Nelson-Oppen combination technique)
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What is MC-Sat?

Introduced in [dMJ13, JBdM13]
2 things:

I a template for theory-specific decision procedures
I a sound and complete way of combining theories following

the template
The template is an abstraction of how DPLL/CDCL works,
which becomes one instance of the scheme.
Consequence: Bool. theory has the same status as other theories.
(differs from traditional SMT-architecture)

Other differences with traditional approaches:
I terms and literals are exchanged that do not belong to the

original problem;
I parts that are really specific to the theories can consist of

much smaller steps.
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1. A glance at MC-Sat
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An example in Linear Rational Arithmetic
l0 : (−2·x−y < 0), l1 : (x+y < 0), l2 : (x < −1)

unsatisfiable in LRA.

Example of MCSAT run:
I Guess a value, e.g. y←0

Then l0 yields lower bound x > 0
Together with l2, space of possible values for x is empty
What to do? just undo y←0 ? No:

I Clash of bounds suggests to infer l0 + 2l2, i.e. l3 : (−y < −2)
indeed violated by the guess y←0

I Now undo the guess but keep l3.
I Try new guess, say y←4

l1 yields upper bound x < −4, l0 yields lower bound x > −2
I Clash of bounds suggests to infer l0 + 2l1, i.e. l4 : (y < 0)

indeed violated by the guess y←4
I Undo guess, keep l4

l3 and l4 give clash of bounds for y
I Suggests to infer l3 + l4, i.e. l5 : 0 < −2

No guess to undo, problem is UNSAT
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Key ingredients of MC-Sat calculi

Player sat

Player unsat

proposes
values

detects &
explains
conflicts

I Ability to make guesses
that do not “immediately violate” currently known constraints.
Here we can make such guesses up until there is a bound clash

I When undoing a guess, “something new” must be learnt that
at least prevents the same guess from being made again.
With infinite domains (e.g. Q) the “something new” must
definitely reject more than 1 value.
Here we used Fourier-Motzkin resolutions:

(e1 < x), (x < e2) `LRA (e1 < e2)
I Some generic mechanism to expand trails and analyse conflicts
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Subtleties

I New literals are introduced during a run
(here l3 and l4 by FM-resolutions)

This opens the door of non-termination
(infinitely many new things can be learnt)

l0 :−2·x − y < 0
l1 : x + y < 0
l2 : x < −1
l3 : −y < −2 (l0 + 2l2)
l4 : x < −2 (l1 + l3)

l5 : −y < −4 (l0 + 2l4)
l6 : x < −4 (l1 + l5)
l7 : −y < −8 (l0 + 2l6)
. . .I Even if non-termination is avoided,

introducing new material should we done with parsimony
Important aspect of MC-Sat is laziness.
FM-resolution only introduced to learn something from bound clashes
More generally, Player Unsat can afford being lazy, and react only
when sufficiently many terms have been assigned semantics.

DPLL’s 2-watched literals technique
(detecting when to apply Boolean propagation)
generalises to n-watched literals & can be used in each theory.
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Contributions

I In [dMJ13], Boolean logic + one abstract theory T
(mimicking DPLL(T ))

I In [JBdM13]: Boolean+LRA+EUF
I Other contributions, for Bit vectors [ZWR16], Nonlinear Real

Arithmetic [JdM12], Nonlinear Integer Arithmetic [Jov17], . . .

This raises the questions:
I Is there a generic way to combine à la MCSAT several

abstract theories? Which requirements should the theory
reasoning mechanisms satisfy for the combined system to be
sound, complete, and terminating?

I Is there a way to integrate or generalize both MCSAT and
Nelson-Oppen scheme (equality sharing)?

MP Bonacina, N Shankar and SGL address this for disjoint theories
in [BGLS16]
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2. MC-Sat mechanisms in our formal framework
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Same example formalized in our formal framework
Trail = stack of assignments (t←v) + “explanation function”,
initialized with input problem

(l←true) abbrev. as l
Empty explanation for input problem

Level:
greatest decision involved

If conflict is of level 0. . .
. . . problem is unsat

Phase 1

id trail items expl.

lev.

0 −2·x − y < 0 {}

0

1 x + y < 0 {}

0

2 x < −1 {}

0
3 y←0 1
4 − y < −2 {0, 2} 0

conflict E 1: {3, 4} 1

Phase 2
id trail items expl. lev.
0 −2·x − y < 0 {} 0
1 x + y < 0 {} 0
2 x < −1 {} 0
3 −y < −2 {0, 2} 0
4 y←4 1
5 y < 0 {0, 1} 0

conflict E 2: {4, 5} 1

Phase 3
id trail items expl. lev.
0 −2·x − y < 0 {} 0
1 x + y < 0 {} 0
2 x < −1 {} 0
3 −y < −2 {0, 2} 0
4 y < 0 {0, 1} 0
5 0 < −2 {3, 4} 0

conflict E 3: {5} 0
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An example with arithmetic, arrays, congruence
f (a[i := v ][j]) ' w , w − 2 ' f (u) , i ' j , u ' v

