
Strong Normalisation of λLJQ

Stéphane Lengrand1,2

1CNRS, Ecole Polytechnique, France
2University of St Andrews, Scotland
Lengrand@LIX.Polytechnique.fr

8th December 2007

Abstract

The purpose of this paper is to prove the claim in [DL06, DL07] that typed
terms of λLJQ are terminating.

Contents
1 Techniques 1

1.1 Reminder (from e.g. [Len06]): Notations, Definitions and Basic Results 1
1.2 A variant of adjournment for boundedness 4

2 Termination of λ-calculus with an extra call-by-value rule 5
2.1 Reducing under λ and erasing λ can be strongly adjourned 6
2.2 assoc-reduction . 8

3 λLJQ 10

4 Strong normalisation of λLJQ 12
4.1 An encoding into λ-calculus . 12
4.2 A labelled LPO . 13
4.3 Conclusion . 16

A Examples 18

1 Techniques

1.1 Reminder (from e.g. [Len06]): Notations, Definitions and
Basic Results

Definition 1 (Relations)

• We denote the composition of relations by · , the identity relation by Id, and
the inverse of a relation by −1.

• If D ⊆ A, we write R(D) for {M ∈ B| ∃N ∈ D, NRM}, or equivalently⋃
N∈D{M ∈ B| NRM}. When D is the singleton {M}, we write R(M) for

R({M}).
• We say that a relation R : A −→ B is total if R−1(B) = A.

1

Remark 1 Composition is associative, and identity relations are neutral for the
composition operation.

Definition 2 (Reduction relation)

• A reduction relation on A is a relation from A to A.
• Given a reduction relation → on A, we define the set of →-reducible forms

(or just reducible forms when the relation is clear) as rf→ := {M ∈ A| ∃N ∈
A,M → N}. We define the set of normal forms as nf→ := {M ∈ A| 6 ∃N ∈
A,M → N}.

• Given a reduction relation → on A, we write ← for →−1, and we define →n

by induction on the natural number n as follows:
→0:= Id
→n+1:= → ·→n(= →n · →)
→+ denotes the transitive closure of → (i.e. →+:=

⋃
n≥1 →n).

→∗ denotes the transitive and reflexive closure of → (i.e. →∗:=
⋃

n≥0 →n).
↔ denotes the symmetric closure of → (i.e. ↔:= ← ∪ →).
↔∗ denotes the transitive, reflexive and symmetric closure of →.

• An equivalence relation on A is a transitive, reflexive and symmetric reduction
relation on A, i.e. a relation → = ↔∗, hence denoted more often by ∼, ≡. . .

• Given a reduction relation → on A and a subset B ⊆ A, the closure of B
under → is →∗(B).

Definition 3 (Finitely branching relation) A reduction relation → on A is
finitely branching if ∀M ∈ A, →(M) is finite.

Definition 4 (Stability) Given a reduction relation→ on A, we say that a subset
T of A is →-stable (or stable under →) if →(T) ⊆ T .

Definition 5 (Strong simulation)
Let R be a relation between two sets A and B, respectively equipped with the
reduction relations →A and →B.

→B strongly simulates →A through R if (R−1 · →A) ⊆ (→+
B · R−1).

Remark 2

1. If→B strongly simulates→A through R, and if→B⊆→′
B and→′

A⊆→A, then
→′
B strongly simulates →′

A through R.

2. If →B strongly simulates →A and →′
A through R, then it also strongly sim-

ulates →A · →′
A through R.

3. Hence, if→B strongly simulates→A throughR, then it also strongly simulates
→+
A through R.

Definition 6 (Patriarchal) Given a reduction relation → on A, we say that

• a subset T of A is →-patriarchal (or just patriarchal when the relation is
clear) if ∀N ∈ A, →(N) ⊆ T ⇒ N ∈ T .

• a predicate P on A is patriarchal if {M ∈ A| P (M)} is patriarchal.

2

Definition 7 (Normalising elements) Given a reduction relation → on A, the
set of →-strongly normalising elements is

SN→ :=
⋂

T is patriarchal
T

Definition 8 (Bounded elements) The set of→-bounded elements is defined as

BN→ :=
⋃

n≥0

BN→n

where BN→n is defined by induction on the natural number n as follows:

BN→0 := nf→

BN→n+1 := {M ∈ A| ∃n′ ≤ n, →(M) ⊆ BN→n′}

Lemma 3 If → is finitely branching, then BN→ is patriarchal.
As a consequence, BN→ = SN→.

Lemma 4

1. If n < n′ then BN→n ⊆ BN→n′ ⊆ BN→. In particular, nf→ ⊆ BN→n ⊆ BN→.

2. BN→ ⊆ SN→.

Lemma 5

1. SN→ is patriarchal.

2. If M ∈ BN→ then → (M) ⊆ BN→.
If M ∈ SN→ then → (M) ⊆ SN→.

Theorem 6 (Induction principle) Given a predicate P on A,
suppose ∀M ∈ SN→, (∀N ∈ →(M), P (N)) ⇒ P (M).
Then ∀M ∈ SN→, P (M).

When we use this theorem to prove a statement P (M) for all M in SN→, we
just add (∀N ∈ → (M), P (N)) to the assumptions, which we call the induction
hypothesis.

We say that we prove the statement by induction in SN→.

Lemma 7

1. If →1⊆→2, then nf→1 ⊇ nf→2 , SN→1 ⊇ SN→2 ,
and for all n, BN→1

n ⊇ BN→2
n .

2. nf→ = nf→
+

, SN→ = SN→
+
, and for all n, BN→

+

n = BN→n .

Notice that this result enables us to use a stronger induction principle: in order
to prove ∀M ∈ SN→, P (M), it now suffices to prove

∀M ∈ SN→, (∀N ∈ →+(M), P (N)) ⇒ P (M)

This induction principle is called the transitive induction in SN→.

Theorem 8 (Strong normalisation by strong simulation) Let R be a rela-
tion between A and B, equipped with the reduction relations →A and →B.

If →B strongly simulates →A through R, then R−1(SN→B) ⊆ SN→A .

Lemma 9 Given two reduction relations →1, →2, suppose that SN→1 is stable
under →2. Then SN→1∪→2 = SN→

∗
1 ·→2 ∩ SN→1 .

