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A calculus rediscovered at least 6 times (in various forms)

(Sequent) Calculus for Intuitionistic Propositional Logic
® Vorob’ev in the 50s
® Hudelmaier (88)
Dyckhoff (90)
® Paulson (91)
® Lincoln-Scedrov-Shankar (91) (with a linear logic approach)
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Dyckhoff (90)

® Paulson (91)

® Lincoln-Scedrov-Shankar (91) (with a linear logic approach)
Called

¢ LJT by Hudelmaier and then Dyckhoff (T for “Terminating”,
nothing to do with LJT from the linear logic tradition),

® Gd4ip by Troelstra-Schwichtenberg.

® “Contraction-free sequent calculus”

® “(Hudelmaier’s) Depth-bounded sequent calculus”
Each time, the calculus comes up with slight variations
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“THE JOURNAL OF SYMBOLIC LOGIC
Volume 57, Number 3, Sept. 1992

CONTRACTION-FREE SEQUENT CALCULI
FOR INTUITIONISTIC LOGIC

ROY DYCKHOFF

§0. Prologue. Gentzen’s sequent calculus LJ, and its variants such as G3 [21],
are (as is well known) convenient as a basis for automating proof search for IPC
(intuitionistic propositional calculus). But a problem arises: that of detecting loops,
arising from the use (in reverse) of the rule >= for implication introduction on
the left. We describe below an equivalent calculus, yet another variant on these
systems, where the problem no longer arises: this gives a simple but effective
decision procedure for IPC.

The underlying method can be traced back forty years to Vorob'ev [33], [34].
It has been rediscovered recently by several authors (the present author in August
1990, Hudelmaier [18], [19], Paulson [27], and Lincoln et al. [23]). Since the
ea is not plainly apparent in Vorob’ev’s work, and there are mathematical
applications [28], it is desirable to have a simple proof. We present such a proof,
exploiting the Dershowtiz-Manna theorem [4] on multiset orderings.

§1. Introduction. Consider the task of constructing proofs in Gentzen’s se-
auent caleulus LT of intuitionistic seauents I' = G. where I is a set of assumntion
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Koen Claessen™) and Dan Rosén(™)
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Abstract. We present a new method for solving problems in intuition-
istic propositional logic, which involves the use of an incremental SAT-
solver. The method scales to very large problems, and fits well into an
SMT-based framework for interaction with other theories.

1 Introduction

Let us take a look at intuitionistic propositional logic. Tts syntax looks just like
cal propositional logic:

lq atoms
conjunction
| Arv Ay —- disjunction
| Ay — Ay — implication
| L|T -- false/true

However, its definition of truth is considerably weaker than for classical logic.
In Fig. 1, we show a Hilbert-style proof system for intuitionistic propositional
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Intuitionistic Sequent Calculus

FFA T-B TEA reB8 r,AFB

I+ AAB FAVB  THAVB TFA=B
ABTkFC ATHC BTFC

1L,TFC  (AAB),THC (AVB),T+-C

(C'=C),TFC’" C,TFD
(C'=C),TFD

a,lka
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FFA T-B rFA reB8 r,AFB

I+ AAB FAVB  THAVB TFA=B
ABTkFC ATHC BTFC

1L,TFC  (AAB),THC (AVB),T+-C

(C'=C),T+C" C,T+D
(C'=C),TFD

altka
Variant: atom a can be generalised as formula A (still sound)

In (at least one version of) LK, applying rules bottom-up removes at least one
connective (comparing a given premiss to the conclusion)
Makes root-first proof-search terminating.

In the above version of LJ, this is not true
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Gdip

r’FA B r-A reB rAFB
+AAB rFAVB  THAVB TFA=B
ABTkHC ATHC BTFC
1L,T-C  (AAB),THC (AVB),T+C
?
(C'=C),T+D

altka
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Gdip

rFA THB r-A reB rA-B
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Gdip

FFA TFB rFA re8 rAFB

r'=AANB r'-AvB r'=AvB r'-A=B
ABTEC ATHC BTEC

1L,TFC  (AAB),TFC (AVB),T+C

) (A=(B=C)),TFD (A=C),(B=C),I+D

(L=C),T+D ((AAB)=C),TFD  ((AVB)=C),T+D

C,a,ltD A (B=C),T+B C,T+D
(a=C),a,T+D ((A=B)=C),T+D
altka

® Obviously sound

e Complete? rule permutation argument (Dyckhoff’92,17), cut-elimination

(Dyckhoff-Negri’00, Dyckhoff-SGL-Kesner'06)

e Connection with focused seq. calculus LJQ (Dyckhoff-SGL06)