Phase 1
id trail items expl. lev.
0 f (x) ' w {} 0
1 y ' f (u) {} 0
2 w − 2 ' y {} 0
3 a[i := v ][j] ' x {} 0
4 i ' j {} 0
5 u ' v {} 0

6 v←c 1
7 a[i := v ][j]←d 2
8 v 6' a[i := v ][j] {6, 7} 2

conflict E 1: {4, 8} 2

Phase
id trail items expl.lev.
0 f (x) ' w {} 0
1 y ' f (u) {} 0
2 w − 2 ' y {} 0
3 a[i := v ][j] ' x {} 0
4 i ' j {} 0
5 u ' v {} 0
6 v ' a[i := v ][j] {4} 0

12/25
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Theory-specific ingredients: T -modules

Given a theory T , a module for T identifies:
I A collection of sorts for which it will propose values;

e.g. sort Q for LRA. These sorts are T -public.

I A collection of values for those sorts,
and an extension T + of theory T on extended signature
e.g. to specify, when writing x←

√
2, that

√
2×
√
2 = 1 + 1.

I A collection of T -inferences of the form J `T L,
where J is made of Boolean or non-Boolean assignments,
and L is a Boolean assignment.

We add to these inference equality inferences

(t1←v1), (t2←v2) ` t1 's t2 if v1 and v2 are the same
(t1←v1), (t2←v2) ` t1 6's t2 if v1 and v2 are different

+ reflexivity, symmetry, transitivity.
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√
2×
√
2 = 1 + 1.

I A collection of T -inferences of the form J `T L,
where J is made of Boolean or non-Boolean assignments,
and L is a Boolean assignment.

We add to these inference equality inferences

(t1←v1), (t2←v2) ` t1 's t2 if v1 and v2 are the same
(t1←v1), (t2←v2) ` t1 6's t2 if v1 and v2 are different

+ reflexivity, symmetry, transitivity.
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Example for LRA
LRA-public sorts: just Q.

LRA-values: Q. LRA+: trivial
(Some) LRA-inferences:
I Evaluations:

t1←q1, . . . , tn←qn `LRA l←b

where l evaluates to b under the assignments
I FM-resolutions:

(e1 l1 x), (x l2 e2) `LRA (e1 l3 e2)

where l is < or ≤. . .
(triggered only where e1 and e2 have been assigned values)

I Treatment of disequality:

(e1 ≤ x), (x ≤ e2), (e1 ' e0), (e2 ' e0), (x ' e0) `LRA ⊥

(triggered only where e0, e1 and e2 have been assigned values)
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Design choices
Why make the notion of T -inferences central?
I Rather minimalistic, with derived notions such as:

Non-Boolean assignment (t←v) “immediately violates” J
if there is an inference J , (t←v) `T L with L ∈ J

I (t←v) can be understood as a proxy for
“all literals that immediately follow from this assignment”
(compact representation for a group of simultaneously made
Boolean decisions)

I Directional (as opposed to, say, a theory lemma):
premisses of inferences have to be present in the problem,
conclusion can introduce new material

I Identifies the grains of theory-specific reasoning.
An MC-Sat derivation of unsat almost explicitly constructs an
aggregation of theory inferences
that can be taken as a proof object (cf. example)
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Generic calculus: Search rules
Parameterized by finite set of terms B called global basis
Let T be a theory with a specific T -module.

If assignment t←v (in T -public sort) does not immediately violate Γ
Decide

Γ −→ Γ, (t←v)

If J `T = L,
with J already in Γ and L is for a formula in B
Propagate

Γ −→ Γ, (J ` L) if L not in Γ
Conflict

Γ −→ Γ′ if L in Γ,
levelΓ(J , L) > 0
and analysing conflict 〈Γ; J , L〉 gives Γ′

Fail
Γ −→ unsat if L in Γ and levelΓ(J , L) = 0
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Generic calculus: Conflict analysis rules

Resolve
〈Γ;E ,A〉 =⇒ 〈Γ;E ∪ J〉 if explainΓ(A) = J

& greatest decision in J ,
if any, is Boolean

UIPBackjump
〈Γ;E , L〉 =⇒ Γ≤levelΓ(E), (E ` L) if levelΓ(E ) < levelΓ(L)

SemSplit
〈Γ;E , L〉 =⇒ Γ≤levelΓ(L)−1, L if levelΓ(L) = levelΓ(E )

& there is a decision in explainΓ(L)
& the greatest one is non-Boolean

Undo
〈Γ;E ,A〉 =⇒ Γ≤levelΓ(A)−1 if A is a non-Boolean decision

and levelΓ(E ) < levelΓ(A)
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3. Properties of the calculus
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Termination and Soundness

Termination:

If for each theory module T involved,
there is a local basis X 7→ basisT (X ) satisfying some properties,

then it is possible to define a global finite basis for the combination
of the theories

. . . and termination of the calculus follows.

(This relies on the fact that the theories are disjoint)

Soundness:

If for each theory module T involved the T -inferences are sound
(i.e. any model endorsing the premisses endorses the conclusion),
then if the calculus ends with unsat, then the input was unsat
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What happens if we never get unsat?
Do we have a model?