3

1.2 A variant of adjournment for boundedness
Definition 9 Suppose→A is a reduction relation on A,→B is a reduction relation
on B, R is a relation from A to B.

→B simulates the reduction lengths of →A through R if

∀k, ∀M, N ∈ A, ∀P ∈ B, M →k
A N ∧MRP ⇒ ∃Q ∈ B, P →k

B Q

Lemma 10 Suppose →A is a reduction relation on A, →B is a reduction relation
on B, R is a relation from A to B.

If →B strongly simulates →A through R, then →B simulates the reduction
lengths of →A through R.

Proof: We prove by induction on k that ∀k,∀M, N ∈ A2, ∀P ∈ B, M →k
A

N ∧MRP ⇒ ∃Q,P →k
B Q.

• For k = 0: take Q := M = N .

• Suppose it is true for k and take M →A M ′ →k
A N . The strong simulation

gives P ′ such that P →+
B P ′ and M ′RP ′. The induction hypothesis gives Q′

such that P ′ →k
B Q′. Then it suffices to take the prefix P →k+1

B Q (of length
k + 1) of P →+

B P ′ →k
B Q′.

2

Lemma 11 ∀n,∀M, (∀k, ∀N, M →k N ⇒ k ≤ n) ⇐⇒ M ∈ BN→n

Proof: By transitive induction on n.

• For n = 0: clearly both sides are equivalent to M ∈ nf→.

• Suppose it is true for all i ≤ n.

Suppose ∀k, ∀N, M →k N ⇒ k ≤ n + 1. Then take M → M ′ and assume
M ′ →k′ N ′. We have M →k′+1 N ′ so from the hypothesis we derive k′ +
1 ≤ n + 1, i.e. k′ ≤ n. We apply the induction hypothesis on M ′ and get
M ′ ∈ BN→n . By definition of BN→n+1 we get M ∈ BN→n+1.

Conversely, suppose M ∈ BN→n+1 and M →k N . We must prove that k ≤ n+1.
If k = 0 we are done. If k = k′ + 1 we have M → M ′ →k′ N ; by definition of
BN→n+1 there is i ≤ n such that M ′ ∈ BN→i , and by induction hypothesis we
have k′ ≤ i; hence k = k′ + 1 ≤ i + 1 ≤ n + 1.

2

Theorem 12 Suppose →A is a reduction relation on A, →B is a reduction relation
on B, R is a relation from A to B.

If →B simulates the reduction lengths of →A through R, then

∀n,R−1(BN→B
n) ⊆ BN→A

n (⊆ SN→A)

Proof: Suppose N ∈ BN→B
n and MRN . If M →k

A M ′ then by simulation
N →k

B N ′ so by Lemma 11 we have k ≤ n. Hence by (the other direction of)
Lemma 11 we have M ∈ BN→A

n . 2

4

Definition 10 Let →1 and →2 be two reduction relations on A.
The relation →1 can be strongly adjourned with respect to →2 if
whenever M →1 N →2 P there exists Q such that M →2 Q(→1 ∪ →2)+P .

Theorem 13 Let →1 and →2 be two reduction relations on A. If nf→2 ⊆ nf→1

and →1 can be strongly adjourned with respect to →2 then BN→2 ⊆ BN→1∪→2 .

Proof: From Theorem 12, it suffices to show that →2 simulates the reduction
lengths of →1 ∪ →2 through the identity. We show by induction on k that

∀k,∀M,N, M(→1 ∪ →2)kN ⇒ ∃Q,M →k
2 Q

• For k = 0: take Q := M

• For k = 1: If M →2 N take Q := N ; if M →1 N use the hypothesis
nf→2 ⊆ nf→1 to produce Q such that M →2 Q.

• Suppose it is true for k + 1 and take M(→1 ∪ →2)P (→1 ∪ →2)k+1N .

The induction hypothesis provides T such that P →k+1
2 T , in other words

P →2 S →k
2 T .

If M →2 P we are done. If M →1 P we use the hypothesis of adjournment
to transform M →1 P →2 S into M →2 P ′(→1 ∪ →2)+S. Take the prefix
P ′(→1 ∪ →2)k+1R (of length k + 1) of P ′(→1 ∪ →2)+S →k

2 T , and apply
on this prefix the induction hypothesis to get P ′ →k+1

2 R. We thus get
M →k+2

2 R.

2

2 Termination of λ-calculus with an extra call-by-
value rule

We consider the following rule in λ-calculus:

assoc (λx.M) ((λy.N) P) −→ (λy.(λx.M) N) P)

We want to prove

Proposition 1 SNβ ⊆ SNassocβ.

Lemma 14 −→assoc is terminating in λ-calculus.

Proof: Each application of the rule decreases by one the number of pairs of λ
that are not nested. 2

To prove Proposition 1 above, it would thus be sufficient to prove that −→assoc
could be adjourned with respect to −→β , in other words that −→assoc · −→β ⊆
−→β · −→∗

assocβ (the adjournment technique leads directly to the desired strong
normalisation result). When trying to prove the property by induction and case
analysis on the β-reduction following the assoc-reduction to be adjourned, all cases
allow the adjournment but one, namely:

(λx.M) ((λy.N) P) −→assoc (λy.(λx.M) N) P −→β (λy.
{

N�x

}
M) P

Hence, we shall assume without loss of generality that the β-reduction is not of
the above kind. For that we need to identify a sub-relation of β-reduction ↪→ such
that

5

• −→assoc can now be adjourned with respect to ↪→
• we can justify that there is no loss of generality.

For this we give ourselves the possibility of marking λ-redexes and forbid reductions
under their (marked) bindings, so that, if in the assoc-reduction above we make sure
that (λy.(λx.M) N) P) is marked, the problematic β-reduction is forbidden.

Hence we use the usual notation for a marked redex (λy.Q) P , but we can also
see it as the construct let y = P in Q of λC [Mog88] and other works on call-by-value
λ-calculus. We start with a reminder about marked redexes.

