
Generic theory combination for
model-constructing satisfiability (MCSAT)

Stéphane Graham-Lengrand
CNRS - SRI International

joint work with Maria Paola Bonacina and Natarajan Shankar

Formal Methods Seminar, 14th February 2017

1/25

(Ground) Sat-Modulo-Theories problems

Trying to determine whether a collection of formulæ has a model
(sat) or not (unsat).
Formulae are here
I built without quantifiers
I defined as terms of sort bool

. . . terms being those of multi-sorted first-order logic, i.e. built with
(free) variables and symbols declared with input and output sorts,
e.g.

f : s1 → s2
+,× : (Q× Q)→ Q
is_prime : N→ bool
=s : (s × s)→ bool
≤: (Q× Q)→ bool
∨,∧ : (bool× bool)→ bool
. . .

2/25

(Ground) Sat-Modulo-Theories problems

Trying to determine whether a collection of formulæ has a model
(sat) or not (unsat).
Formulae are here
I built without quantifiers
I defined as terms of sort bool

The question of satisfiability is asked respectively to a range of
theories T1, . . . , Tk , which may impose or restrict the way each sort
and each symbol is interpreted:
For instance,
I the Boolean theory imposes that sort Bool be interpreted as
{true, false} and ∨,∧ be interpreted with the usual truth
tables, etc.

I Linear Rational Arithmetic imposes that + be interpreted in
the intuitive way, but does not know anything about ×, etc

2/25

Traditional approaches

When the only theory involved is the Boolean one,
then this is SAT-solving.
Can be addressed by (clausification+) DPLL/CDCL.

In presence of other theories, a popular architecture is
DPLL(

⋃n
i=1 Ti), where

I a front-end is a SAT-solver running DPLL/CDCL;
I it is interfaced with a backend that combines decision

procedures for the theories T1, . . . , Tn
(usually by the Nelson-Oppen combination technique)

3/25

Traditional approaches

When the only theory involved is the Boolean one,
then this is SAT-solving.
Can be addressed by (clausification+) DPLL/CDCL.
In presence of other theories, a popular architecture is
DPLL(

⋃n
i=1 Ti), where

I a front-end is a SAT-solver running DPLL/CDCL;
I it is interfaced with a backend that combines decision

procedures for the theories T1, . . . , Tn
(usually by the Nelson-Oppen combination technique)

3/25

What is MC-Sat?

Introduced in [dMJ13, JBdM13]
2 things:

I a template for theory-specific decision procedures
I a sound and complete way of combining theories following

the template
The template is an abstraction of how DPLL/CDCL works,
which becomes one instance of the scheme.
Consequence: Bool. theory has the same status as other theories.
(differs from traditional SMT-architecture)

Other differences with traditional approaches:
I terms and literals are exchanged that do not belong to the

original problem;
I parts that are really specific to the theories can consist of

much smaller steps.

4/25

What is MC-Sat?
Introduced in [dMJ13, JBdM13]

2 things:
I a template for theory-specific decision procedures
I a sound and complete way of combining theories following

the template
The template is an abstraction of how DPLL/CDCL works,
which becomes one instance of the scheme.
Consequence: Bool. theory has the same status as other theories.
(differs from traditional SMT-architecture)

Other differences with traditional approaches:
I terms and literals are exchanged that do not belong to the

original problem;
I parts that are really specific to the theories can consist of

much smaller steps.

4/25

What is MC-Sat?
Introduced in [dMJ13, JBdM13]
2 things:

I a template for theory-specific decision procedures
I a sound and complete way of combining theories following

the template

The template is an abstraction of how DPLL/CDCL works,
which becomes one instance of the scheme.
Consequence: Bool. theory has the same status as other theories.
(differs from traditional SMT-architecture)

Other differences with traditional approaches:
I terms and literals are exchanged that do not belong to the

original problem;
I parts that are really specific to the theories can consist of

much smaller steps.

4/25

What is MC-Sat?
Introduced in [dMJ13, JBdM13]
2 things:

I a template for theory-specific decision procedures
I a sound and complete way of combining theories following

the template
The template is an abstraction of how DPLL/CDCL works,
which becomes one instance of the scheme.

Consequence: Bool. theory has the same status as other theories.
(differs from traditional SMT-architecture)

Other differences with traditional approaches:
I terms and literals are exchanged that do not belong to the

original problem;
I parts that are really specific to the theories can consist of

much smaller steps.

4/25

What is MC-Sat?
Introduced in [dMJ13, JBdM13]
2 things:

I a template for theory-specific decision procedures
I a sound and complete way of combining theories following

the template
The template is an abstraction of how DPLL/CDCL works,
which becomes one instance of the scheme.
Consequence: Bool. theory has the same status as other theories.
(differs from traditional SMT-architecture)

Other differences with traditional approaches:
I terms and literals are exchanged that do not belong to the

original problem;
I parts that are really specific to the theories can consist of

much smaller steps.

4/25

What is MC-Sat?
Introduced in [dMJ13, JBdM13]
2 things:

I a template for theory-specific decision procedures
I a sound and complete way of combining theories following

the template
The template is an abstraction of how DPLL/CDCL works,
which becomes one instance of the scheme.
Consequence: Bool. theory has the same status as other theories.
(differs from traditional SMT-architecture)

Other differences with traditional approaches:
I terms and literals are exchanged that do not belong to the

original problem;
I parts that are really specific to the theories can consist of

much smaller steps.

4/25

1. A glance at MC-Sat

5/25

An example in Linear Rational Arithmetic
l0 : (−2·x−y < 0), l1 : (x+y < 0), l2 : (x < −1)

unsatisfiable in LRA.

Example of MCSAT run:
I Guess a value, e.g. y←0

Then l0 yields lower bound x > 0
Together with l2, space of possible values for x is empty
What to do? just undo y←0 ? No:

I Clash of bounds suggests to infer l0 + 2l2, i.e. l3 : (−y < −2)
indeed violated by the guess y←0

I Now undo the guess but keep l3.
I Try new guess, say y←4

l1 yields upper bound x < −4, l0 yields lower bound x > −2
I Clash of bounds suggests to infer l0 + 2l1, i.e. l4 : (y < 0)

indeed violated by the guess y←4
I Undo guess, keep l4

l3 and l4 give clash of bounds for y
I Suggests to infer l3 + l4, i.e. l5 : 0 < −2

No guess to undo, problem is UNSAT

6/25

An example in Linear Rational Arithmetic
l0 : (−2·x−y < 0), l1 : (x+y < 0), l2 : (x < −1)

unsatisfiable in LRA. Example of MCSAT run:
I Guess a value, e.g. y←0

Then l0 yields lower bound x > 0
Together with l2, space of possible values for x is empty
What to do? just undo y←0 ? No:

I Clash of bounds suggests to infer l0 + 2l2, i.e. l3 : (−y < −2)
indeed violated by the guess y←0

I Now undo the guess but keep l3.
I Try new guess, say y←4

l1 yields upper bound x < −4, l0 yields lower bound x > −2
I Clash of bounds suggests to infer l0 + 2l1, i.e. l4 : (y < 0)

indeed violated by the guess y←4
I Undo guess, keep l4

l3 and l4 give clash of bounds for y
I Suggests to infer l3 + l4, i.e. l5 : 0 < −2

No guess to undo, problem is UNSAT

6/25

An example in Linear Rational Arithmetic
l0 : (−2·x−y < 0), l1 : (x+y < 0), l2 : (x < −1)

unsatisfiable in LRA. Example of MCSAT run:
I Guess a value, e.g. y←0

Then l0 yields lower bound x > 0

Together with l2, space of possible values for x is empty
What to do? just undo y←0 ? No:

I Clash of bounds suggests to infer l0 + 2l2, i.e. l3 : (−y < −2)
indeed violated by the guess y←0

I Now undo the guess but keep l3.
I Try new guess, say y←4

l1 yields upper bound x < −4, l0 yields lower bound x > −2
I Clash of bounds suggests to infer l0 + 2l1, i.e. l4 : (y < 0)

indeed violated by the guess y←4
I Undo guess, keep l4

l3 and l4 give clash of bounds for y
I Suggests to infer l3 + l4, i.e. l5 : 0 < −2

No guess to undo, problem is UNSAT

6/25

An example in Linear Rational Arithmetic
l0 : (−2·x−y < 0), l1 : (x+y < 0), l2 : (x < −1)

unsatisfiable in LRA. Example of MCSAT run:
I Guess a value, e.g. y←0

Then l0 yields lower bound x > 0
Together with l2, space of possible values for x is empty
What to do? just undo y←0 ?

No:
I Clash of bounds suggests to infer l0 + 2l2, i.e. l3 : (−y < −2)

indeed violated by the guess y←0
I Now undo the guess but keep l3.
I Try new guess, say y←4

l1 yields upper bound x < −4, l0 yields lower bound x > −2
I Clash of bounds suggests to infer l0 + 2l1, i.e. l4 : (y < 0)

indeed violated by the guess y←4
I Undo guess, keep l4

l3 and l4 give clash of bounds for y
I Suggests to infer l3 + l4, i.e. l5 : 0 < −2

No guess to undo, problem is UNSAT

6/25

An example in Linear Rational Arithmetic
l0 : (−2·x−y < 0), l1 : (x+y < 0), l2 : (x < −1)

unsatisfiable in LRA. Example of MCSAT run:
I Guess a value, e.g. y←0

Then l0 yields lower bound x > 0
Together with l2, space of possible values for x is empty
What to do? just undo y←0 ? No:

I Clash of bounds suggests to infer l0 + 2l2, i.e. l3 : (−y < −2)
indeed violated by the guess y←0

I Now undo the guess but keep l3.
I Try new guess, say y←4

l1 yields upper bound x < −4, l0 yields lower bound x > −2
I Clash of bounds suggests to infer l0 + 2l1, i.e. l4 : (y < 0)

indeed violated by the guess y←4
I Undo guess, keep l4

l3 and l4 give clash of bounds for y
I Suggests to infer l3 + l4, i.e. l5 : 0 < −2

No guess to undo, problem is UNSAT

6/25

An example in Linear Rational Arithmetic
l0 : (−2·x−y < 0), l1 : (x+y < 0), l2 : (x < −1)

unsatisfiable in LRA. Example of MCSAT run:
I Guess a value, e.g. y←0

Then l0 yields lower bound x > 0
Together with l2, space of possible values for x is empty
What to do? just undo y←0 ? No:

I Clash of bounds suggests to infer l0 + 2l2, i.e. l3 : (−y < −2)
indeed violated by the guess y←0

I Now undo the guess but keep l3.

I Try new guess, say y←4
l1 yields upper bound x < −4, l0 yields lower bound x > −2

I Clash of bounds suggests to infer l0 + 2l1, i.e. l4 : (y < 0)
indeed violated by the guess y←4

I Undo guess, keep l4
l3 and l4 give clash of bounds for y

I Suggests to infer l3 + l4, i.e. l5 : 0 < −2
No guess to undo, problem is UNSAT

6/25

An example in Linear Rational Arithmetic
l0 : (−2·x−y < 0), l1 : (x+y < 0), l2 : (x < −1)

unsatisfiable in LRA. Example of MCSAT run:
I Guess a value, e.g. y←0

Then l0 yields lower bound x > 0
Together with l2, space of possible values for x is empty
What to do? just undo y←0 ? No:

I Clash of bounds suggests to infer l0 + 2l2, i.e. l3 : (−y < −2)
indeed violated by the guess y←0

I Now undo the guess but keep l3.
I Try new guess, say y←4

l1 yields upper bound x < −4, l0 yields lower bound x > −2
I Clash of bounds suggests to infer l0 + 2l1, i.e. l4 : (y < 0)

indeed violated by the guess y←4
I Undo guess, keep l4

l3 and l4 give clash of bounds for y
I Suggests to infer l3 + l4, i.e. l5 : 0 < −2

No guess to undo, problem is UNSAT

6/25

An example in Linear Rational Arithmetic
l0 : (−2·x−y < 0), l1 : (x+y < 0), l2 : (x < −1)

unsatisfiable in LRA. Example of MCSAT run:
I Guess a value, e.g. y←0

Then l0 yields lower bound x > 0
Together with l2, space of possible values for x is empty
What to do? just undo y←0 ? No:

I Clash of bounds suggests to infer l0 + 2l2, i.e. l3 : (−y < −2)
indeed violated by the guess y←0

I Now undo the guess but keep l3.
I Try new guess, say y←4

l1 yields upper bound x < −4, l0 yields lower bound x > −2

I Clash of bounds suggests to infer l0 + 2l1, i.e. l4 : (y < 0)
indeed violated by the guess y←4

I Undo guess, keep l4
l3 and l4 give clash of bounds for y

I Suggests to infer l3 + l4, i.e. l5 : 0 < −2
No guess to undo, problem is UNSAT

6/25

An example in Linear Rational Arithmetic
l0 : (−2·x−y < 0), l1 : (x+y < 0), l2 : (x < −1)

unsatisfiable in LRA. Example of MCSAT run:
I Guess a value, e.g. y←0

Then l0 yields lower bound x > 0
Together with l2, space of possible values for x is empty
What to do? just undo y←0 ? No:

I Clash of bounds suggests to infer l0 + 2l2, i.e. l3 : (−y < −2)
indeed violated by the guess y←0

