
A proof-theoretic perspective on SMT-solving for
intuitionistic propositional logic

Camillo Fiorentini, Rajeev Goré and Stéphane Graham-Lengrand

TABLEAUX’19, 4th September 2019

1 / 24



A calculus rediscovered at least 6 times (in various forms)

(Sequent) Calculus for Intuitionistic Propositional Logic
• Vorob’ev in the 50s
• Hudelmaier (88)
• Dyckhoff (90)
• Paulson (91)
• Lincoln-Scedrov-Shankar (91) (with a linear logic approach)

Called
• LJT by Hudelmaier and then Dyckhoff (T for “Terminating”,

nothing to do with LJT from the linear logic tradition),
• G4ip by Troelstra-Schwichtenberg.
• “Contraction-free sequent calculus”
• “(Hudelmaier’s) Depth-bounded sequent calculus”

Each time, the calculus comes up with slight variations

2 / 24



A calculus rediscovered at least 6 times (in various forms)

(Sequent) Calculus for Intuitionistic Propositional Logic
• Vorob’ev in the 50s
• Hudelmaier (88)
• Dyckhoff (90)
• Paulson (91)
• Lincoln-Scedrov-Shankar (91) (with a linear logic approach)

Called
• LJT by Hudelmaier and then Dyckhoff (T for “Terminating”,

nothing to do with LJT from the linear logic tradition),
• G4ip by Troelstra-Schwichtenberg.
• “Contraction-free sequent calculus”
• “(Hudelmaier’s) Depth-bounded sequent calculus”

Each time, the calculus comes up with slight variations

2 / 24



A calculus rediscovered at least 6 times (in various forms)

(Sequent) Calculus for Intuitionistic Propositional Logic
• Vorob’ev in the 50s
• Hudelmaier (88)
• Dyckhoff (90)
• Paulson (91)
• Lincoln-Scedrov-Shankar (91) (with a linear logic approach)

Called
• LJT by Hudelmaier and then Dyckhoff (T for “Terminating”,

nothing to do with LJT from the linear logic tradition),
• G4ip by Troelstra-Schwichtenberg.
• “Contraction-free sequent calculus”
• “(Hudelmaier’s) Depth-bounded sequent calculus”

Each time, the calculus comes up with slight variations

2 / 24



3 / 24



3 / 24



Intuitionistic Sequent Calculus

Γ `̀̀ A Γ `̀̀ B

Γ `̀̀ A∧B

Γ `̀̀ A

Γ `̀̀ A∨B

Γ `̀̀ B

Γ `̀̀ A∨B

Γ,A `̀̀ B

Γ `̀̀ A⇒B

⊥, Γ `̀̀ C

A,B, Γ `̀̀ C

(A∧B), Γ `̀̀ C

A, Γ `̀̀ C B, Γ `̀̀ C

(A∨B), Γ `̀̀ C

(C′⇒C), Γ `̀̀ C′ C, Γ `̀̀ D

(C′⇒C), Γ `̀̀ D

a, Γ `̀̀ a

Variant: atom a can be generalised as formula A (still sound)

In (at least one version of) LK, applying rules bottom-up removes at least one
connective (comparing a given premiss to the conclusion)
Makes root-first proof-search terminating.

In the above version of LJ, this is not true

4 / 24



Intuitionistic Sequent Calculus

Γ `̀̀ A Γ `̀̀ B

Γ `̀̀ A∧B

Γ `̀̀ A

Γ `̀̀ A∨B

Γ `̀̀ B

Γ `̀̀ A∨B

Γ,A `̀̀ B

Γ `̀̀ A⇒B

⊥, Γ `̀̀ C

A,B, Γ `̀̀ C

(A∧B), Γ `̀̀ C

A, Γ `̀̀ C B, Γ `̀̀ C

(A∨B), Γ `̀̀ C

(C′⇒C), Γ `̀̀ C′ C, Γ `̀̀ D

(C′⇒C), Γ `̀̀ D

a, Γ `̀̀ a

Variant: atom a can be generalised as formula A (still sound)

In (at least one version of) LK, applying rules bottom-up removes at least one
connective (comparing a given premiss to the conclusion)
Makes root-first proof-search terminating.

In the above version of LJ, this is not true

4 / 24



Intuitionistic Sequent Calculus

Γ `̀̀ A Γ `̀̀ B

Γ `̀̀ A∧B

Γ `̀̀ A

Γ `̀̀ A∨B

Γ `̀̀ B

Γ `̀̀ A∨B

Γ,A `̀̀ B

Γ `̀̀ A⇒B

⊥, Γ `̀̀ C

A,B, Γ `̀̀ C

(A∧B), Γ `̀̀ C

A, Γ `̀̀ C B, Γ `̀̀ C

(A∨B), Γ `̀̀ C

(C′⇒C), Γ `̀̀ C′ C, Γ `̀̀ D

(C′⇒C), Γ `̀̀ D

a, Γ `̀̀ a

Variant: atom a can be generalised as formula A (still sound)

In (at least one version of) LK, applying rules bottom-up removes at least one
connective (comparing a given premiss to the conclusion)
Makes root-first proof-search terminating.

In the above version of LJ, this is not true

4 / 24



Intuitionistic Sequent Calculus

Γ `̀̀ A Γ `̀̀ B

Γ `̀̀ A∧B

Γ `̀̀ A

Γ `̀̀ A∨B

Γ `̀̀ B

Γ `̀̀ A∨B

Γ,A `̀̀ B

Γ `̀̀ A⇒B

⊥, Γ `̀̀ C

A,B, Γ `̀̀ C

(A∧B), Γ `̀̀ C

A, Γ `̀̀ C B, Γ `̀̀ C

(A∨B), Γ `̀̀ C

(C′⇒C), Γ `̀̀ C′ C, Γ `̀̀ D

(C′⇒C), Γ `̀̀ D

a, Γ `̀̀ a

Variant: atom a can be generalised as formula A (still sound)

In (at least one version of) LK, applying rules bottom-up removes at least one
connective (comparing a given premiss to the conclusion)
Makes root-first proof-search terminating.

In the above version of LJ, this is not true

4 / 24



G4ip

Γ `̀̀ A Γ `̀̀ B

Γ `̀̀ A∧B

Γ `̀̀ A

Γ `̀̀ A∨B

Γ `̀̀ B

Γ `̀̀ A∨B

Γ,A `̀̀ B

Γ `̀̀ A⇒B

⊥, Γ `̀̀ C

A,B, Γ `̀̀ C

(A∧B), Γ `̀̀ C

A, Γ `̀̀ C B, Γ `̀̀ C

(A∨B), Γ `̀̀ C

?

(C′⇒C), Γ `̀̀ D

a, Γ `̀̀ a

• Obviously sound
• Complete? rule permutation argument (Dyckhoff’92,’17), cut-elimination

(Dyckhoff-Negri’00, Dyckhoff-SGL-Kesner’06)
• Connection with focused seq. calculus LJQ (Dyckhoff-SGL’06)

5 / 24



G4ip

Γ `̀̀ A Γ `̀̀ B

Γ `̀̀ A∧B

Γ `̀̀ A

Γ `̀̀ A∨B

Γ `̀̀ B

Γ `̀̀ A∨B

Γ,A `̀̀ B

Γ `̀̀ A⇒B

⊥, Γ `̀̀ C

A,B, Γ `̀̀ C

(A∧B), Γ `̀̀ C

A, Γ `̀̀ C B, Γ `̀̀ C

(A∨B), Γ `̀̀ C

Γ `̀̀ D

(⊥⇒C), Γ `̀̀ D

(A⇒(B⇒C)), Γ `̀̀ D

((A∧B)⇒C), Γ `̀̀ D

(A⇒C), (B⇒C), Γ `̀̀ D

((A∨B)⇒C), Γ `̀̀ D

C, a, Γ `̀̀ D

(a⇒C), a, Γ `̀̀ D

A, (B⇒C), Γ `̀̀ B C, Γ `̀̀ D

((A⇒B)⇒C), Γ `̀̀ D

a, Γ `̀̀ a

• Obviously sound
• Complete? rule permutation argument (Dyckhoff’92,’17), cut-elimination

(Dyckhoff-Negri’00, Dyckhoff-SGL-Kesner’06)
• Connection with focused seq. calculus LJQ (Dyckhoff-SGL’06)

5 / 24



G4ip

Γ `̀̀ A Γ `̀̀ B

Γ `̀̀ A∧B

Γ `̀̀ A

Γ `̀̀ A∨B

Γ `̀̀ B

Γ `̀̀ A∨B

Γ,A `̀̀ B

Γ `̀̀ A⇒B

⊥, Γ `̀̀ C

A,B, Γ `̀̀ C

(A∧B), Γ `̀̀ C

A, Γ `̀̀ C B, Γ `̀̀ C

(A∨B), Γ `̀̀ C

Γ `̀̀ D

(⊥⇒C), Γ `̀̀ D

(A⇒(B⇒C)), Γ `̀̀ D

((A∧B)⇒C), Γ `̀̀ D

(A⇒C), (B⇒C), Γ `̀̀ D

((A∨B)⇒C), Γ `̀̀ D

C, a, Γ `̀̀ D

(a⇒C), a, Γ `̀̀ D

A, (B⇒C), Γ `̀̀ B C, Γ `̀̀ D

((A⇒B)⇒C), Γ `̀̀ D

a, Γ `̀̀ a

• Obviously sound
• Complete? rule permutation argument (Dyckhoff’92,’17), cut-elimination

(Dyckhoff-Negri’00, Dyckhoff-SGL-Kesner’06)
• Connection with focused seq. calculus LJQ (Dyckhoff-SGL’06)

5 / 24



G4ip

Γ `̀̀ A Γ `̀̀ B

Γ `̀̀ A∧B

Γ `̀̀ A

Γ `̀̀ A∨B

Γ `̀̀ B

Γ `̀̀ A∨B

Γ,A `̀̀ B

Γ `̀̀ A⇒B

⊥, Γ `̀̀ C

A,B, Γ `̀̀ C

(A∧B), Γ `̀̀ C

A, Γ `̀̀ C B, Γ `̀̀ C

(A∨B), Γ `̀̀ C

Γ `̀̀ D

(⊥⇒C), Γ `̀̀ D

(A⇒(B⇒C)), Γ `̀̀ D

((A∧B)⇒C), Γ `̀̀ D

(A⇒C), (B⇒C), Γ `̀̀ D

((A∨B)⇒C), Γ `̀̀ D

C, a, Γ `̀̀ D

(a⇒C), a, Γ `̀̀ D

A, (B⇒C), Γ `̀̀ B C, Γ `̀̀ D

((A⇒B)⇒C), Γ `̀̀ D

a, Γ `̀̀ a

• Obviously sound
• Complete? rule permutation argument (Dyckhoff’92,’17), cut-elimination

(Dyckhoff-Negri’00, Dyckhoff-SGL-Kesner’06)
• Connection with focused seq. calculus LJQ (Dyckhoff-SGL’06)