Definition 11 The syntax of the λ-calculus is extended as follows:

M, N ::= x | λx.M | M N | (λx.M) N

Reduction is given by the following system β12:

β1 (λx.M) N −→ {
M�x

}
N

β2 (λx.M) N −→ {
M�x

}
N

The forgetful projection onto λ-calculus is straightforward:

φ(x) := x
φ(λx.M) := λx.φ(M)
φ(M N) := φ(M) φ(N)
φ((λx.M) N) := (λx.φ(M)) φ(N)

Remark 15 Clearly, −→β12 strongly simulates −→β through φ−1 and −→β

strongly simulates −→β12 through φ.

2.1 Reducing under λ and erasing λ can be strongly ad-
journed

In this section we identify the reduction notion ↪→ (⊆−→β12) and we argue against
the loss of generality by proving that −→β12 can be strongly adjourned with respect
to ↪→.

We thus split the reduction system β12 into two cases depending on whether or
not a reduction throws away an argument that contains some markings:

Definition 12

βκ

{
(λx.M) P −→ M if x 6∈ FV(M) and there is a term (λx.N) Q v P

(λx.M) P −→ M if x 6∈ FV(M) and there is a term (λx.N) Q v P

βκ

{
(λx.M) P −→ M if x ∈ FV(M) or there is no term (λx.N) Q v P

(λx.M) P −→ M if x ∈ FV(M) or there is no term (λx.N) Q v P

Remark 16 Clearly, −→β12 =−→βκ ∪ −→βκ .

No we distinguish whether or not a reduction occurs underneath a marked redex,
via the following rule and the following notion of contextual closure:

Definition 13

β (λx.M) P −→ (λx.N) P if M −→β12 N

6

Now we define a weak notion of contextual closure for a rewriting system i:

i : M −→ N

M ⇀i N

M ⇀i N

λx.M ⇀i λx.N

M ⇀i N

M P ⇀i N P

M ⇀i N

P M ⇀i P N

M ⇀i N

(λx.P) M ⇀i (λx.P) N

Finally we use the following abbreviations:

Definition 14 Let ↪→:= ⇀βκ and ;1:= ⇀βκ and ;2:= ⇀β .

Remark 17 Clearly, −→β12 =↪→ ∪ ;1 ∪ ;2.

Lemma 18 If (λx.N) Q v P , then there is P ′ such that P ↪→ P ′.

Proof: By induction on P

• The case P = y is vacuous.

• For P = λy.M , we have (λx.N) Q v M and the induction hypothesis provides
M ↪→ M ′, so λy.M ↪→ λy.M ′.

• For P = M1 M2, we have either (λx.N) Q v M1 or (λx.N) Q v M2. In
the former case the induction hypothesis provides M1 ↪→ M ′

1, so M1 M2 ↪→
M ′

1 M2. The latter case is similar.

• Suppose P = (λy.M1) M2. If there is a term (λx′.N ′) Q′ v M2, the induction
hypothesis provides M2 ↪→ M ′

2, so (λy.M1) M2 ↪→ (λy.M1) M ′
2. If there is no

such term (λx′.N ′) Q′ v M2, we have (λy.M1) M2 ↪→ {
M2�y

}
M1.

2

Lemma 19 ;1⊆ ↪→ ·;1

Proof: By induction on the reduction step ;1.
For the base cases (λx.M) P −→βκ M or (λx.M) P −→βκ M with x 6∈ FV(M)

and (λy.N) Q v P , Lemma 18 provides the reduction P ↪→ P ′, so (λx.M) P ↪→
(λx.M) P ′ ;1 M and (λx.M) P ↪→ (λx.M) P ′ ;1 M .

The induction step is straightforward as the same contextual closure is used on
both sides (namely, the weak one). 2

Lemma 20 ;2 · ↪→ ⊆ ↪→ · −→+
β12

Proof: By induction on the reduction step ↪→.

• For the base case where the βκ-reduction is a β2-reduction, we have
M ;2 (λx.N) P ↪→ {

P�x

}
N with x ∈ FV(N) or P has no marked redex

as a subterm. We do a case analysis on the reduction step M ;2 (λx.N) P .

If M = (λx.N ′) P ;2 (λx.N) P because N ′ −→β12 N then (λx.N ′) P ↪→{
P�x

}
N ′ −→β12

{
P�x

}
N .

If M = (λx.N) P ′ ;2 (λx.N) P because P ′ ;2 P , then it means that
P has a marked redex as a subterm, so we must have x ∈ FV(N). Hence
(λx.N) P ′ ↪→

{
P ′�x

}
N−→+

β12

{
P�x

}
N .

7

• For the base case where the βκ-reduction is a β1-reduction, we have
M ;2 (λx.N) P ↪→ {

P�x

}
N with x ∈ FV(N) or P has no marked redex

as a subterm. We do a case analysis on the reduction step M ;2 (λx.N) P .

If M = M ′ P ;2 (λx.N) P because M ′ ;2 λx.N then M ′ must be of the
form λx.M ′′ with M ′′ ;2 N . Then (λx.M ′′) P ↪→ {

P�x

}
M ′′ (in case P has

a marked subterm, notice that x ∈ FV(N) ⊆ FV(M ′′)), and
{

P�x

}
M ′′ −→β12{

P�x

}
N .

If M = (λx.N) P ′ ;2 (λx.N) P because P ′ ;2 P , then it means that
P has a marked redex as a subterm, so we must have x ∈ FV(N). Hence
(λx.N) P ′ ↪→

{
P ′�x

}
N−→+

β12

{
P�x

}
N .

• The closure under λ is straightforward.

• For the closure under application, left-hand side, we have M ;2 N P ↪→ N ′ P
with N ↪→ N ′. We do a case analysis on the reduction step M ;2 N P .

If M = M ′ P ;2 N P with M ′ ;2 N , the induction hypothesis gives
M ′↪→·−→+

β12 N ′ and the weak contextual closure gives M ′ P ↪→·−→+
β12 N ′ P .

If M = N P ′ ;2 N P with P ′ ;2 P , we can also derive N P ′ ↪→ N ′ P ′ −→β12

N ′ P .

• For the closure under application, right-hand side, we have M ;2 N P ↪→
N P ′ with P ↪→ P ′. We do a case analysis on the reduction step M ;2 N P .

If M = M ′ P ;2 N P with M ′ ;2 N , we can also derive M ′ P ↪→
M ′ P ′ −→β12 N P ′.