5/24



Good properties

® |n each rule, each premiss is “smaller” than the conclusion (for the
multiset order on the formulae present in the sequent)
= The height (aka depth) of proof-trees (for sequent I' - A) is bounded:
it is a “depth-bounded sequent calculus”.
= “Root-first proof-search” (Roy’s preferred terminology) terminates and
constitutes decision procedure for provability of IPL (only finitely many
trees of height < bound)

e Each rule is invertible (if the conclusion is provable then so are the
premisses), except (the V-right rules and)
A (B=C),T+B C,T+D

((A=B)=0C),T'+D

which is semi-invertible: if the conclusion is provable, then so is the right
premiss (the left premiss can be considered the side-condition of an
invertible 1-premiss rule)
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A generalised version of the semi-invertible rule

A, (B=C),T+B C,TFD

((A=B)=C),T+D
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((A=B)=C),T+D
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e |f n# 0, rule is not necessarily semi-invertible. Fixed.

® More problematic: with or without the fix, weight of premisses not
necessarily smaller than weight of conclusion. Depth-boundedness is
probably lost.

® |s it not a bad idea to use the cut-rule in proof-search?
How do we come up with ay, ..., a,?

: this generalisation sounds like a terrible idea.
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A generalised version of the semi-invertible rule

ai,...,an, A (B=C),T'FB ((A=B)=0C),(a1A---Nap=C),T D
((A=B)=C),T'+D

Recovering termination:

® Let'simpose (1) that (a1A - - - Aan=C) & T, otherwise the right premiss is
identical/equivalent to the conclusion.
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A generalised version of the semi-invertible rule

ai,...,an, A, (B=C),l+B ((A=B)=C),(a1A---Nan=C),T+D
((A=B)=C),T'+D

Recovering termination:
® Let'simpose (1) that (a1A - - - Aan=C) & T, otherwise the right premiss is
identical/equivalent to the conclusion.
® Using cuts in root-first proof-search is cumbersome
unless we have a magic trick to produce the cut-formula (here: the
ai,...,an)
® Let's impose (2) that ay, . .., a, are atoms present in the conclusion.
(1) and (2) recover termination (& preserve completeness).
Still, a lot of choices for {ay, ..., an}
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Restricting {ay, ..., an}

ai,...,an, A, (B=C),l+B ((A=B)=C),(aiA---Nan=C),T+D
((A=B)=C),T+D

Clearly, this rule is the most complex of the calculus, it branches and is only
semi-invertible.
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Restricting {ay, ..., an}

ai,...,an, A, (B=C),l+B ((A=B)=C),(aiA---Nan=C),T+D
(A=B)=C),T+D

Clearly, this rule is the most complex of the calculus, it branches and is only
semi-invertible.

= We probably want to apply it as a last resort, leaving formulae in I of the
form ((A=B)=-C) ignored for as long as we can.

Apply the other rules eagerly, trying to prove a sequent I' - d while ignoring
the formulae in I of the form ((A=B)=-C).

Who would do a better job at doing that?
...a SAT-solver!
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SAT-solvers are perfectly fine intuitionistic provers!

If they conclude that a bunch of clauses Cy, ..., C, is unsat,
they have established intuitionistic provability of Cy,...,CpF L.
...well, if each clause {a,...,an, b1,...,bn} is read as

(a1n---Aan)=(b1V -+ - Vbn)
instead of a1V - - V-a,VbiV - - - Vbn.
Indeed, SAT-solver would (implicitly or explicitly) produce a resolution proof of
Ci,...,ChH L
Resolution rule

Cvx C'v-x A=(Bvx) (AAx)=B
should be read as
cve (ANA)=(BVE)
which is perfectly sound in intuitionistic logic.
Even better: if they conclude that Cy, ..., Cs, —d is unsat, they have
established intuitionistic provability of Cy, ..., C, Fd.
: they are very good intuitionistic provers

... but are limited to proving sequents of that form.
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Preprocessing

It's the preprocess that implements “every formula F can be transformed into
an equisatisfiable® CNF CiA - - - ACy”
that uses classical reasoning. " FELiff CyA---AChF L
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Preprocessing

It's the preprocess that implements “every formula F can be transformed into
an equisatisfiable® CNF CiA - - - ACy”

that uses classical reasoning. " FELiff CyA---AChF L
In the intuitionistic case, every formula F can be transformed into an
(intuitionistically) equiprovable sequent limp, Miat F d with

® d an atom
® [+ made of flat clauses: (a1A---Nan)=(b1V -+ - Vbm)
* mp made of implication clauses:  ((a=b)=-c)

Idea for proof-search:

e flat clauses are treated eagerly,
to see if, by chance, Iy - d is provable,
using e.g., a SAT-solver.