I Now undo the guess but keep l3.
I Try new guess, say y←4

l1 yields upper bound x < −4, l0 yields lower bound x > −2
I Clash of bounds suggests to infer l0 + 2l1, i.e. l4 : (y < 0)

indeed violated by the guess y←4

I Undo guess, keep l4
l3 and l4 give clash of bounds for y

I Suggests to infer l3 + l4, i.e. l5 : 0 < −2
No guess to undo, problem is UNSAT

6/25

An example in Linear Rational Arithmetic
l0 : (−2·x−y < 0), l1 : (x+y < 0), l2 : (x < −1)

unsatisfiable in LRA. Example of MCSAT run:
I Guess a value, e.g. y←0

Then l0 yields lower bound x > 0
Together with l2, space of possible values for x is empty
What to do? just undo y←0 ? No:

I Clash of bounds suggests to infer l0 + 2l2, i.e. l3 : (−y < −2)
indeed violated by the guess y←0

I Now undo the guess but keep l3.
I Try new guess, say y←4

l1 yields upper bound x < −4, l0 yields lower bound x > −2
I Clash of bounds suggests to infer l0 + 2l1, i.e. l4 : (y < 0)

indeed violated by the guess y←4
I Undo guess, keep l4

l3 and l4 give clash of bounds for y
I Suggests to infer l3 + l4, i.e. l5 : 0 < −2

No guess to undo, problem is UNSAT

6/25

An example in Linear Rational Arithmetic
l0 : (−2·x−y < 0), l1 : (x+y < 0), l2 : (x < −1)

unsatisfiable in LRA. Example of MCSAT run:
I Guess a value, e.g. y←0

Then l0 yields lower bound x > 0
Together with l2, space of possible values for x is empty
What to do? just undo y←0 ? No:

I Clash of bounds suggests to infer l0 + 2l2, i.e. l3 : (−y < −2)
indeed violated by the guess y←0

I Now undo the guess but keep l3.
I Try new guess, say y←4

l1 yields upper bound x < −4, l0 yields lower bound x > −2
I Clash of bounds suggests to infer l0 + 2l1, i.e. l4 : (y < 0)

indeed violated by the guess y←4
I Undo guess, keep l4

l3 and l4 give clash of bounds for y

I Suggests to infer l3 + l4, i.e. l5 : 0 < −2
No guess to undo, problem is UNSAT

6/25

An example in Linear Rational Arithmetic
l0 : (−2·x−y < 0), l1 : (x+y < 0), l2 : (x < −1)

unsatisfiable in LRA. Example of MCSAT run:
I Guess a value, e.g. y←0

Then l0 yields lower bound x > 0
Together with l2, space of possible values for x is empty
What to do? just undo y←0 ? No:

I Clash of bounds suggests to infer l0 + 2l2, i.e. l3 : (−y < −2)
indeed violated by the guess y←0

I Now undo the guess but keep l3.
I Try new guess, say y←4

l1 yields upper bound x < −4, l0 yields lower bound x > −2
I Clash of bounds suggests to infer l0 + 2l1, i.e. l4 : (y < 0)

indeed violated by the guess y←4
I Undo guess, keep l4

l3 and l4 give clash of bounds for y
I Suggests to infer l3 + l4, i.e. l5 : 0 < −2

No guess to undo, problem is UNSAT

6/25

An example in Linear Rational Arithmetic
l0 : (−2·x−y < 0), l1 : (x+y < 0), l2 : (x < −1)

unsatisfiable in LRA. Example of MCSAT run:
I Guess a value, e.g. y←0

Then l0 yields lower bound x > 0
Together with l2, space of possible values for x is empty
What to do? just undo y←0 ? No:

I Clash of bounds suggests to infer l0 + 2l2, i.e. l3 : (−y < −2)
indeed violated by the guess y←0

I Now undo the guess but keep l3.
I Try new guess, say y←4

l1 yields upper bound x < −4, l0 yields lower bound x > −2
I Clash of bounds suggests to infer l0 + 2l1, i.e. l4 : (y < 0)

indeed violated by the guess y←4
I Undo guess, keep l4

l3 and l4 give clash of bounds for y
I Suggests to infer l3 + l4, i.e. l5 : 0 < −2

No guess to undo, problem is UNSAT
6/25

An example in Linear Rational Arithmetic
l0 : (−2·x−y < 0), l1 : (x+y < 0), l2 : (x < −1)

unsatisfiable in LRA. Example of MCSAT run:
I Guess a value, e.g. y←0

Then l0 yields lower bound x > 0
Together with l2, space of possible values for x is empty
What to do? just undo y←0 ? No:

I Clash of bounds suggests to infer l0 + 2l2, i.e. l3 : (−y < −2)
indeed violated by the guess y←0

I Now undo the guess but keep l3.
I Try new guess, say y←4

l1 yields upper bound x < −4, l0 yields lower bound x > −2
I Clash of bounds suggests to infer l0 + 2l1, i.e. l4 : (y < 0)

indeed violated by the guess y←4
I Undo guess, keep l4

l3 and l4 give clash of bounds for y
I Suggests to infer l3 + l4, i.e. l5 : 0 < −2

No guess to undo, problem is UNSAT
6/25

Key ingredients of MC-Sat calculi

Player sat

Player unsat

proposes
values

detects &
explains
conflicts

I Ability to make guesses
that do not “immediately violate” currently known constraints.
Here we can make such guesses up until there is a bound clash

I When undoing a guess, “something new” must be learnt that
at least prevents the same guess from being made again.
With infinite domains (e.g. Q) the “something new” must
definitely reject more than 1 value.
Here we used Fourier-Motzkin resolutions:

(e1 < x), (x < e2) `LRA (e1 < e2)
I Some generic mechanism to expand trails and analyse conflicts

7/25

Key ingredients of MC-Sat calculi

Player sat

Player unsat

proposes
values

detects &
explains
conflicts

I Ability to make guesses
that do not “immediately violate” currently known constraints.
Here we can make such guesses up until there is a bound clash

I When undoing a guess, “something new” must be learnt that
at least prevents the same guess from being made again.
With infinite domains (e.g. Q) the “something new” must
definitely reject more than 1 value.
Here we used Fourier-Motzkin resolutions:

(e1 < x), (x < e2) `LRA (e1 < e2)
I Some generic mechanism to expand trails and analyse conflicts

7/25

Key ingredients of MC-Sat calculi

Player sat

Player unsat

proposes
values

detects &
explains
conflicts

I Ability to make guesses
that do not “immediately violate” currently known constraints.
Here we can make such guesses up until there is a bound clash

I When undoing a guess, “something new” must be learnt that
at least prevents the same guess from being made again.
With infinite domains (e.g. Q) the “something new” must
definitely reject more than 1 value.
Here we used Fourier-Motzkin resolutions:

(e1 < x), (x < e2) `LRA (e1 < e2)

I Some generic mechanism to expand trails and analyse conflicts

7/25

Key ingredients of MC-Sat calculi

Player sat

Player unsat

proposes
values

detects &
explains
conflicts

I Ability to make guesses
that do not “immediately violate” currently known constraints.
Here we can make such guesses up until there is a bound clash

I When undoing a guess, “something new” must be learnt that
at least prevents the same guess from being made again.
With infinite domains (e.g. Q) the “something new” must
definitely reject more than 1 value.
Here we used Fourier-Motzkin resolutions:

(e1 < x), (x < e2) `LRA (e1 < e2)
I Some generic mechanism to expand trails and analyse conflicts

7/25

Subtleties

I New literals are introduced during a run
(here l3 and l4 by FM-resolutions)

This opens the door of non-termination
(infinitely many new things can be learnt)

l0 :−2·x − y < 0
l1 : x + y < 0
l2 : x < −1
l3 : −y < −2 (l0 + 2l2)
l4 : x < −2 (l1 + l3)

l5 : −y < −4 (l0 + 2l4)
l6 : x < −4 (l1 + l5)
l7 : −y < −8 (l0 + 2l6)
. . .I Even if non-termination is avoided,

introducing new material should we done with parsimony
Important aspect of MC-Sat is laziness.
FM-resolution only introduced to learn something from bound clashes
More generally, Player Unsat can afford being lazy, and react only
when sufficiently many terms have been assigned semantics.

DPLL’s 2-watched literals technique
(detecting when to apply Boolean propagation)
generalises to n-watched literals & can be used in each theory.

8/25

Subtleties

I New literals are introduced during a run
(here l3 and l4 by FM-resolutions)

This opens the door of non-termination
(infinitely many new things can be learnt)

l0 :−2·x − y < 0
l1 : x + y < 0
l2 : x < −1
l3 : −y < −2 (l0 + 2l2)
l4 : x < −2 (l1 + l3)

l5 : −y < −4 (l0 + 2l4)
l6 : x < −4 (l1 + l5)
l7 : −y < −8 (l0 + 2l6)
. . .I Even if non-termination is avoided,

introducing new material should we done with parsimony
Important aspect of MC-Sat is laziness.
FM-resolution only introduced to learn something from bound clashes
More generally, Player Unsat can afford being lazy, and react only
when sufficiently many terms have been assigned semantics.

DPLL’s 2-watched literals technique
(detecting when to apply Boolean propagation)
generalises to n-watched literals & can be used in each theory.

8/25

Subtleties

I New literals are introduced during a run
(here l3 and l4 by FM-resolutions)

This opens the door of non-termination
(infinitely many new things can be learnt)

l0 :−2·x − y < 0
l1 : x + y < 0
l2 : x < −1
l3 : −y < −2 (l0 + 2l2)
l4 : x < −2 (l1 + l3)
l5 : −y < −4 (l0 + 2l4)

l6 : x < −4 (l1 + l5)
l7 : −y < −8 (l0 + 2l6)
. . .I Even if non-termination is avoided,

introducing new material should we done with parsimony
Important aspect of MC-Sat is laziness.
FM-resolution only introduced to learn something from bound clashes
More generally, Player Unsat can afford being lazy, and react only
when sufficiently many terms have been assigned semantics.

DPLL’s 2-watched literals technique
(detecting when to apply Boolean propagation)
generalises to n-watched literals & can be used in each theory.

8/25

Subtleties

I New literals are introduced during a run
(here l3 and l4 by FM-resolutions)

This opens the door of non-termination
(infinitely many new things can be learnt)

l0 :−2·x − y < 0
l1 : x + y < 0
l2 : x < −1
l3 : −y < −2 (l0 + 2l2)
l4 : x < −2 (l1 + l3)
l5 : −y < −4 (l0 + 2l4)
l6 : x < −4 (l1 + l5)

l7 : −y < −8 (l0 + 2l6)
. . .I Even if non-termination is avoided,

introducing new material should we done with parsimony
Important aspect of MC-Sat is laziness.
FM-resolution only introduced to learn something from bound clashes
More generally, Player Unsat can afford being lazy, and react only
when sufficiently many terms have been assigned semantics.

DPLL’s 2-watched literals technique
(detecting when to apply Boolean propagation)
generalises to n-watched literals & can be used in each theory.

8/25

Subtleties

I New literals are introduced during a run
(here l3 and l4 by FM-resolutions)

This opens the door of non-termination
(infinitely many new things can be learnt)

l0 :−2·x − y < 0
l1 : x + y < 0
l2 : x < −1
l3 : −y < −2 (l0 + 2l2)
l4 : x < −2 (l1 + l3)
l5 : −y < −4 (l0 + 2l4)
l6 : x < −4 (l1 + l5)
l7 : −y < −8 (l0 + 2l6)
. . .

I Even if non-termination is avoided,
introducing new material should we done with parsimony
Important aspect of MC-Sat is laziness.
FM-resolution only introduced to learn something from bound clashes
More generally, Player Unsat can afford being lazy, and react only
when sufficiently many terms have been assigned semantics.

DPLL’s 2-watched literals technique
(detecting when to apply Boolean propagation)
generalises to n-watched literals & can be used in each theory.

8/25

Subtleties

I New literals are introduced during a run
(here l3 and l4 by FM-resolutions)

This opens the door of non-termination
(infinitely many new things can be learnt)

l0 :−2·x − y < 0
l1 : x + y < 0
l2 : x < −1
l3 : −y < −2 (l0 + 2l2)
l4 : x < −2 (l1 + l3)
l5 : −y < −4 (l0 + 2l4)
l6 : x < −4 (l1 + l5)
l7 : −y < −8 (l0 + 2l6)
. . .I Even if non-termination is avoided,

introducing new material should we done with parsimony

Important aspect of MC-Sat is laziness.
FM-resolution only introduced to learn something from bound clashes
More generally, Player Unsat can afford being lazy, and react only
when sufficiently many terms have been assigned semantics.

DPLL’s 2-watched literals technique
(detecting when to apply Boolean propagation)
generalises to n-watched literals & can be used in each theory.

8/25

Subtleties

I New literals are introduced during a run
(here l3 and l4 by FM-resolutions)

This opens the door of non-termination
(infinitely many new things can be learnt)

l0 :−2·x − y < 0
l1 : x + y < 0
l2 : x < −1
l3 : −y < −2 (l0 + 2l2)
l4 : x < −2 (l1 + l3)
l5 : −y < −4 (l0 + 2l4)
l6 : x < −4 (l1 + l5)
l7 : −y < −8 (l0 + 2l6)
. . .I Even if non-termination is avoided,

introducing new material should we done with parsimony
Important aspect of MC-Sat is laziness.
FM-resolution only introduced to learn something from bound clashes

More generally, Player Unsat can afford being lazy, and react only
when sufficiently many terms have been assigned semantics.

DPLL’s 2-watched literals technique
(detecting when to apply Boolean propagation)
generalises to n-watched literals & can be used in each theory.