If M = N M ′ ;2 N P with M ′ ;2 P , the induction hypothesis gives
M ′↪→·−→+

β12 P ′ and the weak contextual closure gives N M ′↪→·−→+
β12 N P ′.

• For the closure under marked redex we have M ;2 (λx.P) N ↪→ (λx.P) N ′

with N ↪→ N ′. We do a case analysis on the reduction step M ;2 (λx.P) N .

If M = (λx.P ′) N ;2 (λx.P) N because P ′ −→β12 P , we can also derive
(λx.P ′) N ↪→ (λx.P ′) N ′ −→β12 (λx.P) N ′.

If M = (λx.P) M ′ ;2 (λx.P) N with M ′ ;2 N , the induction hypothesis
gives M ′ ↪→ Q−→+

β12 N ′ and the weak contextual closure gives (λx.P) M ′ ↪→
(λx.P) Q−→+

β12 (λx.P) N ′.

2

Corollary 21 −→β12 can be strongly adjourned with respect to ↪→.

Proof: Straightforward from the last two theorems, and Remark 17. 2

2.2 assoc-reduction
We introduce two new rules in the marked λ-calculus to simulate assoc:

assoc (λx.M) (λy.N) P −→ (λy.(λx.M) N) P

act (λx.M) N −→ (λx.M) N

Remark 22 Clearly, −→assocact strongly simulates −→assoc through φ−1.

8

Notice that with the let = in -notation, assoc and act are simply the rules of
λC

assoc let x = (let y = P in N) in M −→ let y = P in let x = N in M
act (λx.M) N −→ let x = N in M

Lemma 23 −→assocact · ↪→ ⊆ ↪→ · −→∗
assocact

Proof: By induction on the reduction step ↪→.

• For the first base case, we have M −→assocact (λx.N) P ↪→ {
P�x

}
N with

x ∈ FV(N) or P has no marked subterm. Since root assocact-reduction pro-
duces neither λ-abstractions nor applications at the root, note that M has
to be of the form (λx.N ′) P ′, with either N ′ −→assocact N (and P ′ = P) or
P ′ −→assocact P (and N ′ = N). In both cases, x ∈ FV(N) ⊆ FV(N ′) or P ′ has
no marked subterm, so we also have (λx.N ′) P ′ ↪→

{
P ′�x

}
N ′−→∗

assocact
{

P�x

}
N .

• For the second base case, we have M −→assocact (λx.N) P ↪→ {
P�x

}
N

with x ∈ FV(N) or P has no marked subterm. We do a case analysis on
M −→assocact (λx.N) P .
If M = (λx′.M1) (λx.M2) P −→assoc (λx.(λx′.M1) M2) P with N =
(λx′.M1) M2, we also have M = (λx′.M1) (λx.M2) P ↪→ (λx′.M1)

{
P�x

}
M2 ={

P�x

}
N .

If M = (λx.N) P −→act (λx.N) P then M ↪→ {
P�x

}
N .

If M = (λx.N ′) P ′ −→assocact (λx.N) P with either N ′ −→assocact N (and
P ′ = P) or P ′ −→assocact P (and N ′ = N), we have, in both cases, x ∈
FV(N) ⊆ FV(N ′) or P ′ has no marked subterm, so we also have (λx.N ′) P ′ ↪→{

P ′�x

}
N ′−→∗

assocact
{

P�x

}
N .

• The closure under λ is straightforward.

• For the closure under application, left-hand side, we have Q −→assocact M N ↪→
M ′ N with M ↪→ M ′. We do a case analysis on Q −→assocact M N .
If Q = M ′′ N −→assocact M N with M ′′ −→assocact M , the induction
hypothesis provides M ′′↪→ · −→∗

assocact M ′ so M ′′ N↪→ · −→∗
assocact M ′ N .

If Q = M N ′ −→assocact M N with N ′ −→assocact N , we also have M N ′ ↪→
M ′ N ′ −→assocact M ′ N .

• For the closure under application, right-hand side, we have Q −→assocact
M N ↪→ M N ′ with N ↪→ N ′. We do a case analysis on Q −→assocact M N .
If Q = M ′ N −→assocact M N with M ′ −→assocact M , we also have M ′ N ↪→
M ′ N ′ −→assocact M N ′.
If Q = M N ′′ −→assocact M N with N ′′ −→assocact N , the induction hypoth-
esis provides N ′′↪→ · −→∗

assocact N ′ so M N ′′↪→ · −→∗
assocact M N ′.

• For the closure under marked redex, the ↪→-reduction can only come from the
right-hand side because of the weak contextual closure (↪→ does not reduce
under λ), so we have Q −→assocact (λy.M) P ↪→ (λy.M) P ′ with P ↪→ P ′.
We do a case analysis on Q −→assocact (λy.M) P .
If Q = (λx.M ′) (λy.N) P −→assoc (λy.(λx.M ′) N) P with M = (λx.M ′) N ,
we also have Q = (λx.M ′) (λy.N) P ↪→ (λx.M ′) (λy.N) P ′ −→assoc (λy.(λx.M ′) N) P ′.
If Q = (λy.M) P −→act (λy.M) P , then we also have Q = (λy.M) P ↪→
(λy.M) P ′ −→act (λy.M) P ′.

2

9

Lemma 24 −→∗
assoc,act · −→β12 can be strongly adjourned with respect to ↪→.

Proof: We prove that ∀k,−→k
assoc,act · −→β12 · ↪→ ⊆ ↪→ ·−→∗

assoc,act · −→β12 by
induction on k.

• For k = 0, this is Corollary 21.

• Suppose it is true for k. By the induction hypthesis we get

−→assoc,act ·−→k
assoc,act · −→β12 · ↪→ ⊆ −→assoc,act · ↪→ · −→∗

assoc,act · −→β12

Then by Lemma 23 we get

−→assoc,act · ↪→ · −→∗
assoc,act · −→β12 ⊆ ↪→ · −→assoc,act ·−→∗

assoc,act · −→β12

2

Remark 25 Note from Lemma 18 that nf↪→ ⊆ nf;1∪;2 ⊆ nf−→β12 ⊆ nf−→
∗
assoc,act ·−→β12 .