® implication clauses treated lazily,
using the (generalised) G4ip rule.
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Roy Dyckhoff’s 1992 paper

§9. Related work. Vorob'ev [33], [34] described a decision algorithm for IPC
based on similar considerations. The present article may be regarded in part as a
restatement of this relatively ancient Soviet work: it is offered however as a clarifica-
tion and simplification, in the knowledge that the technique is now being reinvented
and exploited. The sequent calculus lying behind Vorob’ev’s algorithm in [34] is
concealed by the pre-processing of sequents into a normal form (using the
distributive laws); his algorithm also takes advantage of the equivalence (for negated
goals) of the intuitionistic decision problem with the classical one. See [25] for a
summary of some of the related Soviet work.
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Preprocessing: how?
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recursively introduce names for A and for B to get flat clause (cAa)=b
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Note 1: transformation only preserves satisfiability/provability

Note 2: Introducing names can be done more sparingly using some of the
other G4ip rules for normalisation

(basically, the invertible non-branching ones)

Note 3: some of these rules were already presented by Vorob’ev in the form
of pre-processing
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With pre-processing the rule becomes

Cimp> @1, - - -, @n, &, (b=c), Tz F b ((a=b)=-¢), Timp, (@11 - -

-Aan=¢), Mgt F d

((a=b)=c), Timp, Miat Fd
with a,c & {ai,...,an} and (a1A - - - Aan=C) & Tat

Remarks:

® added formulae are all flat clauses
(SAT-solver is good at treating increments)

® Imp Never increases throughout proof-search,
it actually decreases by 1 in the left branch

® proofs have a

and you cannot per3|stently climb up the left branches more times than

the number of implication clauses

e thinking in terms of root-first proof-search, implemented recursively, the
right premiss really corresponds to a tail call (i.e., a while loop)
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The spine shape describes a traditional SMT algorithm: DPLL(T).
Theory T is that of “intuitionistic entailment”

Unsat(...,ai,...,an,ak b)

Theory lemma defeating M
T aiA--- Nan=c

(knows Timp)

SAT-solver

Model M

... except the “theory reasoning” that understands Iimp

recursively relies on general provability.

And finally! we have the magic trick to pick {as, ..., an}:

those atoms interpreted as true in M that were useful to prove ...ak b
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so as to “defeat” its classical model M, effectively applying rule

rﬁnp7a17"' aaﬂ7a7(b::>c)’rﬂalk-b rhnp,(31/\"'/\an:>c)’rﬂalk'd
rimp» rflat Fd
Then go back to the SAT-solver (1.)

Note: by construction, the learnt clause could not already be in 'y, otherwise
the SAT solver would not have proposed model M

If you run out of implication clauses in 2.: your sequent is unprovable.
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Recursivity

Is the recursive nature of the general algorithm necessary?
Could we not have one big SMT-solving run?
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rimpv rflat Fd
The recursivity is about climbing into the left premiss.
A SAT-solver has an internal learning mechanism.
It would be good if whatever is learnt by the SAT-solver of the recursive call
could be shared with the SAT-solver of the caller.
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rimp7 rflat Fd

The recursivity is about climbing into the left premiss.
A SAT-solver has an internal learning mechanism.
It would be good if whatever is learnt by the SAT-solver of the recursive call
could be shared with the SAT-solver of the caller.
So what really changes between the SAT-solver of the caller and that of the
callee? Mostly:

e the addition of a

¢ the addition of —-b

® most most most importantly: the removal of —d

The SAT-solver of the callee is not allowed to exploit —d to get UNSAT
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Recursivity

Actually:

e Claessen and Dosén actually reuse the same SAT-solver for the
recursive call. They use an incremental SAT-solver, where you can push
and pop literals.