5 / 24



G4ip

Γ `̀̀ A Γ `̀̀ B

Γ `̀̀ A∧B

Γ `̀̀ A

Γ `̀̀ A∨B

Γ `̀̀ B

Γ `̀̀ A∨B

Γ,A `̀̀ B

Γ `̀̀ A⇒B

⊥, Γ `̀̀ C

A,B, Γ `̀̀ C

(A∧B), Γ `̀̀ C

A, Γ `̀̀ C B, Γ `̀̀ C

(A∨B), Γ `̀̀ C

Γ `̀̀ D

(⊥⇒C), Γ `̀̀ D

(A⇒(B⇒C)), Γ `̀̀ D

((A∧B)⇒C), Γ `̀̀ D

(A⇒C), (B⇒C), Γ `̀̀ D

((A∨B)⇒C), Γ `̀̀ D

C, a, Γ `̀̀ D

(a⇒C), a, Γ `̀̀ D

A, (B⇒C), Γ `̀̀ B C, Γ `̀̀ D

((A⇒B)⇒C), Γ `̀̀ D

a, Γ `̀̀ a

• Obviously sound
• Complete? rule permutation argument (Dyckhoff’92,’17), cut-elimination

(Dyckhoff-Negri’00, Dyckhoff-SGL-Kesner’06)
• Connection with focused seq. calculus LJQ (Dyckhoff-SGL’06)

5 / 24



G4ip

Γ `̀̀ A Γ `̀̀ B

Γ `̀̀ A∧B

Γ `̀̀ A

Γ `̀̀ A∨B

Γ `̀̀ B

Γ `̀̀ A∨B

Γ,A `̀̀ B

Γ `̀̀ A⇒B

⊥, Γ `̀̀ C

A,B, Γ `̀̀ C

(A∧B), Γ `̀̀ C

A, Γ `̀̀ C B, Γ `̀̀ C

(A∨B), Γ `̀̀ C

Γ `̀̀ D

(⊥⇒C), Γ `̀̀ D

(A⇒(B⇒C)), Γ `̀̀ D

((A∧B)⇒C), Γ `̀̀ D

(A⇒C), (B⇒C), Γ `̀̀ D

((A∨B)⇒C), Γ `̀̀ D

C, a, Γ `̀̀ D

(a⇒C), a, Γ `̀̀ D

A, (B⇒C), Γ `̀̀ B C, Γ `̀̀ D

((A⇒B)⇒C), Γ `̀̀ D

a, Γ `̀̀ a

• Obviously sound
• Complete? rule permutation argument (Dyckhoff’92,’17), cut-elimination

(Dyckhoff-Negri’00, Dyckhoff-SGL-Kesner’06)
• Connection with focused seq. calculus LJQ (Dyckhoff-SGL’06)

5 / 24



G4ip

Γ `̀̀ A Γ `̀̀ B

Γ `̀̀ A∧B

Γ `̀̀ A

Γ `̀̀ A∨B

Γ `̀̀ B

Γ `̀̀ A∨B

Γ,A `̀̀ B

Γ `̀̀ A⇒B

⊥, Γ `̀̀ C

A,B, Γ `̀̀ C

(A∧B), Γ `̀̀ C

A, Γ `̀̀ C B, Γ `̀̀ C

(A∨B), Γ `̀̀ C

Γ `̀̀ D

(⊥⇒C), Γ `̀̀ D

(A⇒(B⇒C)), Γ `̀̀ D

((A∧B)⇒C), Γ `̀̀ D

(A⇒C), (B⇒C), Γ `̀̀ D

((A∨B)⇒C), Γ `̀̀ D

C, a, Γ `̀̀ D

(a⇒C), a, Γ `̀̀ D

A, (B⇒C), Γ `̀̀ B C, Γ `̀̀ D

((A⇒B)⇒C), Γ `̀̀ D

a, Γ `̀̀ a

• Obviously sound

• Complete? rule permutation argument (Dyckhoff’92,’17), cut-elimination
(Dyckhoff-Negri’00, Dyckhoff-SGL-Kesner’06)
• Connection with focused seq. calculus LJQ (Dyckhoff-SGL’06)

5 / 24



G4ip

Γ `̀̀ A Γ `̀̀ B

Γ `̀̀ A∧B

Γ `̀̀ A

Γ `̀̀ A∨B

Γ `̀̀ B

Γ `̀̀ A∨B

Γ,A `̀̀ B

Γ `̀̀ A⇒B

⊥, Γ `̀̀ C

A,B, Γ `̀̀ C

(A∧B), Γ `̀̀ C

A, Γ `̀̀ C B, Γ `̀̀ C

(A∨B), Γ `̀̀ C

Γ `̀̀ D

(⊥⇒C), Γ `̀̀ D

(A⇒(B⇒C)), Γ `̀̀ D

((A∧B)⇒C), Γ `̀̀ D

(A⇒C), (B⇒C), Γ `̀̀ D

((A∨B)⇒C), Γ `̀̀ D

C, a, Γ `̀̀ D

(a⇒C), a, Γ `̀̀ D

A, (B⇒C), Γ `̀̀ B C, Γ `̀̀ D

((A⇒B)⇒C), Γ `̀̀ D

a, Γ `̀̀ a

• Obviously sound
• Complete?

rule permutation argument (Dyckhoff’92,’17), cut-elimination
(Dyckhoff-Negri’00, Dyckhoff-SGL-Kesner’06)
• Connection with focused seq. calculus LJQ (Dyckhoff-SGL’06)

5 / 24



G4ip

Γ `̀̀ A Γ `̀̀ B

Γ `̀̀ A∧B

Γ `̀̀ A

Γ `̀̀ A∨B

Γ `̀̀ B

Γ `̀̀ A∨B

Γ,A `̀̀ B

Γ `̀̀ A⇒B

⊥, Γ `̀̀ C

A,B, Γ `̀̀ C

(A∧B), Γ `̀̀ C

A, Γ `̀̀ C B, Γ `̀̀ C

(A∨B), Γ `̀̀ C

Γ `̀̀ D

(⊥⇒C), Γ `̀̀ D

(A⇒(B⇒C)), Γ `̀̀ D

((A∧B)⇒C), Γ `̀̀ D

(A⇒C), (B⇒C), Γ `̀̀ D

((A∨B)⇒C), Γ `̀̀ D

C, a, Γ `̀̀ D

(a⇒C), a, Γ `̀̀ D

A, (B⇒C), Γ `̀̀ B C, Γ `̀̀ D

((A⇒B)⇒C), Γ `̀̀ D

a, Γ `̀̀ a

• Obviously sound
• Complete? rule permutation argument (Dyckhoff’92,’17), cut-elimination

(Dyckhoff-Negri’00, Dyckhoff-SGL-Kesner’06)
• Connection with focused seq. calculus LJQ (Dyckhoff-SGL’06)

5 / 24



Good properties

• In each rule, each premiss is “smaller” than the conclusion (for the
multiset order on the formulae present in the sequent)
⇒ The height (aka depth) of proof-trees (for sequent Γ `̀̀ A) is bounded:
it is a “depth-bounded sequent calculus”.
⇒ “Root-first proof-search” (Roy’s preferred terminology) terminates and
constitutes decision procedure for provability of IPL (only finitely many
trees of height ≤ bound)
• Each rule is invertible (if the conclusion is provable then so are the

premisses), except (the ∨-right rules and)
A, (B⇒C), Γ `̀̀ B C, Γ `̀̀ D

((A⇒B)⇒C), Γ `̀̀ D

which is semi-invertible: if the conclusion is provable, then so is the right
premiss (the left premiss can be considered the side-condition of an
invertible 1-premiss rule)

6 / 24



A generalised version of the semi-invertible rule

a1, . . . , an,

A, (B⇒C), Γ `̀̀ B

((A⇒B)⇒C),(a1∧ · · · ∧an⇒

C

)

, Γ `̀̀ D

((A⇒B)⇒C), Γ `̀̀ D

Still sound. Derivable with a cut:

a1, . . . , an,A, (B⇒C), Γ `̀̀ B C, a1, . . . , an, Γ `̀̀ C

a1, . . . , an, ((A⇒B)⇒C), Γ `̀̀ C

((A⇒B)⇒C), Γ `̀̀ a1∧ · · · ∧an⇒C

((A⇒B)⇒C),

(a1∧ · · · ∧an⇒C), Γ `̀̀ D

((A⇒B)⇒C), Γ `̀̀ D

Remarks:
• If n 6= 0, rule is not necessarily semi-invertible. Fixed.
• More problematic: with or without the fix, weight of premisses not

necessarily smaller than weight of conclusion. Depth-boundedness is
probably lost.
• Is it not a bad idea to use the cut-rule in proof-search?

How do we come up with a1, . . . , an?

In conclusion: this generalisation sounds like a terrible idea.

7 / 24



A generalised version of the semi-invertible rule

a1, . . . , an, A, (B⇒C), Γ `̀̀ B

((A⇒B)⇒C),

(a1∧ · · · ∧an⇒C), Γ `̀̀ D

((A⇒B)⇒C), Γ `̀̀ D

Still sound.

Derivable with a cut:

a1, . . . , an,A, (B⇒C), Γ `̀̀ B C, a1, . . . , an, Γ `̀̀ C

a1, . . . , an, ((A⇒B)⇒C), Γ `̀̀ C

((A⇒B)⇒C), Γ `̀̀ a1∧ · · · ∧an⇒C

((A⇒B)⇒C),

(a1∧ · · · ∧an⇒C), Γ `̀̀ D

((A⇒B)⇒C), Γ `̀̀ D

Remarks:
• If n 6= 0, rule is not necessarily semi-invertible. Fixed.
• More problematic: with or without the fix, weight of premisses not

necessarily smaller than weight of conclusion. Depth-boundedness is
probably lost.
• Is it not a bad idea to use the cut-rule in proof-search?

How do we come up with a1, . . . , an?

In conclusion: this generalisation sounds like a terrible idea.

7 / 24



A generalised version of the semi-invertible rule

a1, . . . , an, A, (B⇒C), Γ `̀̀ B

((A⇒B)⇒C),

(a1∧ · · · ∧an⇒C), Γ `̀̀ D

((A⇒B)⇒C), Γ `̀̀ D

Still sound. Derivable with a cut:

a1, . . . , an,A, (B⇒C), Γ `̀̀ B C, a1, . . . , an, Γ `̀̀ C

a1, . . . , an, ((A⇒B)⇒C), Γ `̀̀ C

((A⇒B)⇒C), Γ `̀̀ a1∧ · · · ∧an⇒C

((A⇒B)⇒C),

(a1∧ · · · ∧an⇒C), Γ `̀̀ D

((A⇒B)⇒C), Γ `̀̀ D

Remarks:
• If n 6= 0, rule is not necessarily semi-invertible. Fixed.
• More problematic: with or without the fix, weight of premisses not

necessarily smaller than weight of conclusion. Depth-boundedness is
probably lost.
• Is it not a bad idea to use the cut-rule in proof-search?

How do we come up with a1, . . . , an?

In conclusion: this generalisation sounds like a terrible idea.

7 / 24



A generalised version of the semi-invertible rule

a1, . . . , an, A, (B⇒C), Γ `̀̀ B

((A⇒B)⇒C),

(a1∧ · · · ∧an⇒C), Γ `̀̀ D

((A⇒B)⇒C), Γ `̀̀ D

Still sound. Derivable with a cut:

a1, . . . , an,A, (B⇒C), Γ `̀̀ B C, a1, . . . , an, Γ `̀̀ C

a1, . . . , an, ((A⇒B)⇒C), Γ `̀̀ C

((A⇒B)⇒C), Γ `̀̀ a1∧ · · · ∧an⇒C

((A⇒B)⇒C),

(a1∧ · · · ∧an⇒C), Γ `̀̀ D

((A⇒B)⇒C), Γ `̀̀ D

Remarks:
• If n 6= 0, rule is not necessarily semi-invertible.