Theorem 26 BN↪→ ⊆ BN−→
∗
assoc,act ·−→β12

Proof: We apply Theorem 13, since nf↪→ ⊆ nf−→
∗
assoc,act ·−→β12 and clearly

(−→∗
assoc,act · −→β12) ∪ ↪→ = −→∗

assoc,act · −→β12

2

Theorem 27 BNβ ⊆ BN−→
∗
assoc ·−→β

Proof: Since −→β strongly simulates ↪→ through φ, we have φ−1(BNβ) ⊆
BN↪→ ⊆ BN−→

∗
assoc,act ·−→β12 . Hence φ(φ−1(BNβ)) ⊆ φ(BN−→

∗
assoc,act ·−→β12). Since

φ is surjective, BNβ = φ(φ−1(BNβ)). Hence BNβ ⊆ φ(BN−→
∗
assoc,act ·−→β12). Also,

−→∗
assoc,act · −→β12 strongly simulates −→∗

assoc · −→β through φ−1, so
φ(BN−→

∗
assoc,act ·−→β12) ⊆ BN−→

∗
assoc ·−→β . 2

Theorem 28 SNβ ⊆ SNassocβ

Proof: First, from Lemma 4, BN−→
∗
assoc ·−→β ⊆ SN−→

∗
assoc ·−→β . Then from

Lemma 14, −→assoc is terminating and hence SNassoc is stable under −→β . Hence
we can apply Lemma 9 to get SNassocβ = SN−→

∗
assoc ·−→β . From the previous theo-

rem we thus have BNβ ⊆ SNassocβ . Now, noticing that β-reduction in λ-calculus is
finitely branching, Lemma 3 gives BNβ = SNβ and thus SNβ ⊆ SNassocβ . 2

3 λLJQ
Definition 15 (λLJQ) • The syntax of λLJQ comes as two syntactic cate-

gories, the first one of which being that of values:

V, V ′ ::= x | λx.M | 〈
V †x.V ′〉

M,N, P ::= [V] | x[V, y.N] | 〈
V †x.N

〉 | 〈M † x.N〉

• We define x-covalues as those terms of the form [x] or x[V, y.M] with x 6∈
FV(V) ∪ FV(M).

• We define principal cuts as those terms of the form 〈[V] † x.M〉 where M is
an x-covalue.

10

Γ, x :A `V x :A

Γ `V V :A

Γ ` [V] :A

Γ, x :A ` M :B

Γ `V λx.M :A→B

Γ, x :A→B `V V :A Γ, x :A→B, y :B ` N :C

Γ, x :A→B ` x[V, y.N] :C

Γ `V V :A Γ, x :A `V V ′ :B

Γ `V 〈
V †x.V ′〉 :B

Γ `V V :A Γ, x :A ` N :B

Γ ` 〈
V †x.N

〉
:B

Γ ` M :A Γ, x :A ` N :B

Γ ` 〈M † x.N〉 :B

Figure 1: Typing system of λLJQ

• The typing rules are shown in Fig. 1. Derivability, in the typing system of
λLJQ, of the sequents Γ `V V :A and Γ ` M :A, is denoted Γ `VλLJQ V :A and
Γ `λLJQ M :A, respectively.

• The reduction system, also called λLJQ, is shown in Fig. 2.

〈[λx.M] † y.y[V, z.P]〉 −→ 〈〈[V] † x.M〉 † z.P 〉 if y /∈ FV(V) ∪ FV(P)
〈[x] † y.N〉 −→ {x�y}N
〈M † y.[y]〉 −→ M

〈z[V, y.P] † x.N〉 −→ z[V, y. 〈P † x.N〉]
〈〈[V ′] † y.y[V, z.P]〉 † x.N〉 −→ 〈[V ′] † y.y[V, z. 〈P † x.N〉]〉

if y /∈ FV(V) ∪ FV(P)
〈〈M † y.P 〉 † x.N〉 −→ 〈M † y.〈P † x.N〉〉

if the redex is not one of the previous rule
〈[λy.M] † x.N〉 −→ 〈

λy.M †x.N
〉
if N is not an x-covalue

〈
V †x.x

〉 −→ V〈
V †x.y

〉 −→ y〈
V †x.λy.M

〉 −→ λy.
〈
V †x.M

〉

〈
V †x.[V ′]

〉 −→ [
〈
V †x.V ′〉]〈

V †x.x[V ′, z.P]
〉 −→ 〈

[V] † x.x[
〈
V †x.V ′〉 , z.

〈
V †x.P

〉
]
〉

〈
V †x.x′[V ′, z.P]

〉 −→ x′[
〈
V †x.V ′〉 , z.

〈
V †x.P

〉
]〈

V †x.〈M † y.P 〉〉 −→ 〈〈
V †x.M

〉 † y.
〈
V †x.P

〉〉

Figure 2: Reduction rules of λLJQ

As mentioned earlier, the purpose of this paper is to prove that if Γ ` M : A
then M ∈ SN.

11

[V] ∈ V
M ∈ V

〈
V †y.M

〉 ∈ V

Figure 3: Pseudo values

x 6∈ FV(V) ∪ FV(M)
x[V, y.M] ∈ Sx

M ∈ Sx
x 6∈ FV(V)〈

V †y.M
〉 ∈ Sx

M ∈ Sx
x 6∈ FV(N)

〈M † y.N〉 ∈ Sx

Figure 4: Pseudo x-covalues

4 Strong normalisation of λLJQ

4.1 An encoding into λ-calculus
Definition 16 In Fig. 3 and Fig. 4, we inductively define the set V of pseudo values
and the set Sx of pseudo x-covalues, respectively. A cut 〈N † x.M〉 is said to be
pseudo principal if N ∈ V and M ∈ Sx.

Remark 29 Note that V∩Sx = ∅ and its immediate corollary that pseudo principal
cuts cannot be in Sx (nor of course in V).

Remark 30 V and Sx are stable under reduction.

Remark 31 Suppose x 6= y and x 6= z. If M is in Sx (resp. in V) then so is {z�y}M .
Hence if M is a pseudo principal cut then so is {z�y}M .