This relies on a completeness condition for theory modules:
For any Γ,
I Either any model of Γ in the equality theory

(where each sort different from bool is interpreted as an
infinite countable set)
can be extended into a T +-model of Γ

I Or a T -decision can be made (not immediately violating Γ)
I Or a T -inference can infer a new assignment

(for a term in the local basis)

Theorem: If all theory modules satisfy the completeness condition,
and if the calculus cannot make any further transitions, then the
state describes a model.

Proof adapts Nelson-Oppen
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Theories for which we provided such theory modules
I LRA(careful with the local basis)

I EUF
(ti ' ui )i=1...n, (f (t1, . . . , tn) 6' f (u1, . . . , un)) `EUF ⊥

(ti ' ui )i=1...n `EUF (f (t1, . . . , tn) ' f (u1, . . . , un))
(ti ' ui )i=1...n,i 6=i0 , f (t1, . . . , tn) 6' f (u1, . . . , un) `EUF ti0 6' ui0

I Arrays
(t ' t′), (i ' i ′), (t[i] 6' t′[i ′]) `Arr ⊥

(t ' t′), (i ' i ′), (u ' u′), (t[i := u] 6' t′[i ′:= u′]) `Arr ⊥
(t ' t′), (u ' u′), (diff(t, u) 6' diff(t′, u′)) `Arr ⊥

(t′ ' t[i := u]), (i ' j), (u 6' t′[j]) `Arr ⊥
(t′ ' t[i := u]), (i 6' j), (j ' j′), (t[j] 6' t′[j′]) `Arr ⊥

(t 6' u) `Arr (t[diff(t, u)] 6' u[diff(t, u)])

I Black box procedure (coarse-grain inferences)
l1←b1, . . . , ln←bn `T ⊥

where l1, . . . , ln are formulæ, and the conjunction of the literals
corresponding to the Boolean assignments l1←b1, . . . , ln←bn is
T -unsatisfiable
(as detected by e.g. the decision procedure)
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Conclusion
In [BGLS16],
We do not assume purification
& let every theory module see every other theory term assignment.
Consequence: We can remove the stably infinite condition

But we still need to use a reference theory T0 to make theories
agree of sorts cardinalities
Completeness condition for theory modules is now dependent on T0
(T0-completeness)
Further work:
I non-disjoint theories?
I how to handle quantifiers?
I From proof production to “proved correct” implementation:

If implementation of each inference is correct and state
transitions are correct, then answer is correct
Separates a kernel that is critical for correctness
from strategies that is critical for efficiency
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Messages and provability primitives
Implementing this in Psyche; each theory T can emit messages:

type _ message =
| Unsat : set -> unsat message
| Infer : set -> form -> infer message
| Sat : set -> sat message

Γ `T ⊥
Γ `T A
“T checks Γ”

module type Combo = sig
type ’b ans = [...]
val oracle : ’b message -> ’b ans
val resolve : infer ans -> unsat ans -> unsat ans
val curryfy : set -> unsat ans -> infer ans
[...]
end
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val resolve : infer ans -> unsat ans -> unsat ans
val curryfy : set -> unsat ans -> infer ans
[...]
end

oracle
Γ `T A  Γ ` A
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resolve

∆ ⊆ Γ
Γ′ ⊆ Γ

∆, l ` ⊥
Γ′ ` l

Γ `? ⊥
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Messages and provability primitives
Implementing this in Psyche; each theory T can emit messages:

type _ message =
| Unsat : set -> unsat message
| Infer : set -> form -> infer message
| Sat : set -> sat message

Γ `T ⊥
Γ `T A
“T checks Γ”

module type Combo = sig
type ’b ans = [...]
val oracle : ’b message -> ’b ans
val resolve : infer ans -> unsat ans -> unsat ans
val curryfy : set -> unsat ans -> infer ans
[...]
end

curryfy
Γ,A ` ⊥  Γ ` ¬A
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Satisfiability primitives

[...]
val sat_init : set -> sat ans
val sat_combo: sat ans -> sat ans -> sat ans

sat_init Γ
records that satisfiability of Γ needs to be checked by all theories

sat_combo t1 t2
checks that the Γ in t1 and t2 match, then
theories that still need to check it

= intersection of those in t1 and t2

Here, “T checks Γ” means more than “Γ is T -satisfiable”.
It means “Γ entirely describes the T -model”.

When no more theories have to check satisfiability of Γ, we stop:
all theories have agreed on model
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Trust

module type Combo = sig
type ’b ans = [...]
[...]
end

Type ’b ans is private to module Combo. . .
. . . like type theorem of the LCF architecture for theorem proving.

This guarantees correctness of answers. . .
1. . . . if module Combo is trusted
2. . . . if messages from the theories are trusted,

and regardless of the strategies used to drive the search.
Here, small steps for theory messages are highly desirable for (2.):
Easier to trust (or prove correct)
the code producing message (e < x), (x < e′) `LRA (e < e′)
than a full simplex code.
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