Fixed.
• More problematic: with or without the fix, weight of premisses not

necessarily smaller than weight of conclusion. Depth-boundedness is
probably lost.
• Is it not a bad idea to use the cut-rule in proof-search?

How do we come up with a1, . . . , an?

In conclusion: this generalisation sounds like a terrible idea.

7 / 24



A generalised version of the semi-invertible rule

a1, . . . , an, A, (B⇒C), Γ `̀̀ B ((A⇒B)⇒C),(a1∧ · · · ∧an⇒C), Γ `̀̀ D

((A⇒B)⇒C), Γ `̀̀ D

Still sound. Derivable with a cut:

a1, . . . , an,A, (B⇒C), Γ `̀̀ B C, a1, . . . , an, Γ `̀̀ C

a1, . . . , an, ((A⇒B)⇒C), Γ `̀̀ C

((A⇒B)⇒C), Γ `̀̀ a1∧ · · · ∧an⇒C ((A⇒B)⇒C),(a1∧ · · · ∧an⇒C), Γ `̀̀ D

((A⇒B)⇒C), Γ `̀̀ D

Remarks:
• If n 6= 0, rule is not necessarily semi-invertible. Fixed.

• More problematic: with or without the fix, weight of premisses not
necessarily smaller than weight of conclusion. Depth-boundedness is
probably lost.
• Is it not a bad idea to use the cut-rule in proof-search?

How do we come up with a1, . . . , an?

In conclusion: this generalisation sounds like a terrible idea.

7 / 24



A generalised version of the semi-invertible rule

a1, . . . , an, A, (B⇒C), Γ `̀̀ B ((A⇒B)⇒C),(a1∧ · · · ∧an⇒C), Γ `̀̀ D

((A⇒B)⇒C), Γ `̀̀ D

Still sound. Derivable with a cut:

a1, . . . , an,A, (B⇒C), Γ `̀̀ B C, a1, . . . , an, Γ `̀̀ C

a1, . . . , an, ((A⇒B)⇒C), Γ `̀̀ C

((A⇒B)⇒C), Γ `̀̀ a1∧ · · · ∧an⇒C ((A⇒B)⇒C),(a1∧ · · · ∧an⇒C), Γ `̀̀ D

((A⇒B)⇒C), Γ `̀̀ D

Remarks:
• If n 6= 0, rule is not necessarily semi-invertible. Fixed.
• More problematic: with or without the fix, weight of premisses not

necessarily smaller than weight of conclusion. Depth-boundedness is
probably lost.

• Is it not a bad idea to use the cut-rule in proof-search?
How do we come up with a1, . . . , an?

In conclusion: this generalisation sounds like a terrible idea.

7 / 24



A generalised version of the semi-invertible rule

a1, . . . , an, A, (B⇒C), Γ `̀̀ B ((A⇒B)⇒C),(a1∧ · · · ∧an⇒C), Γ `̀̀ D

((A⇒B)⇒C), Γ `̀̀ D

Still sound. Derivable with a cut:

a1, . . . , an,A, (B⇒C), Γ `̀̀ B C, a1, . . . , an, Γ `̀̀ C

a1, . . . , an, ((A⇒B)⇒C), Γ `̀̀ C

((A⇒B)⇒C), Γ `̀̀ a1∧ · · · ∧an⇒C ((A⇒B)⇒C),(a1∧ · · · ∧an⇒C), Γ `̀̀ D

((A⇒B)⇒C), Γ `̀̀ D

Remarks:
• If n 6= 0, rule is not necessarily semi-invertible. Fixed.
• More problematic: with or without the fix, weight of premisses not

necessarily smaller than weight of conclusion. Depth-boundedness is
probably lost.
• Is it not a bad idea to use the cut-rule in proof-search?

How do we come up with a1, . . . , an?

In conclusion: this generalisation sounds like a terrible idea.

7 / 24



A generalised version of the semi-invertible rule

a1, . . . , an, A, (B⇒C), Γ `̀̀ B ((A⇒B)⇒C),(a1∧ · · · ∧an⇒C), Γ `̀̀ D

((A⇒B)⇒C), Γ `̀̀ D

Still sound. Derivable with a cut:

a1, . . . , an,A, (B⇒C), Γ `̀̀ B C, a1, . . . , an, Γ `̀̀ C

a1, . . . , an, ((A⇒B)⇒C), Γ `̀̀ C

((A⇒B)⇒C), Γ `̀̀ a1∧ · · · ∧an⇒C ((A⇒B)⇒C),(a1∧ · · · ∧an⇒C), Γ `̀̀ D

((A⇒B)⇒C), Γ `̀̀ D

Remarks:
• If n 6= 0, rule is not necessarily semi-invertible. Fixed.
• More problematic: with or without the fix, weight of premisses not

necessarily smaller than weight of conclusion. Depth-boundedness is
probably lost.
• Is it not a bad idea to use the cut-rule in proof-search?

How do we come up with a1, . . . , an?

In conclusion: this generalisation sounds like a terrible idea.

7 / 24



A generalised version of the semi-invertible rule

a1, . . . , an,A, (B⇒C), Γ `̀̀ B ((A⇒B)⇒C), (a1∧ · · · ∧an⇒C), Γ `̀̀ D

((A⇒B)⇒C), Γ `̀̀ D

Recovering termination:
• Let’s impose (1) that (a1∧ · · · ∧an⇒C) 6∈ Γ, otherwise the right premiss is

identical/equivalent to the conclusion.

• Using cuts in root-first proof-search is cumbersome
unless we have a magic trick to produce the cut-formula (here: the
a1, . . . , an)
• Let’s impose (2) that a1, . . . , an are atoms present in the conclusion.

(1) and (2) recover termination (& preserve completeness).
Still, a lot of choices for {a1, . . . , an}

8 / 24



A generalised version of the semi-invertible rule

a1, . . . , an,A, (B⇒C), Γ `̀̀ B ((A⇒B)⇒C), (a1∧ · · · ∧an⇒C), Γ `̀̀ D

((A⇒B)⇒C), Γ `̀̀ D

Recovering termination:
• Let’s impose (1) that (a1∧ · · · ∧an⇒C) 6∈ Γ, otherwise the right premiss is

identical/equivalent to the conclusion.
• Using cuts in root-first proof-search is cumbersome

unless we have a magic trick to produce the cut-formula (here: the
a1, . . . , an)

• Let’s impose (2) that a1, . . . , an are atoms present in the conclusion.

(1) and (2) recover termination (& preserve completeness).
Still, a lot of choices for {a1, . . . , an}

8 / 24



A generalised version of the semi-invertible rule

a1, . . . , an,A, (B⇒C), Γ `̀̀ B ((A⇒B)⇒C), (a1∧ · · · ∧an⇒C), Γ `̀̀ D

((A⇒B)⇒C), Γ `̀̀ D

Recovering termination:
• Let’s impose (1) that (a1∧ · · · ∧an⇒C) 6∈ Γ, otherwise the right premiss is

identical/equivalent to the conclusion.
• Using cuts in root-first proof-search is cumbersome

unless we have a magic trick to produce the cut-formula (here: the
a1, . . . , an)
• Let’s impose (2) that a1, . . . , an are atoms present in the conclusion.

(1) and (2) recover termination (& preserve completeness).
Still, a lot of choices for {a1, . . . , an}

8 / 24



A generalised version of the semi-invertible rule

a1, . . . , an,A, (B⇒C), Γ `̀̀ B ((A⇒B)⇒C), (a1∧ · · · ∧an⇒C), Γ `̀̀ D

((A⇒B)⇒C), Γ `̀̀ D

Recovering termination:
• Let’s impose (1) that (a1∧ · · · ∧an⇒C) 6∈ Γ, otherwise the right premiss is

identical/equivalent to the conclusion.
• Using cuts in root-first proof-search is cumbersome

unless we have a magic trick to produce the cut-formula (here: the
a1, . . . , an)
• Let’s impose (2) that a1, . . . , an are atoms present in the conclusion.

(1) and (2) recover termination (& preserve completeness).

Still, a lot of choices for {a1, . . . , an}

8 / 24



A generalised version of the semi-invertible rule

a1, . . . , an,A, (B⇒C), Γ `̀̀ B ((A⇒B)⇒C), (a1∧ · · · ∧an⇒C), Γ `̀̀ D

((A⇒B)⇒C), Γ `̀̀ D

Recovering termination:
• Let’s impose (1) that (a1∧ · · · ∧an⇒C) 6∈ Γ, otherwise the right premiss is

identical/equivalent to the conclusion.
• Using cuts in root-first proof-search is cumbersome

unless we have a magic trick to produce the cut-formula (here: the
a1, . . . , an)
• Let’s impose (2) that a1, . . . , an are atoms present in the conclusion.

(1) and (2) recover termination (& preserve completeness).
Still, a lot of choices for {a1, . . . , an}

8 / 24



Restricting {a1, . . . ,an}

a1, . . . , an,A, (B⇒C), Γ `̀̀ B ((A⇒B)⇒C), (a1∧ · · · ∧an⇒C), Γ `̀̀ D

((A⇒B)⇒C), Γ `̀̀ D

Clearly, this rule is the most complex of the calculus, it branches and is only
semi-invertible.

⇒We probably want to apply it as a last resort, leaving formulae in Γ of the
form ((A⇒B)⇒C) ignored for as long as we can.

Apply the other rules eagerly, trying to prove a sequent Γ `̀̀ d while ignoring
the formulae in Γ of the form ((A⇒B)⇒C).

Who would do a better job at doing that?
. . . a SAT-solver!

9 / 24



Restricting {a1, . . . ,an}

a1, . . . , an,A, (B⇒C), Γ `̀̀ B ((A⇒B)⇒C), (a1∧ · · · ∧an⇒C), Γ `̀̀ D

((A⇒B)⇒C), Γ `̀̀ D

Clearly, this rule is the most complex of the calculus, it branches and is only
semi-invertible.
⇒We probably want to apply it as a last resort, leaving formulae in Γ of the
form ((A⇒B)⇒C) ignored for as long as we can.

Apply the other rules eagerly, trying to prove a sequent Γ `̀̀ d while ignoring
the formulae in Γ of the form ((A⇒B)⇒C).

Who would do a better job at doing that?
. . . a SAT-solver!

9 / 24



Restricting {a1, . . . ,an}

a1, . . . , an,A, (B⇒C), Γ `̀̀ B ((A⇒B)⇒C), (a1∧ · · · ∧an⇒C), Γ `̀̀ D

((A⇒B)⇒C), Γ `̀̀ D

Clearly, this rule is the most complex of the calculus, it branches and is only
semi-invertible.
⇒We probably want to apply it as a last resort, leaving formulae in Γ of the
form ((A⇒B)⇒C) ignored for as long as we can.

Apply the other rules eagerly, trying to prove a sequent Γ `̀̀ d while ignoring
the formulae in Γ of the form ((A⇒B)⇒C).

Who would do a better job at doing that?
. . . a SAT-solver!

9 / 24



Restricting {a1, . . . ,an}

a1, . . . , an,A, (B⇒C), Γ `̀̀ B ((A⇒B)⇒C), (a1∧ · · · ∧an⇒C), Γ `̀̀ D

((A⇒B)⇒C), Γ `̀̀ D

Clearly, this rule is the most complex of the calculus, it branches and is only
semi-invertible.
⇒We probably want to apply it as a last resort, leaving formulae in Γ of the
form ((A⇒B)⇒C) ignored for as long as we can.