Definition 17 • We give in Fig. 5 an encoding of λLJQ into the λ-calculus.

x := x

λx.M := I λx.M〈
V †x.V ′〉 :=

{
V�x

}
V ′

[V] := V

x[V, y.M] := (λy.M) (x V)
〈N † x.M〉 :=

{
N�x

}
M N ∈ V ∧M ∈ Sx

〈N † x.M〉 := (λx.M) (N) otherwise〈
V †x.M

〉
:=

{
V�x

}
M

Figure 5: From λLJQ to λ-calculus

• We define in λLJQ the set of β-bounded terms (and values) as
B := {M ∈ λLJQ | ∀N v M, N ∈ SNβ ∧ ∀V ′ v M, V ′ ∈ SNβ}

∪ {V ∈ λLJQ | ∀N v V, N ∈ SNβ ∧ ∀V ′ v V, V
′ ∈ SNβ}

Remark 32 Note that FV(M) ⊆ FV(M) and, from Remark 31, {y�x}M = {y�x}M .

12

Remark 33 (λx.M) N−→∗
assocβ 〈N † x.M〉−→∗

assocβ

{
N�x

}
M

Theorem 34 If M ∈ B (resp. V ∈ B) and M −→λLJQ N (resp. V −→λLJQ V ′),
then N ∈ B (resp. V ′ ∈ B) and M−→∗

assocβ N (resp. V−→∗
assocβ V ′).

Proof: By induction on the reduction steps M −→λLJQ N (resp. V −→λLJQ V ′).
The following table gives the base case of the induction: for each reduction rule, the
left-hand side shows a term to which M (resp. V) assocβ-reduces (by Remark 33),
while the right-hand side shows a term that assocβ-reduces (by Remark 33) to N
(resp. V ′).

(λz.P) (I (λx.M) V) −→∗
assocβ (λz.P) ((λx.M) V)

{x�y}N −→∗
assocβ {x�y}N{

M�y

}
y −→∗

assocβ M

(λx.N) ((λy.P) (z V)) −→∗
assocβ (λy.(λx.N) P) (z V)

(λx.N) ((λz.P) (V ′ V)) −→∗
assocβ (λz.(λx.N) P) (V ′ V)

(λx.N) (
{

M�y

}
P) −→∗

assocβ

{
M�y

}
((λx.N) P) if 〈M † y.P 〉 is pseudo principal

(and thus 〈M † y.〈P † x.N〉〉 is pseudo principal)
(λx.N) ((λy.P) M) −→∗

assocβ (λy.(λx.N) P) M if not{
I λy.M�x

}
N −→∗

assocβ

{
I λy.M�x

}
N

{
V�x

}
x −→∗

assocβ V{
V�x

}
y −→∗

assocβ y{
V�x

}
(I λy.M) −→∗

assocβ I λy.
{

V�x

}
M

{
V�x

}
V ′ −→∗

assocβ

{
V�x

}
V ′

{
V�x

}
((λz.P) (x V ′)) −→∗

assocβ (λz.
{

V�x

}
P) (V

{
V�x

}
V ′){

V�x

}
((λz.P) (x′ V ′)) −→∗

assocβ (λz.
{

V�x

}
P) (x′

{
V�x

}
V ′)

{
V�x

}{
M�y

}
P −→∗

assocβ

{{
V�x

}
M�y

}{
V�x

}
P if 〈M † y.P 〉 is pseudo principal

(and thus
〈〈

V †x.M
〉 † y.

〈
V †x.P

〉〉
is pseudo principal){

V�x

}
((λy.P) M) −→∗

assocβ (λy.
{

V�x

}
P)

{
V�x

}
M if not

The rest of the induction is straightforward, since −→assocβ is context-closed
and principal cuts are stable under reduction (Remark 30). 2

4.2 A labelled LPO
Definition 18 We define a first-order syntax by giving the following infinite sig-
nature:

{?/0, i/1, ii/2,CM
i /2,CM

ii /2,CM
iii/2,CM

iv /2}
with M ranging over the set of λ-terms in SNβ .

We give them the following (terminating1) precedence:

? ≺ i ≺ ii ≺ CN
i ≺ CN

ii ≺ CN
iii ≺ CN

iv ≺ CM
i

1because of Theorem 28

13

for all M, N ∈ SNassocβ such that M(−→assocβ ∪ w)∗N .
We now consider the (terminating) lexicographic path ordering induced by this

precedence over first-order terms (see e.g. [Ter03]).

We now want to encode β-bounded λLJQ-terms into this first-order syntax to
show that λLJQ-reduction decreases first-order encodings w.r.t. the LPO. For that
we need to make a case distinction to encode 〈N † x.M〉, as either a Ci-construct
or a Ciii-one. Those to be encoded as a Ci-construct are identified as the set HP
defined in Fig. 6.

x 6∈ FV(V) ∪ FV(M)
〈[V ′] † x.x[V, y.M]〉 ∈ HP

M ∈ Sx〈
V †x.M

〉 ∈ HP
M ∈ HP

〈M † x.N〉 ∈ HP

Figure 6: Set of “small” cuts

Remark 35 Note that V∩HP = ∅. Consequently, if 〈M † x.N〉 ∈ HP with M ∈ V,
then it is of the form 〈[V] † x.x[V ′, y.P]〉 with x 6∈ FV(V) ∪ FV(P).

Remark 36 If M−→∗ M ′, N−→∗ N ′, V−→∗ V ′ and 〈M † x.N〉 (resp. 〈
V †x.N

〉
)

is in HP, then so is 〈M ′ † x.N ′〉 (resp. 〈
V ′ †x.N ′〉).

Remark 37 If M is in HP then so is {z�y}M .

Fig. 7 then gives the encoding into the first-order syntax.

x := ?
λx.M := i(M)
〈
V †x.V ′〉 := C

〈
V †x.V ′

〉

iv (V , V ′)

[V] := i(V)
x[V, y.M] := ii(V ,M)

〈N † x.M〉 := C〈N†x.M〉
i (N,M) 〈N † x.M〉 ∈ HP

〈N † x.M〉 := C〈N†x.M〉
iii (N,M) otherwise

〈
V †x.M

〉
:= C

〈
V †x.M

〉

ii (V ,M)
〈
V †x.M

〉 ∈ HP
〈
V †x.M

〉
:= C

〈
V †x.M

〉

iv (V ,M) otherwise

Figure 7: Encoding into the first-order syntax

Remark 38 By Remark 37, {x�y}M = M .