8/25

Subtleties

I New literals are introduced during a run
(here l3 and l4 by FM-resolutions)

This opens the door of non-termination
(infinitely many new things can be learnt)

l0 :−2·x − y < 0
l1 : x + y < 0
l2 : x < −1
l3 : −y < −2 (l0 + 2l2)
l4 : x < −2 (l1 + l3)
l5 : −y < −4 (l0 + 2l4)
l6 : x < −4 (l1 + l5)
l7 : −y < −8 (l0 + 2l6)
. . .I Even if non-termination is avoided,

introducing new material should we done with parsimony
Important aspect of MC-Sat is laziness.
FM-resolution only introduced to learn something from bound clashes
More generally, Player Unsat can afford being lazy, and react only
when sufficiently many terms have been assigned semantics.

DPLL’s 2-watched literals technique
(detecting when to apply Boolean propagation)
generalises to n-watched literals & can be used in each theory.

8/25

Subtleties

I New literals are introduced during a run
(here l3 and l4 by FM-resolutions)

This opens the door of non-termination
(infinitely many new things can be learnt)

l0 :−2·x − y < 0
l1 : x + y < 0
l2 : x < −1
l3 : −y < −2 (l0 + 2l2)
l4 : x < −2 (l1 + l3)
l5 : −y < −4 (l0 + 2l4)
l6 : x < −4 (l1 + l5)
l7 : −y < −8 (l0 + 2l6)
. . .I Even if non-termination is avoided,

introducing new material should we done with parsimony
Important aspect of MC-Sat is laziness.
FM-resolution only introduced to learn something from bound clashes
More generally, Player Unsat can afford being lazy, and react only
when sufficiently many terms have been assigned semantics.

DPLL’s 2-watched literals technique
(detecting when to apply Boolean propagation)
generalises to n-watched literals & can be used in each theory.

8/25

Contributions

I In [dMJ13], Boolean logic + one abstract theory T
(mimicking DPLL(T))

I In [JBdM13]: Boolean+LRA+EUF
I Other contributions, for Bit vectors [ZWR16], Nonlinear Real

Arithmetic [JdM12], Nonlinear Integer Arithmetic [Jov17], . . .

This raises the questions:
I Is there a generic way to combine à la MCSAT several

abstract theories? Which requirements should the theory
reasoning mechanisms satisfy for the combined system to be
sound, complete, and terminating?

I Is there a way to integrate or generalize both MCSAT and
Nelson-Oppen scheme (equality sharing)?

MP Bonacina, N Shankar and SGL address this for disjoint theories
in [BGLS16]

9/25

Contributions

I In [dMJ13], Boolean logic + one abstract theory T
(mimicking DPLL(T))

I In [JBdM13]: Boolean+LRA+EUF

I Other contributions, for Bit vectors [ZWR16], Nonlinear Real
Arithmetic [JdM12], Nonlinear Integer Arithmetic [Jov17], . . .

This raises the questions:
I Is there a generic way to combine à la MCSAT several

abstract theories? Which requirements should the theory
reasoning mechanisms satisfy for the combined system to be
sound, complete, and terminating?

I Is there a way to integrate or generalize both MCSAT and
Nelson-Oppen scheme (equality sharing)?

MP Bonacina, N Shankar and SGL address this for disjoint theories
in [BGLS16]

9/25

Contributions

I In [dMJ13], Boolean logic + one abstract theory T
(mimicking DPLL(T))

I In [JBdM13]: Boolean+LRA+EUF
I Other contributions, for Bit vectors [ZWR16], Nonlinear Real

Arithmetic [JdM12], Nonlinear Integer Arithmetic [Jov17], . . .

This raises the questions:
I Is there a generic way to combine à la MCSAT several

abstract theories? Which requirements should the theory
reasoning mechanisms satisfy for the combined system to be
sound, complete, and terminating?

I Is there a way to integrate or generalize both MCSAT and
Nelson-Oppen scheme (equality sharing)?

MP Bonacina, N Shankar and SGL address this for disjoint theories
in [BGLS16]

9/25

Contributions

I In [dMJ13], Boolean logic + one abstract theory T
(mimicking DPLL(T))

I In [JBdM13]: Boolean+LRA+EUF
I Other contributions, for Bit vectors [ZWR16], Nonlinear Real

Arithmetic [JdM12], Nonlinear Integer Arithmetic [Jov17], . . .

This raises the questions:
I Is there a generic way to combine à la MCSAT several

abstract theories? Which requirements should the theory
reasoning mechanisms satisfy for the combined system to be
sound, complete, and terminating?

I Is there a way to integrate or generalize both MCSAT and
Nelson-Oppen scheme (equality sharing)?

MP Bonacina, N Shankar and SGL address this for disjoint theories
in [BGLS16]

9/25

Contributions

I In [dMJ13], Boolean logic + one abstract theory T
(mimicking DPLL(T))

I In [JBdM13]: Boolean+LRA+EUF
I Other contributions, for Bit vectors [ZWR16], Nonlinear Real

Arithmetic [JdM12], Nonlinear Integer Arithmetic [Jov17], . . .

This raises the questions:
I Is there a generic way to combine à la MCSAT several

abstract theories? Which requirements should the theory
reasoning mechanisms satisfy for the combined system to be
sound, complete, and terminating?

I Is there a way to integrate or generalize both MCSAT and
Nelson-Oppen scheme (equality sharing)?

MP Bonacina, N Shankar and SGL address this for disjoint theories
in [BGLS16]

9/25

2. MC-Sat mechanisms in our formal framework

10/25

Same example formalized in our formal framework
Trail = stack of assignments (t←v) + “explanation function”,
initialized with input problem

(l←true) abbrev. as l
Empty explanation for input problem

Level:
greatest decision involved

If conflict is of level 0. . .
. . . problem is unsat

Phase 1

id trail items expl.

lev.

0 −2·x − y < 0 {}

0

1 x + y < 0 {}

0

2 x < −1 {}

0
3 y←0 1
4 − y < −2 {0, 2} 0

conflict E 1: {3, 4} 1

Phase 2
id trail items expl. lev.
0 −2·x − y < 0 {} 0
1 x + y < 0 {} 0
2 x < −1 {} 0
3 −y < −2 {0, 2} 0
4 y←4 1
5 y < 0 {0, 1} 0

conflict E 2: {4, 5} 1

Phase 3
id trail items expl. lev.
0 −2·x − y < 0 {} 0
1 x + y < 0 {} 0
2 x < −1 {} 0
3 −y < −2 {0, 2} 0
4 y < 0 {0, 1} 0
5 0 < −2 {3, 4} 0

conflict E 3: {5} 0

11/25

Same example formalized in our formal framework
Trail = stack of assignments (t←v) + “explanation function”,
initialized with input problem

(l←true) abbrev. as l
Empty explanation for input problem

Level:
greatest decision involved

If conflict is of level 0. . .
. . . problem is unsat

Phase 1

id trail items expl. lev.
0 −2·x − y < 0 {} 0
1 x + y < 0 {} 0
2 x < −1 {} 0
3 y←0 1

4 − y < −2 {0, 2} 0
conflict E 1: {3, 4} 1

Phase 2
id trail items expl. lev.
0 −2·x − y < 0 {} 0
1 x + y < 0 {} 0
2 x < −1 {} 0
3 −y < −2 {0, 2} 0
4 y←4 1
5 y < 0 {0, 1} 0

conflict E 2: {4, 5} 1

Phase 3
id trail items expl. lev.
0 −2·x − y < 0 {} 0
1 x + y < 0 {} 0
2 x < −1 {} 0
3 −y < −2 {0, 2} 0
4 y < 0 {0, 1} 0
5 0 < −2 {3, 4} 0

conflict E 3: {5} 0

11/25

Same example formalized in our formal framework
Trail = stack of assignments (t←v) + “explanation function”,
initialized with input problem

(l←true) abbrev. as l
Empty explanation for input problem

Level:
greatest decision involved

If conflict is of level 0. . .
. . . problem is unsat

Phase 1

id trail items expl. lev.
0 −2·x − y < 0 {} 0
1 x + y < 0 {} 0
2 x < −1 {} 0
3 y←0 1
4 − y < −2 {0, 2} 0

conflict E 1: {3, 4} 1

Phase 2
id trail items expl. lev.
0 −2·x − y < 0 {} 0
1 x + y < 0 {} 0
2 x < −1 {} 0
3 −y < −2 {0, 2} 0
4 y←4 1
5 y < 0 {0, 1} 0

conflict E 2: {4, 5} 1

Phase 3
id trail items expl. lev.
0 −2·x − y < 0 {} 0
1 x + y < 0 {} 0
2 x < −1 {} 0
3 −y < −2 {0, 2} 0
4 y < 0 {0, 1} 0
5 0 < −2 {3, 4} 0

conflict E 3: {5} 0

11/25

Same example formalized in our formal framework
Trail = stack of assignments (t←v) + “explanation function”,
initialized with input problem

(l←true) abbrev. as l
Empty explanation for input problem

Level:
greatest decision involved

If conflict is of level 0. . .
. . . problem is unsat

Phase 1

id trail items expl. lev.
0 −2·x − y < 0 {} 0
1 x + y < 0 {} 0
2 x < −1 {} 0
3 y←0 1
4 − y < −2 {0, 2} 0

conflict E 1: {3, 4} 1

Phase 2
id trail items expl. lev.
0 −2·x − y < 0 {} 0
1 x + y < 0 {} 0
2 x < −1 {} 0
3 −y < −2 {0, 2} 0
4 y←4 1
5 y < 0 {0, 1} 0

conflict E 2: {4, 5} 1

Phase 3
id trail items expl. lev.
0 −2·x − y < 0 {} 0
1 x + y < 0 {} 0
2 x < −1 {} 0
3 −y < −2 {0, 2} 0
4 y < 0 {0, 1} 0
5 0 < −2 {3, 4} 0

conflict E 3: {5} 0

11/25

Same example formalized in our formal framework
Trail = stack of assignments (t←v) + “explanation function”,
initialized with input problem

(l←true) abbrev. as l
Empty explanation for input problem

Level:
greatest decision involved

If conflict is of level 0. . .
. . . problem is unsat

Phase 1
id trail items expl. lev.
0 −2·x − y < 0 {} 0
1 x + y < 0 {} 0
2 x < −1 {} 0
3 y←0 1
4 − y < −2 {0, 2} 0

conflict E 1: {3, 4} 1

Phase 2
id trail items expl. lev.
0 −2·x − y < 0 {} 0
1 x + y < 0 {} 0
2 x < −1 {} 0
3 −y < −2 {0, 2} 0

4 y←4 1
5 y < 0 {0, 1} 0

conflict E 2: {4, 5} 1

Phase 3
id trail items expl. lev.
0 −2·x − y < 0 {} 0
1 x + y < 0 {} 0
2 x < −1 {} 0
3 −y < −2 {0, 2} 0
4 y < 0 {0, 1} 0
5 0 < −2 {3, 4} 0

conflict E 3: {5} 0

11/25

Same example formalized in our formal framework
Trail = stack of assignments (t←v) + “explanation function”,
initialized with input problem

(l←true) abbrev. as l
Empty explanation for input problem

Level:
greatest decision involved

If conflict is of level 0. . .
. . . problem is unsat

Phase 1
id trail items expl. lev.
0 −2·x − y < 0 {} 0
1 x + y < 0 {} 0
2 x < −1 {} 0
3 y←0 1
4 − y < −2 {0, 2} 0

conflict E 1: {3, 4} 1

Phase 2
id trail items expl. lev.
0 −2·x − y < 0 {} 0
1 x + y < 0 {} 0
2 x < −1 {} 0
3 −y < −2 {0, 2} 0
4 y←4 1

5 y < 0 {0, 1} 0
conflict E 2: {4, 5} 1

Phase 3
id trail items expl. lev.
0 −2·x − y < 0 {} 0
1 x + y < 0 {} 0
2 x < −1 {} 0
3 −y < −2 {0, 2} 0
4 y < 0 {0, 1} 0
5 0 < −2 {3, 4} 0

conflict E 3: {5} 0

11/25

Same example formalized in our formal framework
Trail = stack of assignments (t←v) + “explanation function”,
initialized with input problem

(l←true) abbrev. as l
Empty explanation for input problem

Level:
greatest decision involved

If conflict is of level 0. . .
. . . problem is unsat

Phase 1
id trail items expl. lev.
0 −2·x − y < 0 {} 0
1 x + y < 0 {} 0
2 x < −1 {} 0
3 y←0 1
4 − y < −2 {0, 2} 0

conflict E 1: {3, 4} 1

Phase 2
id trail items expl. lev.
0 −2·x − y < 0 {} 0
1 x + y < 0 {} 0
2 x < −1 {} 0
3 −y < −2 {0, 2} 0
4 y←4 1
5 y < 0 {0, 1} 0

conflict E 2: {4, 5} 1

Phase 3
id trail items expl. lev.
0 −2·x − y < 0 {} 0
1 x + y < 0 {} 0
2 x < −1 {} 0
3 −y < −2 {0, 2} 0
4 y < 0 {0, 1} 0
5 0 < −2 {3, 4} 0

conflict E 3: {5} 0

11/25

Same example formalized in our formal framework
Trail = stack of assignments (t←v) + “explanation function”,
initialized with input problem