Apply the other rules eagerly, trying to prove a sequent Γ `̀̀ d while ignoring
the formulae in Γ of the form ((A⇒B)⇒C).

Who would do a better job at doing that?

. . . a SAT-solver!

9 / 24



Restricting {a1, . . . ,an}

a1, . . . , an,A, (B⇒C), Γ `̀̀ B ((A⇒B)⇒C), (a1∧ · · · ∧an⇒C), Γ `̀̀ D

((A⇒B)⇒C), Γ `̀̀ D

Clearly, this rule is the most complex of the calculus, it branches and is only
semi-invertible.
⇒We probably want to apply it as a last resort, leaving formulae in Γ of the
form ((A⇒B)⇒C) ignored for as long as we can.

Apply the other rules eagerly, trying to prove a sequent Γ `̀̀ d while ignoring
the formulae in Γ of the form ((A⇒B)⇒C).

Who would do a better job at doing that?
. . . a SAT-solver!

9 / 24



SAT-solvers are perfectly fine intuitionistic provers!

If they conclude that a bunch of clauses C1, . . . ,Cn is unsat,
they have established intuitionistic provability of C1, . . . ,Cn `̀̀ ⊥.

. . . well, if each clause {a1, . . . , an, b1, . . . , bm} is read as

(a1∧ · · · ∧an)⇒(b1∨ · · · ∨bm)

instead of ¬a1∨ · · · ∨¬an∨b1∨ · · · ∨bm.
Indeed, SAT-solver would (implicitly or explicitly) produce a resolution proof of
C1, . . . ,Cn `̀̀ ⊥
Resolution rule

C∨x C′∨¬x

C∨C′
should be read as

A⇒(B∨x) (A′∧x)⇒B′

(A∧A′)⇒(B∨B′)

which is perfectly sound in intuitionistic logic.
Even better: if they conclude that C1, . . . ,Cn,¬d is unsat, they have
established intuitionistic provability of C1, . . . ,Cn `̀̀ d .
Conclusion: they are very good intuitionistic provers
. . . but are limited to proving sequents of that form.

10 / 24



SAT-solvers are perfectly fine intuitionistic provers!

If they conclude that a bunch of clauses C1, . . . ,Cn is unsat,
they have established intuitionistic provability of C1, . . . ,Cn `̀̀ ⊥.
. . . well, if each clause {a1, . . . , an, b1, . . . , bm} is read as

(a1∧ · · · ∧an)⇒(b1∨ · · · ∨bm)

instead of ¬a1∨ · · · ∨¬an∨b1∨ · · · ∨bm.

Indeed, SAT-solver would (implicitly or explicitly) produce a resolution proof of
C1, . . . ,Cn `̀̀ ⊥
Resolution rule

C∨x C′∨¬x

C∨C′
should be read as

A⇒(B∨x) (A′∧x)⇒B′

(A∧A′)⇒(B∨B′)

which is perfectly sound in intuitionistic logic.
Even better: if they conclude that C1, . . . ,Cn,¬d is unsat, they have
established intuitionistic provability of C1, . . . ,Cn `̀̀ d .
Conclusion: they are very good intuitionistic provers
. . . but are limited to proving sequents of that form.

10 / 24



SAT-solvers are perfectly fine intuitionistic provers!

If they conclude that a bunch of clauses C1, . . . ,Cn is unsat,
they have established intuitionistic provability of C1, . . . ,Cn `̀̀ ⊥.
. . . well, if each clause {a1, . . . , an, b1, . . . , bm} is read as

(a1∧ · · · ∧an)⇒(b1∨ · · · ∨bm)

instead of ¬a1∨ · · · ∨¬an∨b1∨ · · · ∨bm.
Indeed, SAT-solver would (implicitly or explicitly) produce a resolution proof of
C1, . . . ,Cn `̀̀ ⊥

Resolution rule
C∨x C′∨¬x

C∨C′
should be read as

A⇒(B∨x) (A′∧x)⇒B′

(A∧A′)⇒(B∨B′)

which is perfectly sound in intuitionistic logic.
Even better: if they conclude that C1, . . . ,Cn,¬d is unsat, they have
established intuitionistic provability of C1, . . . ,Cn `̀̀ d .
Conclusion: they are very good intuitionistic provers
. . . but are limited to proving sequents of that form.

10 / 24



SAT-solvers are perfectly fine intuitionistic provers!

If they conclude that a bunch of clauses C1, . . . ,Cn is unsat,
they have established intuitionistic provability of C1, . . . ,Cn `̀̀ ⊥.
. . . well, if each clause {a1, . . . , an, b1, . . . , bm} is read as

(a1∧ · · · ∧an)⇒(b1∨ · · · ∨bm)

instead of ¬a1∨ · · · ∨¬an∨b1∨ · · · ∨bm.
Indeed, SAT-solver would (implicitly or explicitly) produce a resolution proof of
C1, . . . ,Cn `̀̀ ⊥
Resolution rule

C∨x C′∨¬x

C∨C′
should be read as

A⇒(B∨x) (A′∧x)⇒B′

(A∧A′)⇒(B∨B′)

which is perfectly sound in intuitionistic logic.

Even better: if they conclude that C1, . . . ,Cn,¬d is unsat, they have
established intuitionistic provability of C1, . . . ,Cn `̀̀ d .
Conclusion: they are very good intuitionistic provers
. . . but are limited to proving sequents of that form.

10 / 24



SAT-solvers are perfectly fine intuitionistic provers!

If they conclude that a bunch of clauses C1, . . . ,Cn is unsat,
they have established intuitionistic provability of C1, . . . ,Cn `̀̀ ⊥.
. . . well, if each clause {a1, . . . , an, b1, . . . , bm} is read as

(a1∧ · · · ∧an)⇒(b1∨ · · · ∨bm)

instead of ¬a1∨ · · · ∨¬an∨b1∨ · · · ∨bm.
Indeed, SAT-solver would (implicitly or explicitly) produce a resolution proof of
C1, . . . ,Cn `̀̀ ⊥
Resolution rule

C∨x C′∨¬x

C∨C′
should be read as

A⇒(B∨x) (A′∧x)⇒B′

(A∧A′)⇒(B∨B′)

which is perfectly sound in intuitionistic logic.
Even better: if they conclude that C1, . . . ,Cn,¬d is unsat, they have
established intuitionistic provability of C1, . . . ,Cn `̀̀ d .

Conclusion: they are very good intuitionistic provers
. . . but are limited to proving sequents of that form.

10 / 24



SAT-solvers are perfectly fine intuitionistic provers!

If they conclude that a bunch of clauses C1, . . . ,Cn is unsat,
they have established intuitionistic provability of C1, . . . ,Cn `̀̀ ⊥.
. . . well, if each clause {a1, . . . , an, b1, . . . , bm} is read as

(a1∧ · · · ∧an)⇒(b1∨ · · · ∨bm)

instead of ¬a1∨ · · · ∨¬an∨b1∨ · · · ∨bm.
Indeed, SAT-solver would (implicitly or explicitly) produce a resolution proof of
C1, . . . ,Cn `̀̀ ⊥
Resolution rule

C∨x C′∨¬x

C∨C′
should be read as

A⇒(B∨x) (A′∧x)⇒B′

(A∧A′)⇒(B∨B′)

which is perfectly sound in intuitionistic logic.
Even better: if they conclude that C1, . . . ,Cn,¬d is unsat, they have
established intuitionistic provability of C1, . . . ,Cn `̀̀ d .
Conclusion: they are very good intuitionistic provers
. . . but are limited to proving sequents of that form.

10 / 24



Preprocessing

It’s the preprocess that implements “every formula F can be transformed into
an equisatisfiable* CNF C1∧ · · · ∧Cn”
that uses classical reasoning. *: F `̀̀ ⊥ iff C1∧ · · · ∧Cn `̀̀ ⊥

In the intuitionistic case, every formula F can be transformed into an
(intuitionistically) equiprovable sequent Γimp, Γflat `̀̀ d with
• d an atom
• Γflat made of flat clauses: (a1∧ · · · ∧an)⇒(b1∨ · · · ∨bm)

• Γimp made of implication clauses: ((a⇒b)⇒c)

Idea for proof-search:
• flat clauses are treated eagerly,

to see if, by chance, Γflat `̀̀ d is provable,
using e.g., a SAT-solver.
• implication clauses treated lazily,

using the (generalised) G4ip rule.

11 / 24



Preprocessing

It’s the preprocess that implements “every formula F can be transformed into
an equisatisfiable* CNF C1∧ · · · ∧Cn”
that uses classical reasoning. *: F `̀̀ ⊥ iff C1∧ · · · ∧Cn `̀̀ ⊥
In the intuitionistic case, every formula F can be transformed into an
(intuitionistically) equiprovable sequent Γimp, Γflat `̀̀ d with
• d an atom
• Γflat made of flat clauses: (a1∧ · · · ∧an)⇒(b1∨ · · · ∨bm)

• Γimp made of implication clauses: ((a⇒b)⇒c)

Idea for proof-search:
• flat clauses are treated eagerly,

to see if, by chance, Γflat `̀̀ d is provable,
using e.g., a SAT-solver.
• implication clauses treated lazily,

using the (generalised) G4ip rule.

11 / 24



Roy Dyckhoff’s 1992 paper

12 / 24



Preprocessing: how?

Like Tseitin transformation to turn any formula into an equisatisfiable CNF.
Introduce atoms to “name” subformulae of the sequent to prove

• For A∧B, introduce c with: c⇒A, c⇒B, (A∧B)⇒c,
recursively introduce names for A and for B to get flat clauses

c⇒a, c⇒b, (a∧b)⇒c

• For A∨B, introduce c with: c⇒(A∨B),A⇒c,B⇒c,
recursively introduce names for A and for B to get flat clauses

c⇒(a∨b), a⇒c, b⇒c

• For A⇒B, introduce c with: (c∧A)⇒B, (A⇒B)⇒c,
recursively introduce names for A and for B to get flat clause (c∧a)⇒b
. . . and implication clause (a⇒b)⇒c

Note 1: transformation only preserves satisfiability/provability
Note 2: Introducing names can be done more sparingly using some of the
other G4ip rules for normalisation
(basically, the invertible non-branching ones)
Note 3: some of these rules were already presented by Vorob’ev in the form
of pre-processing

13 / 24



Preprocessing: how?

Like Tseitin transformation to turn any formula into an equisatisfiable CNF.
Introduce atoms to “name” subformulae of the sequent to prove
• For A∧B, introduce c with: c⇒A, c⇒B, (A∧B)⇒c,

recursively introduce names for A and for B to get flat clauses

c⇒a, c⇒b, (a∧b)⇒c

• For A∨B, introduce c with: c⇒(A∨B),A⇒c,B⇒c,
recursively introduce names for A and for B to get flat clauses

c⇒(a∨b), a⇒c, b⇒c

• For A⇒B, introduce c with: (c∧A)⇒B, (A⇒B)⇒c,
recursively introduce names for A and for B to get flat clause (c∧a)⇒b
. . . and implication clause (a⇒b)⇒c

Note 1: transformation only preserves satisfiability/provability
Note 2: Introducing names can be done more sparingly using some of the
other G4ip rules for normalisation
(basically, the invertible non-branching ones)
Note 3: some of these rules were already presented by Vorob’ev in the form
of pre-processing

13 / 24



Preprocessing: how?