Remark 39

1. C(λx.M) N
iii (N,M) (>>∪ =) 〈N † x.M〉 (>>∪ =) C

{
N�x

}
M

i (N,M)

2. C

{
N�x

}
M

iv (N, M) (>>∪ =)
〈
N †x.M

〉
(>>∪ =) C

{
N�x

}
M

ii (N,M)

14

Theorem 40 If M ∈ B (resp. V ∈ B) and M −→λLJQ N (resp. V −→λLJQ V ′),
then N ∈ B (resp. V ′ ∈ B) and M>>N (resp. V >>V ′).

Proof: By induction on the reduction steps M −→λLJQ N (resp. V −→λLJQ V ′).
The following table gives the base case of the induction: for each reduction rule, the
left-hand side shows a term that is (by Remarks 33 and 39) greater than or equal to
M (resp. V), while the right-hand side shows a term that is (by Remark 33 and 39)
greater than or equal to N (resp. V ′).

C(λz.P) (I (λx.M) V)
i (i(i(M)), ii(V , P)) >> C(λz.P) ((λx.M) V)

iii (C(λx.M) V
iii (i(V),M), P)

C{
x�y}N

iv (?, N) >> N

C

{
M�y

}
y

iv (M, ?) >> M

C(λx.N) ((λy.P) (z V))
iii (ii(V , P), N) >> ii(V ,C(λy.(λx.N) P) (z V)

iii (P ,N))

C(λx.N) L
i (CL

i (i(V ′), ii(V , P)), N) >> C(λz.L′) (V ′ V)
i (i(V ′),CL′

iii(P ,N))
with L = (λz.P) (V ′ V) and L′ = (λx.N) P

The next rule splits into two cases:2

C(λx.N) L
i (CL

i (M,P), N) >> C(λy.L′) M
i (M,CL′

iii(P ,N)) if 〈M † y.P 〉 ∈ HP
with L = (λy.P) M and L′ = (λx.N) P

C(λx.N) L
iii (CL

iii(M,P), N) >> CL′
iii(M,C(λx.N) P

iii (P ,N)) if not, with,
if 〈M † y.P 〉 is pseudo principal, L =

{
M�y

}
P and L′ =

{
M�y

}
((λx.N) P)

otherwise L = (λy.P) M and L′ = (λy.(λx.N) P) M

The last rule, again, splits into two cases:3

C

{
I λy.M�x

}
N

iii (i(i(M)), N) >> C

{
I λy.M�x

}
N

ii (i(M), N) if N ∈ Sx

C(λx.N) (I λy.M)
iii (i(i(M)), N) >> C

{
I λy.M�x

}
N

iv (i(M), N) if not

2Given the condition on 〈M † y.P 〉 for the rule to apply, 〈M † y.P 〉 ∈ HP if and only if M ∈ HP
if and only if 〈M † y.〈P † x.N〉〉 ∈ HP if and only if 〈〈M † y.P 〉 † x.N〉 ∈ HP. Moreover, in the
first case, 〈M † y.P 〉 ∈ HP entails that it is not pseudo principal (by Remark 35), hence the shape
of L (and note that L −→assoc (λy.(λx.N) P) M = L′).

3In both cases of the last rule, we have encoded the redex as a Ciii-construct since it cannot
be in HP (by Remark 35).

15

CV
iv(V , ?) >> V

Cy
iv(V , ?) >> ?

C

{
V�x

}
(I λy.M)

iv (V , i(M)) >> i(C

{
V�x

}
M

iv (V ,M))

C

{
V�x

}
V ′

iv (V , i(V ′)) >> i(C

{
V�x

}
V ′

iv (V , V ′))

CL
ii(V , ii(V ′, P)) >> CL

i (i(V), ii(C

{
V�x

}
V ′

iv (V , V ′),C

{
V�x

}
P

iv (V , P)))
with L =

{
V�x

}
((λz.P) (x V ′))

CL
iv(V , ii(V ′, P)) >> ii(C

{
V�x

}
V ′

iv (V , V ′),C

{
V�x

}
P

iv (V , P))
with L =

{
V�x

}
((λz.P) (x′ V ′))

The last rule splits into two cases:4

C

{
V�x

}
L

ii (V ,CL
i (M,P)) >> C

{
V�x

}
L

i (CLM
ii (V ,M),CLP

iv (V , P)) if 〈M † y.P 〉 ∈ Sx

with L = (λy.P) M , LM =
{

V�x

}
M , and LP =

{
V�x

}
P

C

{
V�x

}
L

iv (V ,CL
i (M,P)) >> C

{
V�x

}
L

iii (CLM
iv (V ,M),CLP

iv (V , P)) if not
with L = (λy.P) M or L =

{
M�y

}
P , LM =

{
V�x

}
M , and LP =

{
V�x

}
P

The inductive argument is straightforward, given that Sx and HP are stable
under reduction and the fact that, by Theorem 34, internal reductions can only
decrease labels with respect to (−→assocβ ∪ =). 2

Corollary 41 B ⊆ SN

Proof: By Theorem 8: the decreasing and terminating LPO simulates λLJQ-
reductions through (·) . 2

4.3 Conclusion
Lemma 42 If Γ ` M :A then, for every N v M (resp. V v M), Γ `λ M :A (resp.
Γ `λ V :A) in the simply-typed λ-calculus.

Proof: Straightforward induction on the typing tree, using the typing property
of substitution in λ-calculus. 2

Theorem 43 If Γ ` M :A then M ∈ SN.

Proof: By Lemma 42 and the strong normalisation of the simply-typed λ-calculus,
M ∈ B so M ∈ SN by Corollary 41. 2

References
[DL06] R. Dyckhoff and S. Lengrand. LJQ, a strongly focused calculus for intu-

itionistic logic. In A. Beckmann, U. Berger, B. Loewe, and J. V. Tucker,
editors, Proc. of the 2nd Conf. on Computability in Europe (CiE’06), vol-
ume 3988 of LNCS, pages 173–185. Springer-Verlag, July 2006.

4If 〈M † y.P 〉 ∈ Sx, first it cannot be pseudo principal (Remark 29), and second we also have
M ∈ Sx so

〈〈
V †x.M

〉 † y.
〈
V †x.P

〉〉 ∈ HP. Also note that LP <

{
V�x

}
L.