(l←true) abbrev. as l
Empty explanation for input problem

Level:
greatest decision involved

If conflict is of level 0. . .
. . . problem is unsat

Phase 1
id trail items expl. lev.
0 −2·x − y < 0 {} 0
1 x + y < 0 {} 0
2 x < −1 {} 0
3 y←0 1
4 − y < −2 {0, 2} 0

conflict E 1: {3, 4} 1

Phase 2
id trail items expl. lev.
0 −2·x − y < 0 {} 0
1 x + y < 0 {} 0
2 x < −1 {} 0
3 −y < −2 {0, 2} 0
4 y←4 1
5 y < 0 {0, 1} 0

conflict E 2: {4, 5} 1

Phase 3
id trail items expl. lev.
0 −2·x − y < 0 {} 0
1 x + y < 0 {} 0
2 x < −1 {} 0
3 −y < −2 {0, 2} 0
4 y < 0 {0, 1} 0
5 0 < −2 {3, 4} 0

conflict E 3: {5} 0

11/25

Same example formalized in our formal framework
Trail = stack of assignments (t←v) + “explanation function”,
initialized with input problem

(l←true) abbrev. as l
Empty explanation for input problem

Level:
greatest decision involved

If conflict is of level 0. . .
. . . problem is unsat

Phase 1
id trail items expl. lev.
0 −2·x − y < 0 {} 0
1 x + y < 0 {} 0
2 x < −1 {} 0
3 y←0 1
4 − y < −2 {0, 2} 0

conflict E 1: {3, 4} 1

Phase 2
id trail items expl. lev.
0 −2·x − y < 0 {} 0
1 x + y < 0 {} 0
2 x < −1 {} 0
3 −y < −2 {0, 2} 0
4 y←4 1
5 y < 0 {0, 1} 0

conflict E 2: {4, 5} 1

Phase 3
id trail items expl. lev.
0 −2·x − y < 0 {} 0
1 x + y < 0 {} 0
2 x < −1 {} 0
3 −y < −2 {0, 2} 0
4 y < 0 {0, 1} 0

5 0 < −2 {3, 4} 0
conflict E 3: {5} 0

11/25

Same example formalized in our formal framework
Trail = stack of assignments (t←v) + “explanation function”,
initialized with input problem

(l←true) abbrev. as l
Empty explanation for input problem

Level:
greatest decision involved

If conflict is of level 0. . .
. . . problem is unsat

Phase 1
id trail items expl. lev.
0 −2·x − y < 0 {} 0
1 x + y < 0 {} 0
2 x < −1 {} 0
3 y←0 1
4 − y < −2 {0, 2} 0

conflict E 1: {3, 4} 1

Phase 2
id trail items expl. lev.
0 −2·x − y < 0 {} 0
1 x + y < 0 {} 0
2 x < −1 {} 0
3 −y < −2 {0, 2} 0
4 y←4 1
5 y < 0 {0, 1} 0

conflict E 2: {4, 5} 1

Phase 3
id trail items expl. lev.
0 −2·x − y < 0 {} 0
1 x + y < 0 {} 0
2 x < −1 {} 0
3 −y < −2 {0, 2} 0
4 y < 0 {0, 1} 0
5 0 < −2 {3, 4} 0

conflict E 3: {5} 0

11/25

Same example formalized in our formal framework
Trail = stack of assignments (t←v) + “explanation function”,
initialized with input problem

(l←true) abbrev. as l
Empty explanation for input problem

Level:
greatest decision involved

If conflict is of level 0. . .
. . . problem is unsat

Phase 1
id trail items expl. lev.
0 −2·x − y < 0 {} 0
1 x + y < 0 {} 0
2 x < −1 {} 0
3 y←0 1
4 − y < −2 {0, 2} 0

conflict E 1: {3, 4} 1

Phase 2
id trail items expl. lev.
0 −2·x − y < 0 {} 0
1 x + y < 0 {} 0
2 x < −1 {} 0
3 −y < −2 {0, 2} 0
4 y←4 1
5 y < 0 {0, 1} 0

conflict E 2: {4, 5} 1

Phase 3
id trail items expl. lev.
0 −2·x − y < 0 {} 0
1 x + y < 0 {} 0
2 x < −1 {} 0
3 −y < −2 {0, 2} 0
4 y < 0 {0, 1} 0
5 0 < −2 {3, 4} 0

conflict E 3: {5} 011/25

An example with arithmetic, arrays, congruence
f (a[i := v][j]) ' w , w − 2 ' f (u) , i ' j , u ' v

Phase 1
id trail items expl. lev.
0 f (x) ' w {} 0
1 y ' f (u) {} 0
2 w − 2 ' y {} 0
3 a[i := v][j] ' x {} 0
4 i ' j {} 0
5 u ' v {} 0

6 v←c 1
7 a[i := v][j]←d 2
8 v 6' a[i := v][j] {6, 7} 2

conflict E 1: {4, 8} 2

Phase
id trail items expl.lev.
0 f (x) ' w {} 0
1 y ' f (u) {} 0
2 w − 2 ' y {} 0
3 a[i := v][j] ' x {} 0
4 i ' j {} 0
5 u ' v {} 0
6 v ' a[i := v][j] {4} 0

12/25

An example with arithmetic, arrays, congruence
f (a[i := v][j]) ' w , w − 2 ' f (u) , i ' j , u ' v

Phase 1
id trail items expl. lev.
0 f (x) ' w {} 0
1 y ' f (u) {} 0
2 w − 2 ' y {} 0
3 a[i := v][j] ' x {} 0
4 i ' j {} 0
5 u ' v {} 0
6 v←c 1

7 a[i := v][j]←d 2
8 v 6' a[i := v][j] {6, 7} 2

conflict E 1: {4, 8} 2

Phase
id trail items expl.lev.
0 f (x) ' w {} 0
1 y ' f (u) {} 0
2 w − 2 ' y {} 0
3 a[i := v][j] ' x {} 0
4 i ' j {} 0
5 u ' v {} 0
6 v ' a[i := v][j] {4} 0

12/25

An example with arithmetic, arrays, congruence
f (a[i := v][j]) ' w , w − 2 ' f (u) , i ' j , u ' v

Phase 1
id trail items expl. lev.
0 f (x) ' w {} 0
1 y ' f (u) {} 0
2 w − 2 ' y {} 0
3 a[i := v][j] ' x {} 0
4 i ' j {} 0
5 u ' v {} 0
6 v←c 1
7 a[i := v][j]←d 2

8 v 6' a[i := v][j] {6, 7} 2
conflict E 1: {4, 8} 2

Phase
id trail items expl.lev.
0 f (x) ' w {} 0
1 y ' f (u) {} 0
2 w − 2 ' y {} 0
3 a[i := v][j] ' x {} 0
4 i ' j {} 0
5 u ' v {} 0
6 v ' a[i := v][j] {4} 0

12/25

An example with arithmetic, arrays, congruence
f (a[i := v][j]) ' w , w − 2 ' f (u) , i ' j , u ' v

Phase 1
id trail items expl. lev.
0 f (x) ' w {} 0
1 y ' f (u) {} 0
2 w − 2 ' y {} 0
3 a[i := v][j] ' x {} 0
4 i ' j {} 0
5 u ' v {} 0
6 v←c 1
7 a[i := v][j]←d 2
8 v 6' a[i := v][j] {6, 7} 2

conflict E 1: {4, 8} 2

Phase
id trail items expl.lev.
0 f (x) ' w {} 0
1 y ' f (u) {} 0
2 w − 2 ' y {} 0
3 a[i := v][j] ' x {} 0
4 i ' j {} 0
5 u ' v {} 0
6 v ' a[i := v][j] {4} 0

12/25

An example with arithmetic, arrays, congruence
f (a[i := v][j]) ' w , w − 2 ' f (u) , i ' j , u ' v

Phase 1
id trail items expl. lev.
0 f (x) ' w {} 0
1 y ' f (u) {} 0
2 w − 2 ' y {} 0
3 a[i := v][j] ' x {} 0
4 i ' j {} 0
5 u ' v {} 0
6 v←c 1
7 a[i := v][j]←d 2
8 v 6' a[i:= v][j] {6, 7} 2

conflict E 1: {4, 8} 2

Phase
id trail items expl.lev.
0 f (x) ' w {} 0
1 y ' f (u) {} 0
2 w − 2 ' y {} 0
3 a[i := v][j] ' x {} 0
4 i ' j {} 0
5 u ' v {} 0
6 v ' a[i := v][j] {4} 0

12/25

An example with arithmetic, arrays, congruence
f (a[i := v][j]) ' w , w − 2 ' f (u) , i ' j , u ' v

Phase 1
id trail items expl. lev.
0 f (x) ' w {} 0
1 y ' f (u) {} 0
2 w − 2 ' y {} 0
3 a[i := v][j] ' x {} 0
4 i ' j {} 0
5 u ' v {} 0
6 v←c 1
7 a[i := v][j]←d 2
8 v 6' a[i:= v][j] {6, 7} 2

conflict E 1: {4, 8} 2

Phase 2
id trail items expl.lev.
0 f (x) ' w {} 0
1 y ' f (u) {} 0
2 w − 2 ' y {} 0
3 a[i := v][j] ' x {} 0
4 i ' j {} 0
5 u ' v {} 0
6 v ' a[i := v][j] {4} 0

12/25

An example with arithmetic, arrays, congruence
Phase 2

id trail items expl. lev.
0 f (x) ' w {} 0
1 y ' f (u) {} 0
2 w − 2 ' y {} 0
3 a[i := v][j] ' x {} 0
4 i ' j {} 0
5 u ' v {} 0
6 v ' a[i := v][j] {4} 0

7 u←c 1
8 x←c 2
9 w←0 3
10 y← − 2 4
11 y 6' w {9, 10} 4
12 u ' x {7, 8} 2
13 f (u) ' f (x) {12} 2
14 f (u) ' w {0, 13} 2

conflict E 2: {1, 11, 14} 4

Phase
id trail items expl. lev.
0 f (x) ' w {} 0
1 y ' f (u) {} 0
2 w − 2 ' y {} 0
3 a[i := v][j] ' x {} 0
4 i ' j {} 0
5 u ' v {} 0
6 v ' a[i := v][j] {4} 0
7 u←c 1
8 x←c 2
9 u ' x {7, 8} 2
10 f (u) ' f (x) {9} 2
11 f (u) ' w {0, 10} 2
12 y ' w {1, 11} 2

12/25

An example with arithmetic, arrays, congruence
Phase 2

id trail items expl. lev.
0 f (x) ' w {} 0
1 y ' f (u) {} 0
2 w − 2 ' y {} 0
3 a[i := v][j] ' x {} 0
4 i ' j {} 0
5 u ' v {} 0
6 v ' a[i := v][j] {4} 0
7 u←c 1

8 x←c 2
9 w←0 3
10 y← − 2 4
11 y 6' w {9, 10} 4
12 u ' x {7, 8} 2
13 f (u) ' f (x) {12} 2
14 f (u) ' w {0, 13} 2

conflict E 2: {1, 11, 14} 4

Phase
id trail items expl. lev.
0 f (x) ' w {} 0
1 y ' f (u) {} 0
2 w − 2 ' y {} 0
3 a[i := v][j] ' x {} 0
4 i ' j {} 0
5 u ' v {} 0
6 v ' a[i := v][j] {4} 0
7 u←c 1
8 x←c 2
9 u ' x {7, 8} 2
10 f (u) ' f (x) {9} 2
11 f (u) ' w {0, 10} 2
12 y ' w {1, 11} 2

12/25

An example with arithmetic, arrays, congruence
Phase 2

id trail items expl. lev.
0 f (x) ' w {} 0
1 y ' f (u) {} 0
2 w − 2 ' y {} 0
3 a[i := v][j] ' x {} 0
4 i ' j {} 0
5 u ' v {} 0
6 v ' a[i := v][j] {4} 0
7 u←c 1
8 x←c 2

9 w←0 3
10 y← − 2 4
11 y 6' w {9, 10} 4
12 u ' x {7, 8} 2
13 f (u) ' f (x) {12} 2
14 f (u) ' w {0, 13} 2

conflict E 2: {1, 11, 14} 4

Phase
id trail items expl. lev.
0 f (x) ' w {} 0
1 y ' f (u) {} 0
2 w − 2 ' y {} 0
3 a[i := v][j] ' x {} 0
4 i ' j {} 0
5 u ' v {} 0
6 v ' a[i := v][j] {4} 0
7 u←c 1
8 x←c 2
9 u ' x {7, 8} 2
10 f (u) ' f (x) {9} 2
11 f (u) ' w {0, 10} 2
12 y ' w {1, 11} 2

12/25

An example with arithmetic, arrays, congruence
Phase 2

id trail items expl. lev.
0 f (x) ' w {} 0
1 y ' f (u) {} 0
2 w − 2 ' y {} 0
3 a[i := v][j] ' x {} 0
4 i ' j {} 0
5 u ' v {} 0
6 v ' a[i := v][j] {4} 0
7 u←c 1
8 x←c 2
9 w←0 3

10 y← − 2 4
11 y 6' w {9, 10} 4
12 u ' x {7, 8} 2
13 f (u) ' f (x) {12} 2
14 f (u) ' w {0, 13} 2

conflict E 2: {1, 11, 14} 4

Phase
id trail items expl. lev.
0 f (x) ' w {} 0
1 y ' f (u) {} 0
2 w − 2 ' y {} 0
3 a[i := v][j] ' x {} 0
4 i ' j {} 0
5 u ' v {} 0
6 v ' a[i := v][j] {4} 0
7 u←c 1
8 x←c 2
9 u ' x {7, 8} 2
10 f (u) ' f (x) {9} 2
11 f (u) ' w {0, 10} 2
12 y ' w {1, 11} 2