Like Tseitin transformation to turn any formula into an equisatisfiable CNF.
Introduce atoms to “name” subformulae of the sequent to prove
• For A∧B, introduce c with: c⇒A, c⇒B, (A∧B)⇒c,

recursively introduce names for A and for B to get flat clauses

c⇒a, c⇒b, (a∧b)⇒c

• For A∨B, introduce c with: c⇒(A∨B),A⇒c,B⇒c,
recursively introduce names for A and for B to get flat clauses

c⇒(a∨b), a⇒c, b⇒c

• For A⇒B, introduce c with: (c∧A)⇒B, (A⇒B)⇒c,
recursively introduce names for A and for B to get flat clause (c∧a)⇒b
. . . and implication clause (a⇒b)⇒c

Note 1: transformation only preserves satisfiability/provability
Note 2: Introducing names can be done more sparingly using some of the
other G4ip rules for normalisation
(basically, the invertible non-branching ones)
Note 3: some of these rules were already presented by Vorob’ev in the form
of pre-processing

13 / 24



Preprocessing: how?

Like Tseitin transformation to turn any formula into an equisatisfiable CNF.
Introduce atoms to “name” subformulae of the sequent to prove
• For A∧B, introduce c with: c⇒A, c⇒B, (A∧B)⇒c,

recursively introduce names for A and for B to get flat clauses

c⇒a, c⇒b, (a∧b)⇒c

• For A∨B, introduce c with: c⇒(A∨B),A⇒c,B⇒c,
recursively introduce names for A and for B to get flat clauses

c⇒(a∨b), a⇒c, b⇒c

• For A⇒B, introduce c with: (c∧A)⇒B, (A⇒B)⇒c,
recursively introduce names for A and for B to get flat clause (c∧a)⇒b
. . . and implication clause (a⇒b)⇒c

Note 1: transformation only preserves satisfiability/provability
Note 2: Introducing names can be done more sparingly using some of the
other G4ip rules for normalisation
(basically, the invertible non-branching ones)
Note 3: some of these rules were already presented by Vorob’ev in the form
of pre-processing

13 / 24



Preprocessing: how?

Like Tseitin transformation to turn any formula into an equisatisfiable CNF.
Introduce atoms to “name” subformulae of the sequent to prove
• For A∧B, introduce c with: c⇒A, c⇒B, (A∧B)⇒c,

recursively introduce names for A and for B to get flat clauses

c⇒a, c⇒b, (a∧b)⇒c

• For A∨B, introduce c with: c⇒(A∨B),A⇒c,B⇒c,
recursively introduce names for A and for B to get flat clauses

c⇒(a∨b), a⇒c, b⇒c

• For A⇒B, introduce c with: (c∧A)⇒B, (A⇒B)⇒c,
recursively introduce names for A and for B to get flat clause (c∧a)⇒b
. . . and implication clause (a⇒b)⇒c

Note 1: transformation only preserves satisfiability/provability

Note 2: Introducing names can be done more sparingly using some of the
other G4ip rules for normalisation
(basically, the invertible non-branching ones)
Note 3: some of these rules were already presented by Vorob’ev in the form
of pre-processing

13 / 24



Preprocessing: how?

Like Tseitin transformation to turn any formula into an equisatisfiable CNF.
Introduce atoms to “name” subformulae of the sequent to prove
• For A∧B, introduce c with: c⇒A, c⇒B, (A∧B)⇒c,

recursively introduce names for A and for B to get flat clauses

c⇒a, c⇒b, (a∧b)⇒c

• For A∨B, introduce c with: c⇒(A∨B),A⇒c,B⇒c,
recursively introduce names for A and for B to get flat clauses

c⇒(a∨b), a⇒c, b⇒c

• For A⇒B, introduce c with: (c∧A)⇒B, (A⇒B)⇒c,
recursively introduce names for A and for B to get flat clause (c∧a)⇒b
. . . and implication clause (a⇒b)⇒c

Note 1: transformation only preserves satisfiability/provability
Note 2: Introducing names can be done more sparingly using some of the
other G4ip rules for normalisation
(basically, the invertible non-branching ones)

Note 3: some of these rules were already presented by Vorob’ev in the form
of pre-processing

13 / 24



Preprocessing: how?

Like Tseitin transformation to turn any formula into an equisatisfiable CNF.
Introduce atoms to “name” subformulae of the sequent to prove
• For A∧B, introduce c with: c⇒A, c⇒B, (A∧B)⇒c,

recursively introduce names for A and for B to get flat clauses

c⇒a, c⇒b, (a∧b)⇒c

• For A∨B, introduce c with: c⇒(A∨B),A⇒c,B⇒c,
recursively introduce names for A and for B to get flat clauses

c⇒(a∨b), a⇒c, b⇒c

• For A⇒B, introduce c with: (c∧A)⇒B, (A⇒B)⇒c,
recursively introduce names for A and for B to get flat clause (c∧a)⇒b
. . . and implication clause (a⇒b)⇒c

Note 1: transformation only preserves satisfiability/provability
Note 2: Introducing names can be done more sparingly using some of the
other G4ip rules for normalisation
(basically, the invertible non-branching ones)
Note 3: some of these rules were already presented by Vorob’ev in the form
of pre-processing

13 / 24



From G4ip to SMT solving

With pre-processing the rule becomes

Γimp, a1, . . . , an, a, (b⇒c), Γflat `̀̀ b ((a⇒b)⇒c), Γimp, (a1∧ · · · ∧an⇒c), Γflat `̀̀ d

((a⇒b)⇒c), Γimp, Γflat `̀̀ d

with a, c 6∈ {a1, . . . , an} and (a1∧ · · · ∧an⇒c) 6∈ Γflat

Remarks:
• added formulae are all flat clauses

(SAT-solver is good at treating increments)
• Γimp never increases throughout proof-search,

it actually decreases by 1 in the left branch
• proofs have a spine shape,

and you cannot persistently climb up the left branches more times than
the number of implication clauses
• thinking in terms of root-first proof-search, implemented recursively, the

right premiss really corresponds to a tail call (i.e., a while loop)

14 / 24



From G4ip to SMT solving

With pre-processing the rule becomes

Γimp, a1, . . . , an, a, (b⇒c), Γflat `̀̀ b ((a⇒b)⇒c), Γimp, (a1∧ · · · ∧an⇒c), Γflat `̀̀ d

((a⇒b)⇒c), Γimp, Γflat `̀̀ d

with a, c 6∈ {a1, . . . , an} and (a1∧ · · · ∧an⇒c) 6∈ Γflat

Remarks:
• added formulae are all flat clauses

(SAT-solver is good at treating increments)

• Γimp never increases throughout proof-search,
it actually decreases by 1 in the left branch
• proofs have a spine shape,

and you cannot persistently climb up the left branches more times than
the number of implication clauses
• thinking in terms of root-first proof-search, implemented recursively, the

right premiss really corresponds to a tail call (i.e., a while loop)

14 / 24



From G4ip to SMT solving

With pre-processing the rule becomes

Γimp, a1, . . . , an, a, (b⇒c), Γflat `̀̀ b ((a⇒b)⇒c), Γimp, (a1∧ · · · ∧an⇒c), Γflat `̀̀ d

((a⇒b)⇒c), Γimp, Γflat `̀̀ d

with a, c 6∈ {a1, . . . , an} and (a1∧ · · · ∧an⇒c) 6∈ Γflat

Remarks:
• added formulae are all flat clauses

(SAT-solver is good at treating increments)
• Γimp never increases throughout proof-search,

it actually decreases by 1 in the left branch

• proofs have a spine shape,
and you cannot persistently climb up the left branches more times than
the number of implication clauses
• thinking in terms of root-first proof-search, implemented recursively, the

right premiss really corresponds to a tail call (i.e., a while loop)

14 / 24



From G4ip to SMT solving

With pre-processing the rule becomes

Γimp, a1, . . . , an, a, (b⇒c), Γflat `̀̀ b ((a⇒b)⇒c), Γimp, (a1∧ · · · ∧an⇒c), Γflat `̀̀ d

((a⇒b)⇒c), Γimp, Γflat `̀̀ d

with a, c 6∈ {a1, . . . , an} and (a1∧ · · · ∧an⇒c) 6∈ Γflat

Remarks:
• added formulae are all flat clauses

(SAT-solver is good at treating increments)
• Γimp never increases throughout proof-search,

it actually decreases by 1 in the left branch
• proofs have a spine shape,

and you cannot persistently climb up the left branches more times than
the number of implication clauses

• thinking in terms of root-first proof-search, implemented recursively, the
right premiss really corresponds to a tail call (i.e., a while loop)

14 / 24



From G4ip to SMT solving

With pre-processing the rule becomes

Γimp, a1, . . . , an, a, (b⇒c), Γflat `̀̀ b ((a⇒b)⇒c), Γimp, (a1∧ · · · ∧an⇒c), Γflat `̀̀ d

((a⇒b)⇒c), Γimp, Γflat `̀̀ d

with a, c 6∈ {a1, . . . , an} and (a1∧ · · · ∧an⇒c) 6∈ Γflat

Remarks:
• added formulae are all flat clauses

(SAT-solver is good at treating increments)
• Γimp never increases throughout proof-search,

it actually decreases by 1 in the left branch
• proofs have a spine shape,

and you cannot persistently climb up the left branches more times than
the number of implication clauses
• thinking in terms of root-first proof-search, implemented recursively, the

right premiss really corresponds to a tail call (i.e., a while loop)

14 / 24



From G4ip to SMT solving
The spine shape describes a traditional SMT algorithm: DPLL(T ).

Theory T is that of “intuitionistic entailment”

SAT-solver

T

(knows Γimp)

Theory lemma defeatingM

a1∧ · · · ∧an⇒c

ModelM

SAT-solver

T

. . .

Unsat(. . . a `̀̀ b)

. . . a
?

`̀̀ b

. . . except the “theory reasoning” that understands Γimp

recursively relies on general provability.
And finally! we have the magic trick to pick {a1, . . . , an}:
those atoms interpreted as true inM that were useful to prove . . . a `̀̀ b

15 / 24



From G4ip to SMT solving
The spine shape describes a traditional SMT algorithm: DPLL(T ).

Theory T is that of “intuitionistic entailment”

SAT-solver

T
(knows Γimp)

Theory lemma defeatingM
a1∧ · · · ∧an⇒c

ModelM

SAT-solver

T

. . .

Unsat(. . . a `̀̀ b)

. . . a
?

`̀̀ b

. . . except the “theory reasoning” that understands Γimp

recursively relies on general provability.
And finally! we have the magic trick to pick {a1, . . . , an}:
those atoms interpreted as true inM that were useful to prove . . . a `̀̀ b

15 / 24



From G4ip to SMT solving
The spine shape describes a traditional SMT algorithm: DPLL(T ).

Theory T is that of “intuitionistic entailment”

SAT-solver

T
(knows Γimp)

Theory lemma defeatingM
a1∧ · · · ∧an⇒c

ModelM

SAT-solver

T

. . .

Unsat(. . . a `̀̀ b)

. . . a
?

`̀̀ b

. . . except the “theory reasoning” that understands Γimp

recursively relies on general provability.

And finally! we have the magic trick to pick {a1, . . . , an}:
those atoms interpreted as true inM that were useful to prove . . . a `̀̀ b

15 / 24



From G4ip to SMT solving
The spine shape describes a traditional SMT algorithm: DPLL(T ).

Theory T is that of “intuitionistic entailment”

SAT-solver

T
(knows Γimp)

Theory lemma defeatingM
a1∧ · · · ∧an⇒c

ModelM

SAT-solver

T

. . .