16

[DL07] R. Dyckhoff and S. Lengrand. Call-by-value λ-calculus and LJQ. J. Logic
Comput., 2007. Accepted for publication.

[Len06] S. Lengrand. Normalisation & Equivalence in Proof Theory & Type The-
ory. PhD thesis, Université Paris 7 & University of St Andrews, 2006.

[Mog88] E. Moggi. Computational lambda-calculus and monads. Report ECS-
LFCS-88-66, University of Edinburgh, Edinburgh, Scotland, October 1988.

[Ter03] Terese. Term Rewriting Systems, volume 55 of Cambridge Tracts in The-
oret. Comput. Sci. Cambridge University Press, 2003.

17

A Examples
Example 1 We give examples of unwanted reductions (leading to non-termination),
which motivated the side-conditions of two rules of λLJQ.

Suppose that W is an abstraction and N is a y-covalue. The reductions
〈〈[W] † y.N〉 † z.P 〉 −→ 〈[W] † y.〈N † z.P 〉〉 and 〈[W] † y.N〉 −→ 〈

[W] †y.N
〉
are

not valid (as the side-conditions of the rules are not satisfied). Our first-order
encoding translates them to

C
(λy.P)

{
W�y

}
N

i (C

{
W�y

}
N

i (i(W), N), P) 6>> C

{
W�y

}
((λz.P) N)

iii (i(W),C(λz.P) N
iii (N,P))

C

{
W�y

}
N

i (i(W), N) 6>> C

{
W�y

}
N

ii (W,N)

Indeed, non-termination of these reductions can be seen as we can turn 〈 † . 〉 into〈 † .
〉
and back:

〈〈[W] † y.N〉 † z.P 〉
↙ ↘

〈[W] † y.〈N † z.P 〉〉 〈〈
W †y.N

〉 † z.P
〉

↓ ↓〈
W †y.〈N † z.P 〉〉 〈〈[W] † y.N ′〉 † z.P 〉

↓〈〈
W †y.N

〉 † z.P ′
〉

↓
〈〈[W] † y.N ′〉 † z.P ′〉

where P ′ =
〈
W †y.P

〉
(but note that y 6∈ FV(P)) and N ′ is the y-covalue obtained

by pushing W inside the y-covalue N .

18

Example 2 On the other hand, the following reductions are allowed (under which
the image by (·) is unchanged).

〈
V †x.〈〈[W] † y.N〉 † z.P 〉〉

↓+〈〈
[W ′] † y.

〈
V †x.N

〉〉 † z.P ′
〉

↙ ↘〈
[W ′] † y.

〈〈
V †x.N

〉 † z.P ′
〉〉 〈〈

W ′ †y.
〈
V †x.N

〉〉 † z.P ′
〉

↓ ↓
〈[W ′] † y.〈N ′ † z.P ′〉〉 〈〈

W ′ †y.N ′〉 † z.P ′
〉

↓ ↓〈
W ′ †y.〈N ′ † z.P ′〉〉 〈〈[W ′] † y.N ′′〉 † z.P ′〉

↓〈〈
W ′ †y.N ′〉 † z.P ′′

〉
↓

〈〈[W ′] † y.N ′′〉 † z.P ′′〉
where W ′ =

〈
V †x.W

〉
, P ′ =

〈
V †x.P

〉
, P ′′ =

〈
W ′ †y.P ′

〉
(but note that y 6∈

FV(P ′)), N ′ is the y-covalue obtained by pushing V inside the y-covalue N , and
N ′′ is the y-covalue obtained by pushing W ′ inside the y-covalue N ′.

This motivated the case distinctions leading to Ci,Cii,Ciii and Civ and their
precedence. Indeed we have

C

{
V�x

}
((λz.P)

{
W�y

}
N)

iv (V ,C
(λy.P)

{
W�y

}
N

i (C

{
W�y

}
N

i (i(W), N), P))

>> C
(λz.P ′)

{
W ′�y

}{
V�x

}
N

iii (C

{
W ′�y

}{
V�x

}
N

iii (i(W ′),C

{
V�x

}
N

iv (V ,N)), P ′)

In the first branch we then get

>> C

{
W ′�y

}
((λz.P ′)

{
V�x

}
N)

iii (i(W ′),C
(λz.P ′)

{
V�x

}
N

iii (C

{
V�x

}
N

iv (V ,N), P ′))

>> C

{
W ′�y

}
((λz.P ′) N ′)

iii (i(W ′),C(λz.P ′) N ′
iii (N ′, P ′))

>> C

{
W ′�y

}
((λz.P ′) N ′)

ii (W ′,C(λz.P ′) N ′
iii (N ′, P ′))

>> C
(λz.P ′′)

{
W ′�y

}
N ′

i (C

{
W ′�y

}
N ′

ii (W ′, N ′), P ′′)

>> C
(λz.P ′′)

{
W ′�y

}
N ′′

i (C

{
W ′�y

}
N ′′

i (i(W ′), N ′′), P ′′)

In the second branch we then get

>> C
(λz.P ′)

{
W ′�y

}{
V�x

}
N

iii (C

{
W ′�y

}{
V�x

}
N

ii (W ′,C

{
V�x

}
N

iv (V ,N)), P ′)

>> C
(λz.P ′)

{
W ′�y

}
N ′

iii (C

{
W ′�y

}
N ′

ii (W ′, N ′), P ′)

>> C
(λz.P ′)

{
W ′�y

}
N ′′

iii (C

{
W ′�y

}
N ′′

i (i(W ′), N ′), P ′)

In this example, we performed reductions dangerously close to the forbidden
ones above (destroying or activating the principal cut), and both branches look
like loops that turn 〈 † . 〉 into 〈 † .

〉
and back, except that this time, we have

consumed V along the way.
Indeed, the first-order terms we have produced along the reductions are rather

big (note the Ciii-constructs) in comparison to C
(λy.P)

{
W�y

}
N

i (C

{
W�y

}
N

i (i(W), N), P),
but in fact they are never compared against it but against the Civ-construct of〈
V †x.

〉
. In other words, we have been able to perform this dangerous reductions

only at the cost of pushing V in, and such things to push are not in infinite supplies.

19