12/25

An example with arithmetic, arrays, congruence
Phase 2

id trail items expl. lev.
0 f (x) ' w {} 0
1 y ' f (u) {} 0
2 w − 2 ' y {} 0
3 a[i := v][j] ' x {} 0
4 i ' j {} 0
5 u ' v {} 0
6 v ' a[i := v][j] {4} 0
7 u←c 1
8 x←c 2
9 w←0 3
10 y← − 2 4

11 y 6' w {9, 10} 4
12 u ' x {7, 8} 2
13 f (u) ' f (x) {12} 2
14 f (u) ' w {0, 13} 2

conflict E 2: {1, 11, 14} 4

Phase
id trail items expl. lev.
0 f (x) ' w {} 0
1 y ' f (u) {} 0
2 w − 2 ' y {} 0
3 a[i := v][j] ' x {} 0
4 i ' j {} 0
5 u ' v {} 0
6 v ' a[i := v][j] {4} 0
7 u←c 1
8 x←c 2
9 u ' x {7, 8} 2
10 f (u) ' f (x) {9} 2
11 f (u) ' w {0, 10} 2
12 y ' w {1, 11} 2

12/25

An example with arithmetic, arrays, congruence
Phase 2

id trail items expl. lev.
0 f (x) ' w {} 0
1 y ' f (u) {} 0
2 w − 2 ' y {} 0
3 a[i := v][j] ' x {} 0
4 i ' j {} 0
5 u ' v {} 0
6 v ' a[i := v][j] {4} 0
7 u←c 1
8 x←c 2
9 w←0 3
10 y← − 2 4
11 y 6' w {9, 10} 4

12 u ' x {7, 8} 2
13 f (u) ' f (x) {12} 2
14 f (u) ' w {0, 13} 2

conflict E 2: {1, 11, 14} 4

Phase
id trail items expl. lev.
0 f (x) ' w {} 0
1 y ' f (u) {} 0
2 w − 2 ' y {} 0
3 a[i := v][j] ' x {} 0
4 i ' j {} 0
5 u ' v {} 0
6 v ' a[i := v][j] {4} 0
7 u←c 1
8 x←c 2
9 u ' x {7, 8} 2
10 f (u) ' f (x) {9} 2
11 f (u) ' w {0, 10} 2
12 y ' w {1, 11} 2

12/25

An example with arithmetic, arrays, congruence
Phase 2

id trail items expl. lev.
0 f (x) ' w {} 0
1 y ' f (u) {} 0
2 w − 2 ' y {} 0
3 a[i := v][j] ' x {} 0
4 i ' j {} 0
5 u ' v {} 0
6 v ' a[i := v][j] {4} 0
7 u←c 1
8 x←c 2
9 w←0 3
10 y← − 2 4
11 y 6' w {9, 10} 4
12 u ' x {7, 8} 2

13 f (u) ' f (x) {12} 2
14 f (u) ' w {0, 13} 2

conflict E 2: {1, 11, 14} 4

Phase
id trail items expl. lev.
0 f (x) ' w {} 0
1 y ' f (u) {} 0
2 w − 2 ' y {} 0
3 a[i := v][j] ' x {} 0
4 i ' j {} 0
5 u ' v {} 0
6 v ' a[i := v][j] {4} 0
7 u←c 1
8 x←c 2
9 u ' x {7, 8} 2
10 f (u) ' f (x) {9} 2
11 f (u) ' w {0, 10} 2
12 y ' w {1, 11} 2

12/25

An example with arithmetic, arrays, congruence
Phase 2

id trail items expl. lev.
0 f (x) ' w {} 0
1 y ' f (u) {} 0
2 w − 2 ' y {} 0
3 a[i := v][j] ' x {} 0
4 i ' j {} 0
5 u ' v {} 0
6 v ' a[i := v][j] {4} 0
7 u←c 1
8 x←c 2
9 w←0 3
10 y← − 2 4
11 y 6' w {9, 10} 4
12 u ' x {7, 8} 2
13 f (u) ' f (x) {12} 2

14 f (u) ' w {0, 13} 2
conflict E 2: {1, 11, 14} 4

Phase
id trail items expl. lev.
0 f (x) ' w {} 0
1 y ' f (u) {} 0
2 w − 2 ' y {} 0
3 a[i := v][j] ' x {} 0
4 i ' j {} 0
5 u ' v {} 0
6 v ' a[i := v][j] {4} 0
7 u←c 1
8 x←c 2
9 u ' x {7, 8} 2
10 f (u) ' f (x) {9} 2
11 f (u) ' w {0, 10} 2
12 y ' w {1, 11} 2

12/25

An example with arithmetic, arrays, congruence
Phase 2

id trail items expl. lev.
0 f (x) ' w {} 0
1 y ' f (u) {} 0
2 w − 2 ' y {} 0
3 a[i := v][j] ' x {} 0
4 i ' j {} 0
5 u ' v {} 0
6 v ' a[i := v][j] {4} 0
7 u←c 1
8 x←c 2
9 w←0 3
10 y← − 2 4
11 y 6' w {9, 10} 4
12 u ' x {7, 8} 2
13 f (u) ' f (x) {12} 2
14 f (u) ' w {0, 13} 2

conflict E 2: {1, 11, 14} 4

Phase
id trail items expl. lev.
0 f (x) ' w {} 0
1 y ' f (u) {} 0
2 w − 2 ' y {} 0
3 a[i := v][j] ' x {} 0
4 i ' j {} 0
5 u ' v {} 0
6 v ' a[i := v][j] {4} 0
7 u←c 1
8 x←c 2
9 u ' x {7, 8} 2
10 f (u) ' f (x) {9} 2
11 f (u) ' w {0, 10} 2
12 y ' w {1, 11} 2

12/25

An example with arithmetic, arrays, congruence
Phase 2

id trail items expl. lev.
0 f (x) ' w {} 0
1 y ' f(u) {} 0
2 w − 2 ' y {} 0
3 a[i := v][j] ' x {} 0
4 i ' j {} 0
5 u ' v {} 0
6 v ' a[i := v][j] {4} 0
7 u←c 1
8 x←c 2
9 w←0 3
10 y← − 2 4
11 y 6' w {9, 10} 4
12 u ' x {7, 8} 2
13 f (u) ' f (x) {12} 2
14 f(u) ' w {0, 13} 2

conflict E 2: {1, 11, 14} 4

Phase
id trail items expl. lev.
0 f (x) ' w {} 0
1 y ' f (u) {} 0
2 w − 2 ' y {} 0
3 a[i := v][j] ' x {} 0
4 i ' j {} 0
5 u ' v {} 0
6 v ' a[i := v][j] {4} 0
7 u←c 1
8 x←c 2
9 u ' x {7, 8} 2
10 f (u) ' f (x) {9} 2
11 f (u) ' w {0, 10} 2
12 y ' w {1, 11} 2

12/25

An example with arithmetic, arrays, congruence
Phase 2

id trail items expl. lev.
0 f (x) ' w {} 0
1 y ' f(u) {} 0
2 w − 2 ' y {} 0
3 a[i := v][j] ' x {} 0
4 i ' j {} 0
5 u ' v {} 0
6 v ' a[i := v][j] {4} 0
7 u←c 1
8 x←c 2
9 w←0 3
10 y← − 2 4
11 y 6' w {9, 10} 4
12 u ' x {7, 8} 2
13 f (u) ' f (x) {12} 2
14 f(u) ' w {0, 13} 2

conflict E 2: {1, 11, 14} 4

Phase 3
id trail items expl. lev.
0 f (x) ' w {} 0
1 y ' f (u) {} 0
2 w − 2 ' y {} 0
3 a[i := v][j] ' x {} 0
4 i ' j {} 0
5 u ' v {} 0
6 v ' a[i := v][j] {4} 0
7 u←c 1
8 x←c 2
9 u ' x {7, 8} 2
10 f (u) ' f (x) {9} 2
11 f (u) ' w {0, 10} 2
12 y ' w {1, 11} 2

12/25

An example with arithmetic, arrays, congruence
Phase 3

id trail items expl. lev.
0 f (x) ' w {} 0
1 y ' f (u) {} 0
2 w − 2 ' y {} 0
3 a[i := v][j] ' x {} 0
4 i ' j {} 0
5 u ' v {} 0
6 v ' a[i := v][j] {4} 0
7 u←c 1
8 x←c 2
9 u ' x {7, 8} 2
10 f (u) ' f (x) {9} 2
11 f (u) ' w {0, 10} 2
12 y ' w {1, 11} 2

13 w − 2 ' w {2, 12} 2
conflict E 3

1 : {13} 2
conflict E 3

2 : {2, 12} 2
conflict E 3

3 : {1, 2, 11} 2
conflict E 3

4 : {0, 1, 2, 10} 2
conflict E 3

5 : {0, 1, 2, 9} 2

Phase
id trail items expl. lev.
0 f (x) ' w {} 0
1 y ' f (u) {} 0
2 w − 2 ' y {} 0
3 a[i := v][j] ' x {} 0
4 i ' j {} 0
5 u ' v {} 0
6 v ' a[i := v][j] {4} 0
7 u←c 1
8 x←c 2
9 u ' x {7, 8} 2
10 f (u) ' f (x) {9} 2
11 f (u) ' w {0, 10} 2
12 y ' w {1, 11} 2

12/25

An example with arithmetic, arrays, congruence
Phase 3

id trail items expl. lev.
0 f (x) ' w {} 0
1 y ' f (u) {} 0
2 w − 2 ' y {} 0
3 a[i := v][j] ' x {} 0
4 i ' j {} 0
5 u ' v {} 0
6 v ' a[i := v][j] {4} 0
7 u←c 1
8 x←c 2
9 u ' x {7, 8} 2
10 f (u) ' f (x) {9} 2
11 f (u) ' w {0, 10} 2
12 y ' w {1, 11} 2
13 w − 2 ' w {2, 12} 2

conflict E 3
1 : {13} 2

conflict E 3
2 : {2, 12} 2

conflict E 3
3 : {1, 2, 11} 2

conflict E 3
4 : {0, 1, 2, 10} 2

conflict E 3
5 : {0, 1, 2, 9} 2

Phase
id trail items expl. lev.
0 f (x) ' w {} 0
1 y ' f (u) {} 0
2 w − 2 ' y {} 0
3 a[i := v][j] ' x {} 0
4 i ' j {} 0
5 u ' v {} 0
6 v ' a[i := v][j] {4} 0
7 u←c 1
8 x←c 2
9 u ' x {7, 8} 2
10 f (u) ' f (x) {9} 2
11 f (u) ' w {0, 10} 2
12 y ' w {1, 11} 2

12/25

An example with arithmetic, arrays, congruence
Phase 3

id trail items expl. lev.
0 f (x) ' w {} 0
1 y ' f (u) {} 0
2 w − 2 ' y {} 0
3 a[i := v][j] ' x {} 0
4 i ' j {} 0
5 u ' v {} 0
6 v ' a[i := v][j] {4} 0
7 u←c 1
8 x←c 2
9 u ' x {7, 8} 2
10 f (u) ' f (x) {9} 2
11 f (u) ' w {0, 10} 2
12 y ' w {1, 11} 2
13 w− 2 ' w {2, 12} 2

conflict E 3
1 : {13} 2

conflict E 3
2 : {2, 12} 2

conflict E 3
3 : {1, 2, 11} 2

conflict E 3
4 : {0, 1, 2, 10} 2

conflict E 3
5 : {0, 1, 2, 9} 2

Phase
id trail items expl. lev.
0 f (x) ' w {} 0
1 y ' f (u) {} 0
2 w − 2 ' y {} 0
3 a[i := v][j] ' x {} 0
4 i ' j {} 0
5 u ' v {} 0
6 v ' a[i := v][j] {4} 0
7 u←c 1
8 x←c 2
9 u ' x {7, 8} 2
10 f (u) ' f (x) {9} 2
11 f (u) ' w {0, 10} 2
12 y ' w {1, 11} 2

12/25

An example with arithmetic, arrays, congruence
Phase 3

id trail items expl. lev.
0 f (x) ' w {} 0
1 y ' f (u) {} 0
2 w− 2 ' y {} 0
3 a[i := v][j] ' x {} 0
4 i ' j {} 0
5 u ' v {} 0
6 v ' a[i := v][j] {4} 0
7 u←c 1
8 x←c 2
9 u ' x {7, 8} 2
10 f (u) ' f (x) {9} 2
11 f (u) ' w {0, 10} 2
12 y ' w {1, 11} 2
13 w − 2 ' w {2, 12} 2

conflict E 3
1 : {13} 2

conflict E 3
2 : {2, 12} 2

conflict E 3
3 : {1, 2, 11} 2

conflict E 3
4 : {0, 1, 2, 10} 2

conflict E 3
5 : {0, 1, 2, 9} 2

Phase
id trail items expl. lev.
0 f (x) ' w {} 0
1 y ' f (u) {} 0
2 w − 2 ' y {} 0
3 a[i := v][j] ' x {} 0
4 i ' j {} 0
5 u ' v {} 0
6 v ' a[i := v][j] {4} 0
7 u←c 1
8 x←c 2
9 u ' x {7, 8} 2
10 f (u) ' f (x) {9} 2
11 f (u) ' w {0, 10} 2
12 y ' w {1, 11} 2