Unsat(. . . , a1, . . . , an, a `̀̀ b)

. . .M+, a
?

`̀̀ b

. . . except the “theory reasoning” that understands Γimp

recursively relies on general provability.
And finally! we have the magic trick to pick {a1, . . . , an}:
those atoms interpreted as true inM that were useful to prove . . . a `̀̀ b

15 / 24



From G4ip to SMT solving

So in order to prove Γimp, Γflat `̀̀ d ,

1. Run a SAT-solver on Γflat,¬d to see if Γflat `̀̀ d is provable.
If it is, we are done. If not, the SAT-solver returns a (classical) modelM
such thatM(Γflat ) = 1 andM(d) = 0. Then:

2. Pick in Γimp an implication clause (a⇒b)⇒c such thatM(c) = 0,
M(a) = 0. Recursively try to prove

Γ′
imp,M+, a, (b⇒c), Γflat `̀̀ b where Γ′

imp is Γimp\((a⇒b)⇒c)

If failure, find another implication clause to take into account.
If success, extract the a1, . . . , an inM+ used in the proof.
Return “flat theory clause” a1∧ · · · ∧an⇒c to SAT-solver
so as to “defeat” its classical modelM, effectively applying rule

Γ′
imp, a1, . . . , an, a, (b⇒c), Γflat `̀̀ b Γimp, (a1∧ · · · ∧an⇒c), Γflat `̀̀ d

Γimp, Γflat `̀̀ d

Then go back to the SAT-solver (1.)

Note: by construction, the learnt clause could not already be in Γflat otherwise
the SAT solver would not have proposed modelM

If you run out of implication clauses in 2.: your sequent is unprovable.

16 / 24



From G4ip to SMT solving

So in order to prove Γimp, Γflat `̀̀ d ,

1. Run a SAT-solver on Γflat,¬d to see if Γflat `̀̀ d is provable.

If it is, we are done. If not, the SAT-solver returns a (classical) modelM
such thatM(Γflat ) = 1 andM(d) = 0. Then:

2. Pick in Γimp an implication clause (a⇒b)⇒c such thatM(c) = 0,
M(a) = 0. Recursively try to prove

Γ′
imp,M+, a, (b⇒c), Γflat `̀̀ b where Γ′

imp is Γimp\((a⇒b)⇒c)

If failure, find another implication clause to take into account.
If success, extract the a1, . . . , an inM+ used in the proof.
Return “flat theory clause” a1∧ · · · ∧an⇒c to SAT-solver
so as to “defeat” its classical modelM, effectively applying rule

Γ′
imp, a1, . . . , an, a, (b⇒c), Γflat `̀̀ b Γimp, (a1∧ · · · ∧an⇒c), Γflat `̀̀ d

Γimp, Γflat `̀̀ d

Then go back to the SAT-solver (1.)

Note: by construction, the learnt clause could not already be in Γflat otherwise
the SAT solver would not have proposed modelM

If you run out of implication clauses in 2.: your sequent is unprovable.

16 / 24



From G4ip to SMT solving

So in order to prove Γimp, Γflat `̀̀ d ,

1. Run a SAT-solver on Γflat,¬d to see if Γflat `̀̀ d is provable.
If it is, we are done.

If not, the SAT-solver returns a (classical) modelM
such thatM(Γflat ) = 1 andM(d) = 0. Then:

2. Pick in Γimp an implication clause (a⇒b)⇒c such thatM(c) = 0,
M(a) = 0. Recursively try to prove

Γ′
imp,M+, a, (b⇒c), Γflat `̀̀ b where Γ′

imp is Γimp\((a⇒b)⇒c)

If failure, find another implication clause to take into account.
If success, extract the a1, . . . , an inM+ used in the proof.
Return “flat theory clause” a1∧ · · · ∧an⇒c to SAT-solver
so as to “defeat” its classical modelM, effectively applying rule

Γ′
imp, a1, . . . , an, a, (b⇒c), Γflat `̀̀ b Γimp, (a1∧ · · · ∧an⇒c), Γflat `̀̀ d

Γimp, Γflat `̀̀ d

Then go back to the SAT-solver (1.)

Note: by construction, the learnt clause could not already be in Γflat otherwise
the SAT solver would not have proposed modelM

If you run out of implication clauses in 2.: your sequent is unprovable.

16 / 24



From G4ip to SMT solving

So in order to prove Γimp, Γflat `̀̀ d ,

1. Run a SAT-solver on Γflat,¬d to see if Γflat `̀̀ d is provable.
If it is, we are done. If not, the SAT-solver returns a (classical) modelM
such thatM(Γflat ) = 1 andM(d) = 0. Then:

2. Pick in Γimp an implication clause (a⇒b)⇒c such thatM(c) = 0,
M(a) = 0. Recursively try to prove

Γ′
imp,M+, a, (b⇒c), Γflat `̀̀ b where Γ′

imp is Γimp\((a⇒b)⇒c)

If failure, find another implication clause to take into account.
If success, extract the a1, . . . , an inM+ used in the proof.
Return “flat theory clause” a1∧ · · · ∧an⇒c to SAT-solver
so as to “defeat” its classical modelM, effectively applying rule

Γ′
imp, a1, . . . , an, a, (b⇒c), Γflat `̀̀ b Γimp, (a1∧ · · · ∧an⇒c), Γflat `̀̀ d

Γimp, Γflat `̀̀ d

Then go back to the SAT-solver (1.)

Note: by construction, the learnt clause could not already be in Γflat otherwise
the SAT solver would not have proposed modelM

If you run out of implication clauses in 2.: your sequent is unprovable.

16 / 24



From G4ip to SMT solving

So in order to prove Γimp, Γflat `̀̀ d ,

1. Run a SAT-solver on Γflat,¬d to see if Γflat `̀̀ d is provable.
If it is, we are done. If not, the SAT-solver returns a (classical) modelM
such thatM(Γflat ) = 1 andM(d) = 0. Then:

2. Pick in Γimp an implication clause (a⇒b)⇒c such thatM(c) = 0,
M(a) = 0.

Recursively try to prove

Γ′
imp,M+, a, (b⇒c), Γflat `̀̀ b where Γ′

imp is Γimp\((a⇒b)⇒c)

If failure, find another implication clause to take into account.
If success, extract the a1, . . . , an inM+ used in the proof.
Return “flat theory clause” a1∧ · · · ∧an⇒c to SAT-solver
so as to “defeat” its classical modelM, effectively applying rule

Γ′
imp, a1, . . . , an, a, (b⇒c), Γflat `̀̀ b Γimp, (a1∧ · · · ∧an⇒c), Γflat `̀̀ d

Γimp, Γflat `̀̀ d

Then go back to the SAT-solver (1.)

Note: by construction, the learnt clause could not already be in Γflat otherwise
the SAT solver would not have proposed modelM

If you run out of implication clauses in 2.: your sequent is unprovable.

16 / 24



From G4ip to SMT solving

So in order to prove Γimp, Γflat `̀̀ d ,

1. Run a SAT-solver on Γflat,¬d to see if Γflat `̀̀ d is provable.
If it is, we are done. If not, the SAT-solver returns a (classical) modelM
such thatM(Γflat ) = 1 andM(d) = 0. Then:

2. Pick in Γimp an implication clause (a⇒b)⇒c such thatM(c) = 0,
M(a) = 0. Recursively try to prove

Γ′
imp,M+, a, (b⇒c), Γflat `̀̀ b where Γ′

imp is Γimp\((a⇒b)⇒c)

If failure, find another implication clause to take into account.
If success, extract the a1, . . . , an inM+ used in the proof.
Return “flat theory clause” a1∧ · · · ∧an⇒c to SAT-solver
so as to “defeat” its classical modelM, effectively applying rule

Γ′
imp, a1, . . . , an, a, (b⇒c), Γflat `̀̀ b Γimp, (a1∧ · · · ∧an⇒c), Γflat `̀̀ d

Γimp, Γflat `̀̀ d

Then go back to the SAT-solver (1.)

Note: by construction, the learnt clause could not already be in Γflat otherwise
the SAT solver would not have proposed modelM

If you run out of implication clauses in 2.: your sequent is unprovable.

16 / 24



From G4ip to SMT solving

So in order to prove Γimp, Γflat `̀̀ d ,

1. Run a SAT-solver on Γflat,¬d to see if Γflat `̀̀ d is provable.
If it is, we are done. If not, the SAT-solver returns a (classical) modelM
such thatM(Γflat ) = 1 andM(d) = 0. Then:

2. Pick in Γimp an implication clause (a⇒b)⇒c such thatM(c) = 0,
M(a) = 0. Recursively try to prove

Γ′
imp,M+, a, (b⇒c), Γflat `̀̀ b where Γ′

imp is Γimp\((a⇒b)⇒c)

If failure, find another implication clause to take into account.

If success, extract the a1, . . . , an inM+ used in the proof.
Return “flat theory clause” a1∧ · · · ∧an⇒c to SAT-solver
so as to “defeat” its classical modelM, effectively applying rule

Γ′
imp, a1, . . . , an, a, (b⇒c), Γflat `̀̀ b Γimp, (a1∧ · · · ∧an⇒c), Γflat `̀̀ d

Γimp, Γflat `̀̀ d

Then go back to the SAT-solver (1.)

Note: by construction, the learnt clause could not already be in Γflat otherwise
the SAT solver would not have proposed modelM

If you run out of implication clauses in 2.: your sequent is unprovable.

16 / 24



From G4ip to SMT solving

So in order to prove Γimp, Γflat `̀̀ d ,

1. Run a SAT-solver on Γflat,¬d to see if Γflat `̀̀ d is provable.
If it is, we are done. If not, the SAT-solver returns a (classical) modelM
such thatM(Γflat ) = 1 andM(d) = 0. Then:

2. Pick in Γimp an implication clause (a⇒b)⇒c such thatM(c) = 0,
M(a) = 0. Recursively try to prove

Γ′
imp,M+, a, (b⇒c), Γflat `̀̀ b where Γ′

imp is Γimp\((a⇒b)⇒c)

If failure, find another implication clause to take into account.
If success, extract the a1, . . . , an inM+ used in the proof.

Return “flat theory clause” a1∧ · · · ∧an⇒c to SAT-solver
so as to “defeat” its classical modelM, effectively applying rule

Γ′
imp, a1, . . . , an, a, (b⇒c), Γflat `̀̀ b Γimp, (a1∧ · · · ∧an⇒c), Γflat `̀̀ d

Γimp, Γflat `̀̀ d

Then go back to the SAT-solver (1.)

Note: by construction, the learnt clause could not already be in Γflat otherwise
the SAT solver would not have proposed modelM

If you run out of implication clauses in 2.: your sequent is unprovable.

16 / 24



From G4ip to SMT solving

So in order to prove Γimp, Γflat `̀̀ d ,

1. Run a SAT-solver on Γflat,¬d to see if Γflat `̀̀ d is provable.
If it is, we are done. If not, the SAT-solver returns a (classical) modelM
such thatM(Γflat ) = 1 andM(d) = 0. Then:

2. Pick in Γimp an implication clause (a⇒b)⇒c such thatM(c) = 0,
M(a) = 0. Recursively try to prove

Γ′
imp,M+, a, (b⇒c), Γflat `̀̀ b where Γ′

imp is Γimp\((a⇒b)⇒c)

If failure, find another implication clause to take into account.
If success, extract the a1, . . . , an inM+ used in the proof.
Return “flat theory clause” a1∧ · · · ∧an⇒c to SAT-solver
so as to “defeat” its classical modelM, effectively applying rule

Γ′
imp, a1, . . . , an, a, (b⇒c), Γflat `̀̀ b Γimp, (a1∧ · · · ∧an⇒c), Γflat `̀̀ d

Γimp, Γflat `̀̀ d

Then go back to the SAT-solver (1.)