Here: popping —d, pushing a, —b, so that what is learnt from each run
(by the standard learning mechanisms of SAT-solving) is shared
between the different runs.

18/24



Recursivity

Actually:

e Claessen and Dosén actually reuse the same SAT-solver for the
recursive call. They use an incremental SAT-solver, where you can push
and pop literals.

Here: popping —d, pushing a, —b, so that what is learnt from each run
(by the standard learning mechanisms of SAT-solving) is shared
between the different runs.

® For this, you have to make sure the theory lemma aiA - - - Aap=-cCis
derivable from the input problem alone (irrespective of the pushed and
popped literals).

18/24



Recursivity

Actually:

e Claessen and Dosén actually reuse the same SAT-solver for the
recursive call. They use an incremental SAT-solver, where you can push
and pop literals.

Here: popping —d, pushing a, —b, so that what is learnt from each run
(by the standard learning mechanisms of SAT-solving) is shared
between the different runs.

® For this, you have to make sure the theory lemma aiA - - - Aap=-cCis
derivable from the input problem alone (irrespective of the pushed and
popped literals).

In any case, popping —d is not part of the main algorithm of the SAT-solver
(DPLL/CDCL)

18/24



Recursivity

Actually:

e Claessen and Dosén actually reuse the same SAT-solver for the
recursive call. They use an incremental SAT-solver, where you can push
and pop literals.

Here: popping —d, pushing a, —b, so that what is learnt from each run
(by the standard learning mechanisms of SAT-solving) is shared
between the different runs.

® For this, you have to make sure the theory lemma a;A - - - Aap=cC is
derivable from the input problem alone (irrespective of the pushed and
popped literals).
In any case, popping —d is not part of the main algorithm of the SAT-solver
(DPLL/CDCL)

This method provides what is probably the fastest prover for IPL (at least in
2015)
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How to account for learned clauses proof-theoretically?

More precisely:
those clauses that are discovered while proving a subgoal, and possibly
reused later?
¢ In [GL13, GL14], | described them in terms of memoisation of root-first
proof search
® In [FGLM13, GL14] as well as this paper, we described them in terms of
cuts
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® an axiom rule that captures any resolution proof (valid in inituitionstic logic)
returned by the SAT-solver;
® in case of failure, it builds a Kripke counter-model of the sequent
® with explicit worlds: sequences of implication clauses
® when applying the the generalised =--left rule:

Cimp» @15+ » @, 8 (b=C), Tnat kb Timp, (1A -+~ Nan=¢), T - d

rimp: IMfiat Fd

going into the left premiss means “pick a world above w where ais true but
b is false, then try to find a contradiction from there”.

This also provides a constructive proof of the completeness of the
approach.
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intuitionistic version of DPLL?

An “intuitionistic DPLL’ would have to integrate some mechanism
equivalent to making —d unusable in (the part of the computation
corresponding to) the recursive call.

2. Could we bypass the preprocessing and directly work on the input
formulae?

3. Could we use SMT-solving’s quantifier instantiation techniques to
generalise this to first-order?
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ai,...,an A, (B=C),T+B ((A=B)=C), (a1A--- Nap=C),T+D

((A=B)=C),T+D
Remark: the more a;’s there are, the weaker the new hypothesis in the right
premiss = Take {a,...,an} as small as possible (if need be: post-process
the proof to remove the a;’s that were not used)

e if Cis one of the a;: uninteresting
e if Ais one of the a;: uninteresting (that a; can be removed)

e if Bis one of the a;: left premiss trivial to prove, & no other a; needed.
Interesting inasmuch it implements the rule

((A=B)=0),(B=C),[ D

(A=B)=C),T+D
(which we could have separately)

(B=C)¢rT
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Restricting {ay, ..., an}

ai,...,an A, (B=C),T+B ((A=B)=C), (a1A--- Nap=C),T+D

((A=B)=C),T+D
Remark: the more a;’s there are, the weaker the new hypothesis in the right
premiss = Take {a,...,an} as small as possible (if need be: post-process
the proof to remove the a;’s that were not used)

e if Cis one of the a;: uninteresting
e if Ais one of the a;: uninteresting (that a; can be removed)

e if Bis one of the a;: left premiss trivial to prove, & no other a; needed.
Interesting inasmuch it implements the rule

((A=B)=0C),(B=C),T+D
(A=B)=C),T+D
(which we could have separately)
Then what?

(B=C)¢rT
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