12/25

An example with arithmetic, arrays, congruence
Phase 3

id trail items expl. lev.
0 f (x) ' w {} 0
1 y ' f(u) {} 0
2 w− 2 ' y {} 0
3 a[i := v][j] ' x {} 0
4 i ' j {} 0
5 u ' v {} 0
6 v ' a[i := v][j] {4} 0
7 u←c 1
8 x←c 2
9 u ' x {7, 8} 2
10 f (u) ' f (x) {9} 2
11 f(u) ' w {0, 10} 2
12 y ' w {1, 11} 2
13 w − 2 ' w {2, 12} 2

conflict E 3
1 : {13} 2

conflict E 3
2 : {2, 12} 2

conflict E 3
3 : {1, 2, 11} 2

conflict E 3
4 : {0, 1, 2, 10} 2

conflict E 3
5 : {0, 1, 2, 9} 2

Phase
id trail items expl. lev.
0 f (x) ' w {} 0
1 y ' f (u) {} 0
2 w − 2 ' y {} 0
3 a[i := v][j] ' x {} 0
4 i ' j {} 0
5 u ' v {} 0
6 v ' a[i := v][j] {4} 0
7 u←c 1
8 x←c 2
9 u ' x {7, 8} 2
10 f (u) ' f (x) {9} 2
11 f (u) ' w {0, 10} 2
12 y ' w {1, 11} 2

12/25

An example with arithmetic, arrays, congruence
Phase 3

id trail items expl. lev.
0 f(x) ' w {} 0
1 y ' f(u) {} 0
2 w− 2 ' y {} 0
3 a[i := v][j] ' x {} 0
4 i ' j {} 0
5 u ' v {} 0
6 v ' a[i := v][j] {4} 0
7 u←c 1
8 x←c 2
9 u ' x {7, 8} 2
10 f(u) ' f(x) {9} 2
11 f (u) ' w {0, 10} 2
12 y ' w {1, 11} 2
13 w − 2 ' w {2, 12} 2

conflict E 3
1 : {13} 2

conflict E 3
2 : {2, 12} 2

conflict E 3
3 : {1, 2, 11} 2

conflict E 3
4 : {0, 1, 2, 10} 2

conflict E 3
5 : {0, 1, 2, 9} 2

Phase
id trail items expl. lev.
0 f (x) ' w {} 0
1 y ' f (u) {} 0
2 w − 2 ' y {} 0
3 a[i := v][j] ' x {} 0
4 i ' j {} 0
5 u ' v {} 0
6 v ' a[i := v][j] {4} 0
7 u←c 1
8 x←c 2
9 u ' x {7, 8} 2
10 f (u) ' f (x) {9} 2
11 f (u) ' w {0, 10} 2
12 y ' w {1, 11} 2

12/25

An example with arithmetic, arrays, congruence
Phase 3

id trail items expl. lev.
0 f(x) ' w {} 0
1 y ' f(u) {} 0
2 w− 2 ' y {} 0
3 a[i := v][j] ' x {} 0
4 i ' j {} 0
5 u ' v {} 0
6 v ' a[i := v][j] {4} 0
7 u←c 1
8 x←c 2
9 u ' x {7, 8} 2
10 f (u) ' f (x) {9} 2
11 f (u) ' w {0, 10} 2
12 y ' w {1, 11} 2
13 w − 2 ' w {2, 12} 2

conflict E 3
1 : {13} 2

conflict E 3
2 : {2, 12} 2

conflict E 3
3 : {1, 2, 11} 2

conflict E 3
4 : {0, 1, 2, 10} 2

conflict E 3
5 : {0, 1, 2, 9} 2

Phase
id trail items expl. lev.
0 f (x) ' w {} 0
1 y ' f (u) {} 0
2 w − 2 ' y {} 0
3 a[i := v][j] ' x {} 0
4 i ' j {} 0
5 u ' v {} 0
6 v ' a[i := v][j] {4} 0
7 u←c 1
8 x←c 2
9 u ' x {7, 8} 2
10 f (u) ' f (x) {9} 2
11 f (u) ' w {0, 10} 2
12 y ' w {1, 11} 2

12/25

An example with arithmetic, arrays, congruence
Phase

id trail items expl. lev.
0 f(x) ' w {} 0
1 y ' f(u) {} 0
2 w− 2 ' y {} 0
3 a[i := v][j] ' x {} 0
4 i ' j {} 0
5 u ' v {} 0
6 v ' a[i := v][j] {4} 0
7 u←c 1
8 x←c 2
9 u ' x {7, 8} 2

10 f (u) ' f (x) {9} 2
11 f (u) ' w {0, 10} 2
12 y ' w {1, 11} 2
13 w − 2 ' w {2, 12} 2

conflict E 3
1 : {13} 2

conflict E 3
2 : {2, 12} 2

conflict E 3
3 : {1, 2, 11} 2

conflict E 3
4 : {0, 1, 2, 10} 2

conflict E 3
5 : {0, 1, 2, 9} 2

Phase 4
id trail items expl. lev.
0 f (x) ' w {} 0
1 y ' f (u) {} 0
2 w − 2 ' y {} 0
3 a[i := v][j] ' x {} 0
4 i ' j {} 0
5 u ' v {} 0
6 v ' a[i := v][j] {4} 0
7 u 6' x {0, 1, 2} 0

8 v ' x {3, 6} 0
conflict E 4: {5, 7, 8} 0

12/25

An example with arithmetic, arrays, congruence
Phase

id trail items expl. lev.
0 f(x) ' w {} 0
1 y ' f(u) {} 0
2 w− 2 ' y {} 0
3 a[i := v][j] ' x {} 0
4 i ' j {} 0
5 u ' v {} 0
6 v ' a[i := v][j] {4} 0
7 u←c 1
8 x←c 2
9 u ' x {7, 8} 2

10 f (u) ' f (x) {9} 2
11 f (u) ' w {0, 10} 2
12 y ' w {1, 11} 2
13 w − 2 ' w {2, 12} 2

conflict E 3
1 : {13} 2

conflict E 3
2 : {2, 12} 2

conflict E 3
3 : {1, 2, 11} 2

conflict E 3
4 : {0, 1, 2, 10} 2

conflict E 3
5 : {0, 1, 2, 9} 2

Phase 4
id trail items expl. lev.
0 f (x) ' w {} 0
1 y ' f (u) {} 0
2 w − 2 ' y {} 0
3 a[i := v][j] ' x {} 0
4 i ' j {} 0
5 u ' v {} 0
6 v ' a[i := v][j] {4} 0
7 u 6' x {0, 1, 2} 0
8 v ' x {3, 6} 0

conflict E 4: {5, 7, 8} 0

12/25

An example with arithmetic, arrays, congruence
Phase

id trail items expl. lev.
0 f(x) ' w {} 0
1 y ' f(u) {} 0
2 w− 2 ' y {} 0
3 a[i := v][j] ' x {} 0
4 i ' j {} 0
5 u ' v {} 0
6 v ' a[i := v][j] {4} 0
7 u←c 1
8 x←c 2
9 u ' x {7, 8} 2

10 f (u) ' f (x) {9} 2
11 f (u) ' w {0, 10} 2
12 y ' w {1, 11} 2
13 w − 2 ' w {2, 12} 2

conflict E 3
1 : {13} 2

conflict E 3
2 : {2, 12} 2

conflict E 3
3 : {1, 2, 11} 2

conflict E 3
4 : {0, 1, 2, 10} 2

conflict E 3
5 : {0, 1, 2, 9} 2

Phase 4
id trail items expl. lev.
0 f (x) ' w {} 0
1 y ' f (u) {} 0
2 w − 2 ' y {} 0
3 a[i := v][j] ' x {} 0
4 i ' j {} 0
5 u ' v {} 0
6 v ' a[i := v][j] {4} 0
7 u 6' x {0, 1, 2} 0
8 v ' x {3, 6} 0

conflict E 4: {5, 7, 8} 0

12/25

Theory-specific ingredients: T -modules

Given a theory T , a module for T identifies:
I A collection of sorts for which it will propose values;

e.g. sort Q for LRA. These sorts are T -public.

I A collection of values for those sorts,
and an extension T + of theory T on extended signature
e.g. to specify, when writing x←

√
2, that

√
2×
√
2 = 1 + 1.

I A collection of T -inferences of the form J `T L,
where J is made of Boolean or non-Boolean assignments,
and L is a Boolean assignment.

We add to these inference equality inferences

(t1←v1), (t2←v2) ` t1 's t2 if v1 and v2 are the same
(t1←v1), (t2←v2) ` t1 6's t2 if v1 and v2 are different

+ reflexivity, symmetry, transitivity.

13/25

Theory-specific ingredients: T -modules

Given a theory T , a module for T identifies:
I A collection of sorts for which it will propose values;

e.g. sort Q for LRA. These sorts are T -public.
I A collection of values for those sorts,

and an extension T + of theory T on extended signature
e.g. to specify, when writing x←

√
2, that

√
2×
√
2 = 1 + 1.

I A collection of T -inferences of the form J `T L,
where J is made of Boolean or non-Boolean assignments,
and L is a Boolean assignment.

We add to these inference equality inferences

(t1←v1), (t2←v2) ` t1 's t2 if v1 and v2 are the same
(t1←v1), (t2←v2) ` t1 6's t2 if v1 and v2 are different

+ reflexivity, symmetry, transitivity.

13/25

Theory-specific ingredients: T -modules

Given a theory T , a module for T identifies:
I A collection of sorts for which it will propose values;

e.g. sort Q for LRA. These sorts are T -public.
I A collection of values for those sorts,

and an extension T + of theory T on extended signature
e.g. to specify, when writing x←

√
2, that

√
2×
√
2 = 1 + 1.

I A collection of T -inferences of the form J `T L,
where J is made of Boolean or non-Boolean assignments,
and L is a Boolean assignment.

We add to these inference equality inferences

(t1←v1), (t2←v2) ` t1 's t2 if v1 and v2 are the same
(t1←v1), (t2←v2) ` t1 6's t2 if v1 and v2 are different

+ reflexivity, symmetry, transitivity.

13/25

Theory-specific ingredients: T -modules

Given a theory T , a module for T identifies:
I A collection of sorts for which it will propose values;

e.g. sort Q for LRA. These sorts are T -public.
I A collection of values for those sorts,

and an extension T + of theory T on extended signature
e.g. to specify, when writing x←

√
2, that

√
2×
√
2 = 1 + 1.

I A collection of T -inferences of the form J `T L,
where J is made of Boolean or non-Boolean assignments,
and L is a Boolean assignment.

We add to these inference equality inferences

(t1←v1), (t2←v2) ` t1 's t2 if v1 and v2 are the same
(t1←v1), (t2←v2) ` t1 6's t2 if v1 and v2 are different

+ reflexivity, symmetry, transitivity.

13/25

Example for LRA
LRA-public sorts: just Q.

LRA-values: Q. LRA+: trivial
(Some) LRA-inferences:
I Evaluations:

t1←q1, . . . , tn←qn `LRA l←b

where l evaluates to b under the assignments
I FM-resolutions:

(e1 l1 x), (x l2 e2) `LRA (e1 l3 e2)

where l is < or ≤. . .
(triggered only where e1 and e2 have been assigned values)

I Treatment of disequality:

(e1 ≤ x), (x ≤ e2), (e1 ' e0), (e2 ' e0), (x ' e0) `LRA ⊥

(triggered only where e0, e1 and e2 have been assigned values)

14/25

Example for LRA
LRA-public sorts: just Q. LRA-values: Q. LRA+: trivial

(Some) LRA-inferences:
I Evaluations:

t1←q1, . . . , tn←qn `LRA l←b

where l evaluates to b under the assignments
I FM-resolutions:

(e1 l1 x), (x l2 e2) `LRA (e1 l3 e2)

where l is < or ≤. . .
(triggered only where e1 and e2 have been assigned values)

I Treatment of disequality:

(e1 ≤ x), (x ≤ e2), (e1 ' e0), (e2 ' e0), (x ' e0) `LRA ⊥

(triggered only where e0, e1 and e2 have been assigned values)

14/25

Example for LRA
LRA-public sorts: just Q. LRA-values: Q. LRA+: trivial
(Some) LRA-inferences:
I Evaluations:

t1←q1, . . . , tn←qn `LRA l←b

where l evaluates to b under the assignments

I FM-resolutions:

(e1 l1 x), (x l2 e2) `LRA (e1 l3 e2)

where l is < or ≤. . .
(triggered only where e1 and e2 have been assigned values)

I Treatment of disequality:

(e1 ≤ x), (x ≤ e2), (e1 ' e0), (e2 ' e0), (x ' e0) `LRA ⊥

(triggered only where e0, e1 and e2 have been assigned values)

14/25

Example for LRA
LRA-public sorts: just Q. LRA-values: Q. LRA+: trivial
(Some) LRA-inferences:
I Evaluations:

t1←q1, . . . , tn←qn `LRA l←b

where l evaluates to b under the assignments
I FM-resolutions:

(e1 l1 x), (x l2 e2) `LRA (e1 l3 e2)

where l is < or ≤. . .
(triggered only where e1 and e2 have been assigned values)

I Treatment of disequality:

(e1 ≤ x), (x ≤ e2), (e1 ' e0), (e2 ' e0), (x ' e0) `LRA ⊥

(triggered only where e0, e1 and e2 have been assigned values)

14/25

Example for LRA
LRA-public sorts: just Q. LRA-values: Q. LRA+: trivial
(Some) LRA-inferences:
I Evaluations:

t1←q1, . . . , tn←qn `LRA l←b

where l evaluates to b under the assignments
I FM-resolutions:

(e1 l1 x), (x l2 e2) `LRA (e1 l3 e2)

where l is < or ≤. . .
(triggered only where e1 and e2 have been assigned values)