Note: by construction, the learnt clause could not already be in Γflat otherwise
the SAT solver would not have proposed modelM

If you run out of implication clauses in 2.: your sequent is unprovable.

16 / 24



From G4ip to SMT solving

So in order to prove Γimp, Γflat `̀̀ d ,

1. Run a SAT-solver on Γflat,¬d to see if Γflat `̀̀ d is provable.
If it is, we are done. If not, the SAT-solver returns a (classical) modelM
such thatM(Γflat ) = 1 andM(d) = 0. Then:

2. Pick in Γimp an implication clause (a⇒b)⇒c such thatM(c) = 0,
M(a) = 0. Recursively try to prove

Γ′
imp,M+, a, (b⇒c), Γflat `̀̀ b where Γ′

imp is Γimp\((a⇒b)⇒c)

If failure, find another implication clause to take into account.
If success, extract the a1, . . . , an inM+ used in the proof.
Return “flat theory clause” a1∧ · · · ∧an⇒c to SAT-solver
so as to “defeat” its classical modelM, effectively applying rule

Γ′
imp, a1, . . . , an, a, (b⇒c), Γflat `̀̀ b Γimp, (a1∧ · · · ∧an⇒c), Γflat `̀̀ d

Γimp, Γflat `̀̀ d

Then go back to the SAT-solver (1.)

Note: by construction, the learnt clause could not already be in Γflat otherwise
the SAT solver would not have proposed modelM

If you run out of implication clauses in 2.: your sequent is unprovable.

16 / 24



From G4ip to SMT solving

So in order to prove Γimp, Γflat `̀̀ d ,

1. Run a SAT-solver on Γflat,¬d to see if Γflat `̀̀ d is provable.
If it is, we are done. If not, the SAT-solver returns a (classical) modelM
such thatM(Γflat ) = 1 andM(d) = 0. Then:

2. Pick in Γimp an implication clause (a⇒b)⇒c such thatM(c) = 0,
M(a) = 0. Recursively try to prove

Γ′
imp,M+, a, (b⇒c), Γflat `̀̀ b where Γ′

imp is Γimp\((a⇒b)⇒c)

If failure, find another implication clause to take into account.
If success, extract the a1, . . . , an inM+ used in the proof.
Return “flat theory clause” a1∧ · · · ∧an⇒c to SAT-solver
so as to “defeat” its classical modelM, effectively applying rule

Γ′
imp, a1, . . . , an, a, (b⇒c), Γflat `̀̀ b Γimp, (a1∧ · · · ∧an⇒c), Γflat `̀̀ d

Γimp, Γflat `̀̀ d

Then go back to the SAT-solver (1.)

Note: by construction, the learnt clause could not already be in Γflat otherwise
the SAT solver would not have proposed modelM

If you run out of implication clauses in 2.: your sequent is unprovable.

16 / 24



Recursivity

Is the recursive nature of the general algorithm necessary?
Could we not have one big SMT-solving run?

Γ′
imp, a1, . . . , an, a, (b⇒c), Γflat `̀̀ b Γimp, (a1∧ · · · ∧an⇒c), Γflat `̀̀ d

Γimp, Γflat `̀̀ d

The recursivity is about climbing into the left premiss.
A SAT-solver has an internal learning mechanism.
It would be good if whatever is learnt by the SAT-solver of the recursive call
could be shared with the SAT-solver of the caller.

So what really changes between the SAT-solver of the caller and that of the
callee? Mostly:
• the addition of a
• the addition of ¬b
• most most most importantly: the removal of ¬d

The SAT-solver of the callee is not allowed to exploit ¬d to get UNSAT

17 / 24



Recursivity

Is the recursive nature of the general algorithm necessary?
Could we not have one big SMT-solving run?

Γ′
imp, a1, . . . , an, a, (b⇒c), Γflat `̀̀ b Γimp, (a1∧ · · · ∧an⇒c), Γflat `̀̀ d

Γimp, Γflat `̀̀ d

The recursivity is about climbing into the left premiss.
A SAT-solver has an internal learning mechanism.
It would be good if whatever is learnt by the SAT-solver of the recursive call
could be shared with the SAT-solver of the caller.
So what really changes between the SAT-solver of the caller and that of the
callee?

Mostly:
• the addition of a
• the addition of ¬b
• most most most importantly: the removal of ¬d

The SAT-solver of the callee is not allowed to exploit ¬d to get UNSAT

17 / 24



Recursivity

Is the recursive nature of the general algorithm necessary?
Could we not have one big SMT-solving run?

Γ′
imp, a1, . . . , an, a, (b⇒c), Γflat `̀̀ b Γimp, (a1∧ · · · ∧an⇒c), Γflat `̀̀ d

Γimp, Γflat `̀̀ d

The recursivity is about climbing into the left premiss.
A SAT-solver has an internal learning mechanism.
It would be good if whatever is learnt by the SAT-solver of the recursive call
could be shared with the SAT-solver of the caller.
So what really changes between the SAT-solver of the caller and that of the
callee? Mostly:
• the addition of a
• the addition of ¬b
• most most most importantly: the removal of ¬d

The SAT-solver of the callee is not allowed to exploit ¬d to get UNSAT

17 / 24



Recursivity

Actually:
• Claessen and Dosén actually reuse the same SAT-solver for the

recursive call. They use an incremental SAT-solver, where you can push
and pop literals.
Here: popping ¬d , pushing a,¬b, so that what is learnt from each run
(by the standard learning mechanisms of SAT-solving) is shared
between the different runs.

• For this, you have to make sure the theory lemma a1∧ · · · ∧an⇒c is
derivable from the input problem alone (irrespective of the pushed and
popped literals).

In any case, popping ¬d is not part of the main algorithm of the SAT-solver
(DPLL/CDCL)

This method provides what is probably the fastest prover for IPL (at least in
2015)

18 / 24



Recursivity

Actually:
• Claessen and Dosén actually reuse the same SAT-solver for the

recursive call. They use an incremental SAT-solver, where you can push
and pop literals.
Here: popping ¬d , pushing a,¬b, so that what is learnt from each run
(by the standard learning mechanisms of SAT-solving) is shared
between the different runs.
• For this, you have to make sure the theory lemma a1∧ · · · ∧an⇒c is

derivable from the input problem alone (irrespective of the pushed and
popped literals).

In any case, popping ¬d is not part of the main algorithm of the SAT-solver
(DPLL/CDCL)

This method provides what is probably the fastest prover for IPL (at least in
2015)

18 / 24



Recursivity

Actually:
• Claessen and Dosén actually reuse the same SAT-solver for the

recursive call. They use an incremental SAT-solver, where you can push
and pop literals.
Here: popping ¬d , pushing a,¬b, so that what is learnt from each run
(by the standard learning mechanisms of SAT-solving) is shared
between the different runs.
• For this, you have to make sure the theory lemma a1∧ · · · ∧an⇒c is

derivable from the input problem alone (irrespective of the pushed and
popped literals).

In any case, popping ¬d is not part of the main algorithm of the SAT-solver
(DPLL/CDCL)

This method provides what is probably the fastest prover for IPL (at least in
2015)

18 / 24



Recursivity

Actually:
• Claessen and Dosén actually reuse the same SAT-solver for the

recursive call. They use an incremental SAT-solver, where you can push
and pop literals.
Here: popping ¬d , pushing a,¬b, so that what is learnt from each run
(by the standard learning mechanisms of SAT-solving) is shared
between the different runs.
• For this, you have to make sure the theory lemma a1∧ · · · ∧an⇒c is

derivable from the input problem alone (irrespective of the pushed and
popped literals).

In any case, popping ¬d is not part of the main algorithm of the SAT-solver
(DPLL/CDCL)

This method provides what is probably the fastest prover for IPL (at least in
2015)

18 / 24



How to account for learned clauses proof-theoretically?

More precisely:
those clauses that are discovered while proving a subgoal, and possibly
reused later?

• In [GL13, GL14], I described them in terms of memoisation of root-first
proof search
• In [FGLM13, GL14] as well as this paper, we described them in terms of

cuts

19 / 24



How to account for learned clauses proof-theoretically?

More precisely:
those clauses that are discovered while proving a subgoal, and possibly
reused later?
• In [GL13, GL14], I described them in terms of memoisation of root-first

proof search

• In [FGLM13, GL14] as well as this paper, we described them in terms of
cuts

19 / 24



How to account for learned clauses proof-theoretically?

More precisely:
those clauses that are discovered while proving a subgoal, and possibly
reused later?
• In [GL13, GL14], I described them in terms of memoisation of root-first

proof search
• In [FGLM13, GL14] as well as this paper, we described them in terms of

cuts

19 / 24



A proof-producing / model-constructing version

In the paper, we rephrased Claessen and Dosén’s approach,
formulating a root-first proof search algorithm so that
• in case of success, it builds proofs using 3 rules:

• the generalised⇒-left rule of G4,
• the cut rule,
• an axiom rule that captures any resolution proof (valid in inituitionstic logic)

returned by the SAT-solver;
• in case of failure, it builds a Kripke counter-model of the sequent

• with explicit worlds: sequences of implication clauses
• when applying the the generalised⇒-left rule:

Γ′
imp, a1, . . . , an, a, (b⇒c), Γflat `̀̀ b Γimp, (a1∧ · · · ∧an⇒c), Γflat `̀̀ d

Γimp, Γflat `̀̀ d
going into the left premiss means “pick a world above w where a is true but
b is false, then try to find a contradiction from there”.

This also provides a constructive proof of the completeness of the
approach.

20 / 24



A proof-producing / model-constructing version

In the paper, we rephrased Claessen and Dosén’s approach,
formulating a root-first proof search algorithm so that
• in case of success, it builds proofs using 3 rules:

• the generalised⇒-left rule of G4,
• the cut rule,
• an axiom rule that captures any resolution proof (valid in inituitionstic logic)

returned by the SAT-solver;

• in case of failure, it builds a Kripke counter-model of the sequent
• with explicit worlds: sequences of implication clauses
• when applying the the generalised⇒-left rule:

Γ′
imp, a1, . . . , an, a, (b⇒c), Γflat `̀̀ b Γimp, (a1∧ · · · ∧an⇒c), Γflat `̀̀ d

Γimp, Γflat `̀̀ d
going into the left premiss means “pick a world above w where a is true but
b is false, then try to find a contradiction from there”.

This also provides a constructive proof of the completeness of the
approach.

20 / 24



A proof-producing / model-constructing version

In the paper, we rephrased Claessen and Dosén’s approach,
formulating a root-first proof search algorithm so that
• in case of success, it builds proofs using 3 rules:

• the generalised⇒-left rule of G4,
• the cut rule,
• an axiom rule that captures any resolution proof (valid in inituitionstic logic)

returned by the SAT-solver;
• in case of failure, it builds a Kripke counter-model of the sequent

• with explicit worlds: sequences of implication clauses
• when applying the the generalised⇒-left rule:

Γ′
imp, a1, . . . , an, a, (b⇒c), Γflat `̀̀ b Γimp, (a1∧ · · · ∧an⇒c), Γflat `̀̀ d

Γimp, Γflat `̀̀ d
going into the left premiss means “pick a world above w where a is true but
b is false, then try to find a contradiction from there”.

This also provides a constructive proof of the completeness of the
approach.

20 / 24



A proof-producing / model-constructing version

In the paper, we rephrased Claessen and Dosén’s approach,
formulating a root-first proof search algorithm so that
• in case of success, it builds proofs using 3 rules:

• the generalised⇒-left rule of G4,
• the cut rule,
• an axiom rule that captures any resolution proof (valid in inituitionstic logic)

returned by the SAT-solver;
• in case of failure, it builds a Kripke counter-model of the sequent

• with explicit worlds: sequences of implication clauses

• when applying the the generalised⇒-left rule:
Γ′

imp, a1, . . . , an, a, (b⇒c), Γflat `̀̀ b Γimp, (a1∧ · · · ∧an⇒c), Γflat `̀̀ d

Γimp, Γflat `̀̀ d
going into the left premiss means “pick a world above w where a is true but
b is false, then try to find a contradiction from there”.

This also provides a constructive proof of the completeness of the
approach.

20 / 24



A proof-producing / model-constructing version

In the paper, we rephrased Claessen and Dosén’s approach,
formulating a root-first proof search algorithm so that
• in case of success, it builds proofs using 3 rules:

• the generalised⇒-left rule of G4,
• the cut rule,
• an axiom rule that captures any resolution proof (valid in inituitionstic logic)

returned by the SAT-solver;
• in case of failure, it builds a Kripke counter-model of the sequent

• with explicit worlds: sequences of implication clauses
• when applying the the generalised⇒-left rule:

Γ′
imp, a1, . . . , an, a, (b⇒c), Γflat `̀̀ b Γimp, (a1∧ · · · ∧an⇒c), Γflat `̀̀ d

Γimp, Γflat `̀̀ d
going into the left premiss means “pick a world above w where a is true but
b is false, then try to find a contradiction from there”.

This also provides a constructive proof of the completeness of the
approach.

20 / 24



A proof-producing / model-constructing version

In the paper, we rephrased Claessen and Dosén’s approach,
formulating a root-first proof search algorithm so that
• in case of success, it builds proofs using 3 rules:

• the generalised⇒-left rule of G4,
• the cut rule,
• an axiom rule that captures any resolution proof (valid in inituitionstic logic)

returned by the SAT-solver;
• in case of failure, it builds a Kripke counter-model of the sequent

• with explicit worlds: sequences of implication clauses
• when applying the the generalised⇒-left rule:

Γ′
imp, a1, . . . , an, a, (b⇒c), Γflat `̀̀ b Γimp, (a1∧ · · · ∧an⇒c), Γflat `̀̀ d

Γimp, Γflat `̀̀ d
going into the left premiss means “pick a world above w where a is true but
b is false, then try to find a contradiction from there”.

This also provides a constructive proof of the completeness of the
approach.

20 / 24



Questions

1. Could we open up the black box of the SAT-solver and integrate inside it
theory reasoning, in our case “intuitionistic entailment”, so as to have an
intuitionistic version of DPLL?

An “intuitionistic DPLL” would have to integrate some mechanism
equivalent to making ¬d unusable in (the part of the computation
corresponding to) the recursive call.

2. Could we bypass the preprocessing and directly work on the input
formulae?

3. Could we use SMT-solving’s quantifier instantiation techniques to
generalise this to first-order?

21 / 24



Questions

1. Could we open up the black box of the SAT-solver and integrate inside it
theory reasoning, in our case “intuitionistic entailment”, so as to have an
intuitionistic version of DPLL?
An “intuitionistic DPLL” would have to integrate some mechanism
equivalent to making ¬d unusable in (the part of the computation
corresponding to) the recursive call.

2. Could we bypass the preprocessing and directly work on the input
formulae?

3. Could we use SMT-solving’s quantifier instantiation techniques to
generalise this to first-order?

21 / 24



Questions

1. Could we open up the black box of the SAT-solver and integrate inside it
theory reasoning, in our case “intuitionistic entailment”, so as to have an
intuitionistic version of DPLL?
An “intuitionistic DPLL” would have to integrate some mechanism
equivalent to making ¬d unusable in (the part of the computation
corresponding to) the recursive call.

2. Could we bypass the preprocessing and directly work on the input
formulae?

3. Could we use SMT-solving’s quantifier instantiation techniques to
generalise this to first-order?

21 / 24



Questions

1. Could we open up the black box of the SAT-solver and integrate inside it
theory reasoning, in our case “intuitionistic entailment”, so as to have an
intuitionistic version of DPLL?
An “intuitionistic DPLL” would have to integrate some mechanism
equivalent to making ¬d unusable in (the part of the computation
corresponding to) the recursive call.

2. Could we bypass the preprocessing and directly work on the input
formulae?

3. Could we use SMT-solving’s quantifier instantiation techniques to
generalise this to first-order?

21 / 24



Questions?

22 / 24



M. Farooque, S. Graham-Lengrand, and A. Mahboubi.
A bisimulation between DPLL(T) and a proof-search strategy for the
focused sequent calculus.
In A. Momigliano, B. Pientka, and R. Pollack, editors, Proc. of the 2013
Int. Work. on Logical Frameworks and Meta-Languages: Theory and
Practice (LFMTP 2013). ACM Press, 2013.

S. Graham-Lengrand.
Psyche: a proof-search engine based on sequent calculus with an
LCF-style architecture.
In D. Galmiche and D. Larchey-Wendling, editors, Proc. of the 22nd Int.
Conf. on Automated Reasoning with Analytic Tableaux and Related
Methods (Tableaux’13), volume 8123 of LNCS, pages 149–156.
Springer-Verlag, 2013.

S. Graham-Lengrand.
Polarities & Focussing: a journey from Realisability to Automated
Reasoning.
Habilitation thesis, Université Paris-Sud, 2014.
Available at http://hal.archives-ouvertes.fr/tel-01094980

23 / 24

http://hal.archives-ouvertes.fr/tel-01094980


Restricting {a1, . . . ,an}

a1, . . . , an,A, (B⇒C), Γ `̀̀ B ((A⇒B)⇒C), (a1∧ · · · ∧an⇒C), Γ `̀̀ D

((A⇒B)⇒C), Γ `̀̀ D

Remark: the more ai ’s there are, the weaker the new hypothesis in the right
premiss

⇒ Take {a1, . . . , an} as small as possible (if need be: post-process
the proof to remove the ai ’s that were not used)
• if C is one of the ai : uninteresting
• if A is one of the ai : uninteresting (that ai can be removed)
• if B is one of the ai : left premiss trivial to prove, & no other aj needed.

Interesting inasmuch it implements the rule
((A⇒B)⇒C), (B⇒C), Γ `̀̀ D

(B⇒C) 6∈ Γ
((A⇒B)⇒C), Γ `̀̀ D

(which we could have separately)

Then what?

24 / 24



Restricting {a1, . . . ,an}

a1, . . . , an,A, (B⇒C), Γ `̀̀ B ((A⇒B)⇒C), (a1∧ · · · ∧an⇒C), Γ `̀̀ D

((A⇒B)⇒C), Γ `̀̀ D

Remark: the more ai ’s there are, the weaker the new hypothesis in the right
premiss⇒ Take {a1, . . . , an} as small as possible (if need be: post-process
the proof to remove the ai ’s that were not used)

• if C is one of the ai : uninteresting
• if A is one of the ai : uninteresting (that ai can be removed)
• if B is one of the ai : left premiss trivial to prove, & no other aj needed.

Interesting inasmuch it implements the rule
((A⇒B)⇒C), (B⇒C), Γ `̀̀ D

(B⇒C) 6∈ Γ
((A⇒B)⇒C), Γ `̀̀ D

(which we could have separately)

Then what?

24 / 24



Restricting {a1, . . . ,an}

a1, . . . , an,A, (B⇒C), Γ `̀̀ B ((A⇒B)⇒C), (a1∧ · · · ∧an⇒C), Γ `̀̀ D

((A⇒B)⇒C), Γ `̀̀ D

Remark: the more ai ’s there are, the weaker the new hypothesis in the right
premiss⇒ Take {a1, . . . , an} as small as possible (if need be: post-process
the proof to remove the ai ’s that were not used)
• if C is one of the ai : uninteresting

• if A is one of the ai : uninteresting (that ai can be removed)
• if B is one of the ai : left premiss trivial to prove, & no other aj needed.

Interesting inasmuch it implements the rule
((A⇒B)⇒C), (B⇒C), Γ `̀̀ D

(B⇒C) 6∈ Γ
((A⇒B)⇒C), Γ `̀̀ D

(which we could have separately)

Then what?

24 / 24



Restricting {a1, . . . ,an}

a1, . . . , an,A, (B⇒C), Γ `̀̀ B ((A⇒B)⇒C), (a1∧ · · · ∧an⇒C), Γ `̀̀ D

((A⇒B)⇒C), Γ `̀̀ D

Remark: the more ai ’s there are, the weaker the new hypothesis in the right
premiss⇒ Take {a1, . . . , an} as small as possible (if need be: post-process
the proof to remove the ai ’s that were not used)
• if C is one of the ai : uninteresting
• if A is one of the ai : uninteresting (that ai can be removed)

• if B is one of the ai : left premiss trivial to prove, & no other aj needed.
Interesting inasmuch it implements the rule

((A⇒B)⇒C), (B⇒C), Γ `̀̀ D
(B⇒C) 6∈ Γ

((A⇒B)⇒C), Γ `̀̀ D
(which we could have separately)

Then what?

24 / 24



Restricting {a1, . . . ,an}

a1, . . . , an,A, (B⇒C), Γ `̀̀ B ((A⇒B)⇒C), (a1∧ · · · ∧an⇒C), Γ `̀̀ D

((A⇒B)⇒C), Γ `̀̀ D

Remark: the more ai ’s there are, the weaker the new hypothesis in the right
premiss⇒ Take {a1, . . . , an} as small as possible (if need be: post-process
the proof to remove the ai ’s that were not used)
• if C is one of the ai : uninteresting
• if A is one of the ai : uninteresting (that ai can be removed)
• if B is one of the ai : left premiss trivial to prove, & no other aj needed.

Interesting inasmuch it implements the rule
((A⇒B)⇒C), (B⇒C), Γ `̀̀ D

(B⇒C) 6∈ Γ
((A⇒B)⇒C), Γ `̀̀ D

(which we could have separately)

Then what?

24 / 24



Restricting {a1, . . . ,an}

a1, . . . , an,A, (B⇒C), Γ `̀̀ B ((A⇒B)⇒C), (a1∧ · · · ∧an⇒C), Γ `̀̀ D

((A⇒B)⇒C), Γ `̀̀ D

Remark: the more ai ’s there are, the weaker the new hypothesis in the right
premiss⇒ Take {a1, . . . , an} as small as possible (if need be: post-process
the proof to remove the ai ’s that were not used)
• if C is one of the ai : uninteresting
• if A is one of the ai : uninteresting (that ai can be removed)
• if B is one of the ai : left premiss trivial to prove, & no other aj needed.

Interesting inasmuch it implements the rule
((A⇒B)⇒C), (B⇒C), Γ `̀̀ D

(B⇒C) 6∈ Γ
((A⇒B)⇒C), Γ `̀̀ D

(which we could have separately)

Then what?

24 / 24