I Treatment of disequality:

(e1 ≤ x), (x ≤ e2), (e1 ' e0), (e2 ' e0), (x ' e0) `LRA ⊥

(triggered only where e0, e1 and e2 have been assigned values)
14/25

Design choices
Why make the notion of T -inferences central?
I Rather minimalistic, with derived notions such as:

Non-Boolean assignment (t←v) “immediately violates” J
if there is an inference J , (t←v) `T L with L ∈ J

I (t←v) can be understood as a proxy for
“all literals that immediately follow from this assignment”
(compact representation for a group of simultaneously made
Boolean decisions)

I Directional (as opposed to, say, a theory lemma):
premisses of inferences have to be present in the problem,
conclusion can introduce new material

I Identifies the grains of theory-specific reasoning.
An MC-Sat derivation of unsat almost explicitly constructs an
aggregation of theory inferences
that can be taken as a proof object (cf. example)

15/25

Design choices
Why make the notion of T -inferences central?
I Rather minimalistic, with derived notions such as:

Non-Boolean assignment (t←v) “immediately violates” J
if there is an inference J , (t←v) `T L with L ∈ J

I (t←v) can be understood as a proxy for
“all literals that immediately follow from this assignment”
(compact representation for a group of simultaneously made
Boolean decisions)

I Directional (as opposed to, say, a theory lemma):
premisses of inferences have to be present in the problem,
conclusion can introduce new material

I Identifies the grains of theory-specific reasoning.
An MC-Sat derivation of unsat almost explicitly constructs an
aggregation of theory inferences
that can be taken as a proof object (cf. example)

15/25

Design choices
Why make the notion of T -inferences central?
I Rather minimalistic, with derived notions such as:

Non-Boolean assignment (t←v) “immediately violates” J
if there is an inference J , (t←v) `T L with L ∈ J

I (t←v) can be understood as a proxy for
“all literals that immediately follow from this assignment”
(compact representation for a group of simultaneously made
Boolean decisions)

I Directional (as opposed to, say, a theory lemma):
premisses of inferences have to be present in the problem,
conclusion can introduce new material

I Identifies the grains of theory-specific reasoning.
An MC-Sat derivation of unsat almost explicitly constructs an
aggregation of theory inferences
that can be taken as a proof object (cf. example)

15/25

Design choices
Why make the notion of T -inferences central?
I Rather minimalistic, with derived notions such as:

Non-Boolean assignment (t←v) “immediately violates” J
if there is an inference J , (t←v) `T L with L ∈ J

I (t←v) can be understood as a proxy for
“all literals that immediately follow from this assignment”
(compact representation for a group of simultaneously made
Boolean decisions)

I Directional (as opposed to, say, a theory lemma):
premisses of inferences have to be present in the problem,
conclusion can introduce new material

I Identifies the grains of theory-specific reasoning.
An MC-Sat derivation of unsat almost explicitly constructs an
aggregation of theory inferences
that can be taken as a proof object (cf. example)

15/25

Generic calculus: Search rules
Parameterized by finite set of terms B called global basis
Let T be a theory with a specific T -module.

If assignment t←v (in T -public sort) does not immediately violate Γ
Decide

Γ −→ Γ, (t←v)

If J `T = L,
with J already in Γ and L is for a formula in B
Propagate

Γ −→ Γ, (J ` L) if L not in Γ
Conflict

Γ −→ Γ′ if L in Γ,
levelΓ(J , L) > 0
and analysing conflict 〈Γ; J , L〉 gives Γ′

Fail
Γ −→ unsat if L in Γ and levelΓ(J , L) = 0

16/25

Generic calculus: Conflict analysis rules

Resolve
〈Γ;E ,A〉 =⇒ 〈Γ;E ∪ J〉 if explainΓ(A) = J

& greatest decision in J ,
if any, is Boolean

UIPBackjump
〈Γ;E , L〉 =⇒ Γ≤levelΓ(E), (E ` L) if levelΓ(E) < levelΓ(L)

SemSplit
〈Γ;E , L〉 =⇒ Γ≤levelΓ(L)−1, L if levelΓ(L) = levelΓ(E)

& there is a decision in explainΓ(L)
& the greatest one is non-Boolean

Undo
〈Γ;E ,A〉 =⇒ Γ≤levelΓ(A)−1 if A is a non-Boolean decision

and levelΓ(E) < levelΓ(A)

17/25

3. Properties of the calculus

18/25

Termination and Soundness

Termination:

If for each theory module T involved,
there is a local basis X 7→ basisT (X) satisfying some properties,

then it is possible to define a global finite basis for the combination
of the theories

. . . and termination of the calculus follows.

(This relies on the fact that the theories are disjoint)

Soundness:

If for each theory module T involved the T -inferences are sound
(i.e. any model endorsing the premisses endorses the conclusion),
then if the calculus ends with unsat, then the input was unsat

19/25

Termination and Soundness

Termination:

If for each theory module T involved,
there is a local basis X 7→ basisT (X) satisfying some properties,

then it is possible to define a global finite basis for the combination
of the theories

. . . and termination of the calculus follows.

(This relies on the fact that the theories are disjoint)

Soundness:

If for each theory module T involved the T -inferences are sound
(i.e. any model endorsing the premisses endorses the conclusion),
then if the calculus ends with unsat, then the input was unsat

19/25

Termination and Soundness

Termination:

If for each theory module T involved,
there is a local basis X 7→ basisT (X) satisfying some properties,

then it is possible to define a global finite basis for the combination
of the theories

. . . and termination of the calculus follows.

(This relies on the fact that the theories are disjoint)

Soundness:

If for each theory module T involved the T -inferences are sound
(i.e. any model endorsing the premisses endorses the conclusion),
then if the calculus ends with unsat, then the input was unsat

19/25

Termination and Soundness

Termination:

If for each theory module T involved,
there is a local basis X 7→ basisT (X) satisfying some properties,

then it is possible to define a global finite basis for the combination
of the theories

. . . and termination of the calculus follows.

(This relies on the fact that the theories are disjoint)

Soundness:

If for each theory module T involved the T -inferences are sound
(i.e. any model endorsing the premisses endorses the conclusion),
then if the calculus ends with unsat, then the input was unsat

19/25

What happens if we never get unsat?
Do we have a model?

This relies on a completeness condition for theory modules:
For any Γ,
I Either any model of Γ in the equality theory

(where each sort different from bool is interpreted as an
infinite countable set)
can be extended into a T +-model of Γ

I Or a T -decision can be made (not immediately violating Γ)
I Or a T -inference can infer a new assignment

(for a term in the local basis)

Theorem: If all theory modules satisfy the completeness condition,
and if the calculus cannot make any further transitions, then the
state describes a model.

Proof adapts Nelson-Oppen

20/25

What happens if we never get unsat?
Do we have a model?

This relies on a completeness condition for theory modules:
For any Γ,
I Either any model of Γ in the equality theory

(where each sort different from bool is interpreted as an
infinite countable set)
can be extended into a T +-model of Γ

I Or a T -decision can be made (not immediately violating Γ)
I Or a T -inference can infer a new assignment

(for a term in the local basis)

Theorem: If all theory modules satisfy the completeness condition,
and if the calculus cannot make any further transitions, then the
state describes a model.

Proof adapts Nelson-Oppen

20/25

What happens if we never get unsat?
Do we have a model?

This relies on a completeness condition for theory modules:
For any Γ,
I Either any model of Γ in the equality theory

(where each sort different from bool is interpreted as an
infinite countable set)
can be extended into a T +-model of Γ

I Or a T -decision can be made (not immediately violating Γ)
I Or a T -inference can infer a new assignment

(for a term in the local basis)

Theorem: If all theory modules satisfy the completeness condition,
and if the calculus cannot make any further transitions, then the
state describes a model.

Proof adapts Nelson-Oppen

20/25

What happens if we never get unsat?
Do we have a model?

This relies on a completeness condition for theory modules:
For any Γ,
I Either any model of Γ in the equality theory

(where each sort different from bool is interpreted as an
infinite countable set)
can be extended into a T +-model of Γ

I Or a T -decision can be made (not immediately violating Γ)
I Or a T -inference can infer a new assignment

(for a term in the local basis)

Theorem: If all theory modules satisfy the completeness condition,
and if the calculus cannot make any further transitions, then the
state describes a model.

Proof adapts Nelson-Oppen

20/25

Theories for which we provided such theory modules
I LRA(careful with the local basis)

I EUF
(ti ' ui)i=1...n, (f (t1, . . . , tn) 6' f (u1, . . . , un)) `EUF ⊥

(ti ' ui)i=1...n `EUF (f (t1, . . . , tn) ' f (u1, . . . , un))
(ti ' ui)i=1...n,i 6=i0 , f (t1, . . . , tn) 6' f (u1, . . . , un) `EUF ti0 6' ui0

I Arrays
(t ' t′), (i ' i ′), (t[i] 6' t′[i ′]) `Arr ⊥

(t ' t′), (i ' i ′), (u ' u′), (t[i := u] 6' t′[i ′:= u′]) `Arr ⊥
(t ' t′), (u ' u′), (diff(t, u) 6' diff(t′, u′)) `Arr ⊥

(t′ ' t[i := u]), (i ' j), (u 6' t′[j]) `Arr ⊥
(t′ ' t[i := u]), (i 6' j), (j ' j′), (t[j] 6' t′[j′]) `Arr ⊥

(t 6' u) `Arr (t[diff(t, u)] 6' u[diff(t, u)])

I Black box procedure (coarse-grain inferences)
l1←b1, . . . , ln←bn `T ⊥

where l1, . . . , ln are formulæ, and the conjunction of the literals
corresponding to the Boolean assignments l1←b1, . . . , ln←bn is
T -unsatisfiable
(as detected by e.g. the decision procedure)

21/25

Theories for which we provided such theory modules
I LRA(careful with the local basis)
I EUF

(ti ' ui)i=1...n, (f (t1, . . . , tn) 6' f (u1, . . . , un)) `EUF ⊥
(ti ' ui)i=1...n `EUF (f (t1, . . . , tn) ' f (u1, . . . , un))

(ti ' ui)i=1...n,i 6=i0 , f (t1, . . . , tn) 6' f (u1, . . . , un) `EUF ti0 6' ui0

I Arrays
(t ' t′), (i ' i ′), (t[i] 6' t′[i ′]) `Arr ⊥

(t ' t′), (i ' i ′), (u ' u′), (t[i := u] 6' t′[i ′:= u′]) `Arr ⊥
(t ' t′), (u ' u′), (diff(t, u) 6' diff(t′, u′)) `Arr ⊥

(t′ ' t[i := u]), (i ' j), (u 6' t′[j]) `Arr ⊥
(t′ ' t[i := u]), (i 6' j), (j ' j′), (t[j] 6' t′[j′]) `Arr ⊥

(t 6' u) `Arr (t[diff(t, u)] 6' u[diff(t, u)])

I Black box procedure (coarse-grain inferences)
l1←b1, . . . , ln←bn `T ⊥

where l1, . . . , ln are formulæ, and the conjunction of the literals
corresponding to the Boolean assignments l1←b1, . . . , ln←bn is
T -unsatisfiable
(as detected by e.g. the decision procedure)

21/25

Theories for which we provided such theory modules
I LRA(careful with the local basis)
I EUF

(ti ' ui)i=1...n, (f (t1, . . . , tn) 6' f (u1, . . . , un)) `EUF ⊥
(ti ' ui)i=1...n `EUF (f (t1, . . . , tn) ' f (u1, . . . , un))

(ti ' ui)i=1...n,i 6=i0 , f (t1, . . . , tn) 6' f (u1, . . . , un) `EUF ti0 6' ui0

I Arrays
(t ' t′), (i ' i ′), (t[i] 6' t′[i ′]) `Arr ⊥

(t ' t′), (i ' i ′), (u ' u′), (t[i := u] 6' t′[i ′:= u′]) `Arr ⊥
(t ' t′), (u ' u′), (diff(t, u) 6' diff(t′, u′)) `Arr ⊥

(t′ ' t[i := u]), (i ' j), (u 6' t′[j]) `Arr ⊥
(t′ ' t[i := u]), (i 6' j), (j ' j′), (t[j] 6' t′[j′]) `Arr ⊥

(t 6' u) `Arr (t[diff(t, u)] 6' u[diff(t, u)])

I Black box procedure (coarse-grain inferences)
l1←b1, . . . , ln←bn `T ⊥

where l1, . . . , ln are formulæ, and the conjunction of the literals
corresponding to the Boolean assignments l1←b1, . . . , ln←bn is
T -unsatisfiable
(as detected by e.g. the decision procedure)

21/25

Theories for which we provided such theory modules
I LRA(careful with the local basis)
I EUF

(ti ' ui)i=1...n, (f (t1, . . . , tn) 6' f (u1, . . . , un)) `EUF ⊥
(ti ' ui)i=1...n `EUF (f (t1, . . . , tn) ' f (u1, . . . , un))

(ti ' ui)i=1...n,i 6=i0 , f (t1, . . . , tn) 6' f (u1, . . . , un) `EUF ti0 6' ui0

I Arrays
(t ' t′), (i ' i ′), (t[i] 6' t′[i ′]) `Arr ⊥

(t ' t′), (i ' i ′), (u ' u′), (t[i := u] 6' t′[i ′:= u′]) `Arr ⊥
(t ' t′), (u ' u′), (diff(t, u) 6' diff(t′, u′)) `Arr ⊥

(t′ ' t[i := u]), (i ' j), (u 6' t′[j]) `Arr ⊥
(t′ ' t[i := u]), (i 6' j), (j ' j′), (t[j] 6' t′[j′]) `Arr ⊥

(t 6' u) `Arr (t[diff(t, u)] 6' u[diff(t, u)])

I Black box procedure (coarse-grain inferences)
l1←b1, . . . , ln←bn `T ⊥

where l1, . . . , ln are formulæ, and the conjunction of the literals
corresponding to the Boolean assignments l1←b1, . . . , ln←bn is
T -unsatisfiable
(as detected by e.g. the decision procedure)

21/25

Conclusion
In [BGLS16],
We do not assume purification
& let every theory module see every other theory term assignment.
Consequence: We can remove the stably infinite condition

But we still need to use a reference theory T0 to make theories
agree of sorts cardinalities
Completeness condition for theory modules is now dependent on T0
(T0-completeness)
Further work:
I non-disjoint theories?
I how to handle quantifiers?
I From proof production to “proved correct” implementation:

If implementation of each inference is correct and state
transitions are correct, then answer is correct
Separates a kernel that is critical for correctness
from strategies that is critical for efficiency

22/25

Conclusion
In [BGLS16],
We do not assume purification
& let every theory module see every other theory term assignment.
Consequence: We can remove the stably infinite condition
But we still need to use a reference theory T0 to make theories
agree of sorts cardinalities
Completeness condition for theory modules is now dependent on T0
(T0-completeness)

Further work:
I non-disjoint theories?
I how to handle quantifiers?
I From proof production to “proved correct” implementation:

If implementation of each inference is correct and state
transitions are correct, then answer is correct
Separates a kernel that is critical for correctness
from strategies that is critical for efficiency

22/25

Conclusion
In [BGLS16],
We do not assume purification
& let every theory module see every other theory term assignment.
Consequence: We can remove the stably infinite condition
But we still need to use a reference theory T0 to make theories
agree of sorts cardinalities
Completeness condition for theory modules is now dependent on T0
(T0-completeness)
Further work:
I non-disjoint theories?

I how to handle quantifiers?
I From proof production to “proved correct” implementation:

If implementation of each inference is correct and state
transitions are correct, then answer is correct
Separates a kernel that is critical for correctness
from strategies that is critical for efficiency

22/25

Conclusion
In [BGLS16],
We do not assume purification
& let every theory module see every other theory term assignment.
Consequence: We can remove the stably infinite condition
But we still need to use a reference theory T0 to make theories
agree of sorts cardinalities
Completeness condition for theory modules is now dependent on T0
(T0-completeness)
Further work:
I non-disjoint theories?
I how to handle quantifiers?

I From proof production to “proved correct” implementation:
If implementation of each inference is correct and state
transitions are correct, then answer is correct
Separates a kernel that is critical for correctness
from strategies that is critical for efficiency

22/25

Conclusion
In [BGLS16],
We do not assume purification
& let every theory module see every other theory term assignment.
Consequence: We can remove the stably infinite condition
But we still need to use a reference theory T0 to make theories
agree of sorts cardinalities
Completeness condition for theory modules is now dependent on T0
(T0-completeness)
Further work:
I non-disjoint theories?
I how to handle quantifiers?
I From proof production to “proved correct” implementation:

If implementation of each inference is correct and state
transitions are correct, then answer is correct
Separates a kernel that is critical for correctness
from strategies that is critical for efficiency

22/25

M. P. Bonacina, S. Graham-Lengrand, and N. Shankar.
A model-constructing framework for theory combination.
Technical Report RR-99/2016, Università degli Studi di
Verona - SRI International - CNRS, 2016.
Available at
http://hal.archives-ouvertes.fr/hal-01425305

N. Bjorner and M. Janota.
Playing with quantified satisfaction.
In M. Davis, A. Fehnker, A. McIver, and A. Voronkov, editors,
Proc. of the the 20th Int. Conf. on Logic for Programming,
Artificial Intelligence, and Reasoning (LPAR’15), volume 9450
of LNCS. Springer-Verlag, 2015.

L. M. de Moura and D. Jovanovic.
A model-constructing satisfiability calculus.
In R. Giacobazzi, J. Berdine, and I. Mastroeni, editors, Proc.
of the 14th Int. Conf. on Verification, Model Checking, and

22/25

http://hal.archives-ouvertes.fr/hal-01425305

Abstract Interpretation (VMCAI’13), volume 7737 of LNCS,
pages 1–12. Springer-Verlag, 2013.

D. Jovanović, C. Barrett, and L. de Moura.
The design and implementation of the model constructing
satisfiability calculus.
In Proc. of the 13th Int. Conf. on Formal Methods In
Computer-Aided Design (FMCAD ’13). FMCAD Inc., 2013.
Portland, Oregon

D. Jovanović and L. de Moura.
Solving non-linear arithmetic.
In B. Gramlich, D. Miller, and U. Sattler, editors, Proc. of the
6th Int. Joint Conf. on Automated Reasoning (IJCAR), volume
7364 of LNAI, pages 339–354. Springer, 2012.

D. Jovanovic.
Solving nonlinear integer arithmetic with MCSAT.

22/25

In A. Bouajjani and D. Monniaux, editors, Verification, Model
Checking, and Abstract Interpretation - 18th International
Conference, VMCAI 2017, Paris, France, January 15-17, 2017,
Proceedings, volume 10145 of LNCS, pages 330–346.
Springer-Verlag, 2017.

A. Zeljic, C. M. Wintersteiger, and P. Rümmer.
Deciding bit-vector formulas with mcsat.
In N. Creignou and D. L. Berre, editors, Theory and
Applications of Satisfiability Testing - SAT 2016 - 19th
International Conference, Bordeaux, France, July 5-8, 2016,
Proceedings, volume 9710 of Lecture Notes in Computer
Science, pages 249–266. Springer, 2016.

23/25

Messages and provability primitives
Implementing this in Psyche; each theory T can emit messages:

type _ message =
| Unsat : set -> unsat message
| Infer : set -> form -> infer message
| Sat : set -> sat message

Γ `T ⊥
Γ `T A
“T checks Γ”

module type Combo = sig
type ’b ans = [...]
val oracle : ’b message -> ’b ans
val resolve : infer ans -> unsat ans -> unsat ans
val curryfy : set -> unsat ans -> infer ans
[...]
end

23/25

Messages and provability primitives
Implementing this in Psyche; each theory T can emit messages:

type _ message =
| Unsat : set -> unsat message
| Infer : set -> form -> infer message
| Sat : set -> sat message

Γ `T ⊥
Γ `T A
“T checks Γ”

module type Combo = sig
type ’b ans = [...]
val oracle : ’b message -> ’b ans
val resolve : infer ans -> unsat ans -> unsat ans
val curryfy : set -> unsat ans -> infer ans
[...]
end

23/25

Messages and provability primitives
Implementing this in Psyche; each theory T can emit messages:

type _ message =
| Unsat : set -> unsat message
| Infer : set -> form -> infer message
| Sat : set -> sat message

Γ `T ⊥
Γ `T A
“T checks Γ”

module type Combo = sig
type ’b ans = [...]
val oracle : ’b message -> ’b ans
val resolve : infer ans -> unsat ans -> unsat ans
val curryfy : set -> unsat ans -> infer ans
[...]
end

oracle
Γ `T ⊥ Γ ` ⊥

23/25

Messages and provability primitives
Implementing this in Psyche; each theory T can emit messages:

type _ message =
| Unsat : set -> unsat message
| Infer : set -> form -> infer message
| Sat : set -> sat message

Γ `T ⊥
Γ `T A
“T checks Γ”

module type Combo = sig
type ’b ans = [...]
val oracle : ’b message -> ’b ans
val resolve : infer ans -> unsat ans -> unsat ans
val curryfy : set -> unsat ans -> infer ans
[...]
end

oracle
Γ `T A Γ ` A

23/25

Messages and provability primitives
Implementing this in Psyche; each theory T can emit messages:

type _ message =
| Unsat : set -> unsat message
| Infer : set -> form -> infer message
| Sat : set -> sat message

Γ `T ⊥
Γ `T A
“T checks Γ”

module type Combo = sig
type ’b ans = [...]
val oracle : ’b message -> ’b ans
val resolve : infer ans -> unsat ans -> unsat ans
val curryfy : set -> unsat ans -> infer ans
[...]
end

resolve

∆ ⊆ Γ
Γ′ ⊆ Γ

∆, l ` ⊥
Γ′ ` l

Γ `? ⊥

∆, l ` ⊥

∆ ∪ Γ′ ` ⊥23/25

Messages and provability primitives
Implementing this in Psyche; each theory T can emit messages:

type _ message =
| Unsat : set -> unsat message
| Infer : set -> form -> infer message
| Sat : set -> sat message

Γ `T ⊥
Γ `T A
“T checks Γ”

module type Combo = sig
type ’b ans = [...]
val oracle : ’b message -> ’b ans
val resolve : infer ans -> unsat ans -> unsat ans
val curryfy : set -> unsat ans -> infer ans
[...]
end

curryfy
Γ,A ` ⊥ Γ ` ¬A

23/25

Satisfiability primitives

[...]
val sat_init : set -> sat ans
val sat_combo: sat ans -> sat ans -> sat ans

sat_init Γ
records that satisfiability of Γ needs to be checked by all theories

sat_combo t1 t2
checks that the Γ in t1 and t2 match, then
theories that still need to check it

= intersection of those in t1 and t2

Here, “T checks Γ” means more than “Γ is T -satisfiable”.
It means “Γ entirely describes the T -model”.

When no more theories have to check satisfiability of Γ, we stop:
all theories have agreed on model

24/25

Satisfiability primitives

[...]
val sat_init : set -> sat ans
val sat_combo: sat ans -> sat ans -> sat ans

sat_init Γ
records that satisfiability of Γ needs to be checked by all theories

sat_combo t1 t2
checks that the Γ in t1 and t2 match, then
theories that still need to check it

= intersection of those in t1 and t2

Here, “T checks Γ” means more than “Γ is T -satisfiable”.
It means “Γ entirely describes the T -model”.

When no more theories have to check satisfiability of Γ, we stop:
all theories have agreed on model

24/25

Satisfiability primitives

[...]
val sat_init : set -> sat ans
val sat_combo: sat ans -> sat ans -> sat ans

sat_init Γ
records that satisfiability of Γ needs to be checked by all theories

sat_combo t1 t2
checks that the Γ in t1 and t2 match, then
theories that still need to check it

= intersection of those in t1 and t2

Here, “T checks Γ” means more than “Γ is T -satisfiable”.
It means “Γ entirely describes the T -model”.

When no more theories have to check satisfiability of Γ, we stop:
all theories have agreed on model

24/25

Satisfiability primitives

[...]
val sat_init : set -> sat ans
val sat_combo: sat ans -> sat ans -> sat ans

sat_init Γ
records that satisfiability of Γ needs to be checked by all theories

sat_combo t1 t2
checks that the Γ in t1 and t2 match, then
theories that still need to check it

= intersection of those in t1 and t2

Here, “T checks Γ” means more than “Γ is T -satisfiable”.
It means “Γ entirely describes the T -model”.

When no more theories have to check satisfiability of Γ, we stop:
all theories have agreed on model

24/25

Satisfiability primitives

[...]
val sat_init : set -> sat ans
val sat_combo: sat ans -> sat ans -> sat ans

sat_init Γ
records that satisfiability of Γ needs to be checked by all theories

sat_combo t1 t2
checks that the Γ in t1 and t2 match, then
theories that still need to check it

= intersection of those in t1 and t2

Here, “T checks Γ” means more than “Γ is T -satisfiable”.
It means “Γ entirely describes the T -model”.

When no more theories have to check satisfiability of Γ, we stop:
all theories have agreed on model

24/25

Trust

module type Combo = sig
type ’b ans = [...]
[...]
end

Type ’b ans is private to module Combo. . .
. . . like type theorem of the LCF architecture for theorem proving.

This guarantees correctness of answers. . .
1. . . . if module Combo is trusted
2. . . . if messages from the theories are trusted,

and regardless of the strategies used to drive the search.
Here, small steps for theory messages are highly desirable for (2.):
Easier to trust (or prove correct)
the code producing message (e < x), (x < e′) `LRA (e < e′)
than a full simplex code.

25/25

Trust

module type Combo = sig
type ’b ans = [...]
[...]
end

Type ’b ans is private to module Combo. . .
. . . like type theorem of the LCF architecture for theorem proving.
This guarantees correctness of answers. . .
1. . . . if module Combo is trusted
2. . . . if messages from the theories are trusted,

and regardless of the strategies used to drive the search.

Here, small steps for theory messages are highly desirable for (2.):
Easier to trust (or prove correct)
the code producing message (e < x), (x < e′) `LRA (e < e′)
than a full simplex code.

25/25

Trust

module type Combo = sig
type ’b ans = [...]
[...]
end

Type ’b ans is private to module Combo. . .
. . . like type theorem of the LCF architecture for theorem proving.
This guarantees correctness of answers. . .
1. . . . if module Combo is trusted
2. . . . if messages from the theories are trusted,

and regardless of the strategies used to drive the search.
Here, small steps for theory messages are highly desirable for (2.):
Easier to trust (or prove correct)
the code producing message (e < x), (x < e′) `LRA (e < e′)
than a full simplex code.

25/25

	A glance at MC-Sat
	MC-Sat mechanisms in our formal framework
	Properties of the calculus

