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Abstract

The purpose of this paper is to prove the claim in [DL06, DLO7] that typed
terms of ALJQ are terminating.
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1 Techniques
1.1 Reminder (from e.g. [Len06]): Notations, Definitions and
Basic Results

Definition 1 (Relations)

e We denote the composition of relations by -, the identity relation by Id, and
the inverse of a relation by ~!.

o If D C A, we write R(D) for {M € B| 3N € D, NRM}, or equivalently
UneptM € Bl NRM}. When D is the singleton {M}, we write R(M) for
R{M}).

e We say that a relation R : A — B is total if R7*(B) = A.



Remark 1 Composition is associative, and identity relations are neutral for the
composition operation.

Definition 2 (Reduction relation)
e A reduction relation on A is a relation from A to A.

e Given a reduction relation — on A, we define the set of —-reducible forms
(or just reducible forms when the relation is clear) as rf~ := {M € A| 3N €
A, M — N}. We define the set of normal forms as nf~ := {M € A] AN €
A M — N}.

e Given a reduction relation — on A, we write « for —~!, and we define —"
by induction on the natural number n as follows:
0.= Id
— =

ntl.— . —>"(: —n

)
—7 denotes the transitive closure of — (i.e. —=T:= |J,5; —").

—* denotes the transitive and reflexive closure of — (i.e. —=*:= J,~, —")-
< denotes the symmetric closure of — (l.e. <= «— U —).

—* denotes the transitive, reflexive and symmetric closure of —.

e An equivalence relation on A is a transitive, reflexive and symmetric reduction
relation on A, i.e. a relation — = «<*, hence denoted more often by ~, =...

e Given a reduction relation — on A and a subset B C A, the closure of B
under — is —*(B).

Definition 3 (Finitely branching relation) A reduction relation — on A is
finitely branching if VM € A, —(M) is finite.

Definition 4 (Stability) Given a reduction relation — on A, we say that a subset
T of A is —-stable (or stable under —) if —(7T)CT.

Definition 5 (Strong simulation)
Let R be a relation between two sets A and B, respectively equipped with the
reduction relations — 4 and —3.

—p strongly simulates — 4 through R if (R™1 - —4) C (= -R7Y).

Remark 2

1. If —p strongly simulates — 4 through R, and if -3C—}% and —/4C— 4, then
—z strongly simulates —’, through R.

2. If —p strongly simulates — 4 and —’, through R, then it also strongly sim-
ulates — 4 - —/4 through R.

3. Hence, if — 3 strongly simulates — 4 through R, then it also strongly simulates
—>j through R.

Definition 6 (Patriarchal) Given a reduction relation — on A, we say that

e a subset 7 of A is —-patriarchal (or just patriarchal when the relation is
clear) if VN e A, -(N)CT=NeT.

e a predicate P on A is patriarchal if {M € A| P(M)} is patriarchal.



Definition 7 (Normalising elements) Given a reduction relation — on A, the
set of —-strongly normalising elements is

SN~ := ﬂ T

T is patriarchal

Definition 8 (Bounded elements) The set of —-bounded elements is defined as
BN™ := [ J BN,
n>0

where BN, is defined by induction on the natural number n as follows:

BNy = nf”
BN, = (M € A3’ <n, —(M) C BN}

Lemma 3 If — is finitely branching, then BN~ is patriarchal.

As a consequence, BN~ = SN

Lemma 4
1. If n < n' then BN, C BN, C BN~ In particular, nf = C BN, C BN
2. BN~ C SN

Lemma 5
1. SN~ is patriarchal.

2. If M € BN™ then — (M) C BN
If M € SN~ then — (M) C SN

Theorem 6 (Induction principle) Given a predicate P on A,
suppose VM € SN, (VN € —(M), P(N)) = P(M).
Then VM € SN, P(M).

When we use this theorem to prove a statement P(M) for all M in SN, we
Just add (VN € — (M), P(N)) to the assumptions, which we call the induction
hypothesis.

We say that we prove the statement by induction in SN™.

Lemma 7

1. If -1 C—y, then nf"* D nf 2, SN~ D SN2,
and for allm, BN,”* O BN, 2.

2. nP:nF+,SW=SW+,andforalln,BN:Jr:BN:.

Notice that this result enables us to use a stronger induction principle: in order
to prove VM € SN™, P(M), it now suffices to prove

VM € SN™, (YN € =1 (M), P(N)) = P(M)
This induction principle is called the transitive induction in SN .

Theorem 8 (Strong normalisation by strong simulation) Let R be a rela-
tion between A and B, equipped with the reduction relations — 4 and —p3.
If —p strongly simulates — 4 through R, then R™1(SN”8) C SN™4.

Lemma 9 Given two reduction relations —1, —so, suppose that SN is stable

under —o. Then SNV ™2 = SN~1 =2 0 SN,



1.2 A variant of adjournment for boundedness

Definition 9 Suppose — 4 is a reduction relation on A, — 3 is a reduction relation
on B, R is a relation from A to B.
—p simulates the reduction lengths of — 4 through R if

VE,VM,N € AVP € B, M —% NAMRP = 3Q € B,P -k Q

Lemma 10 Suppose — 4 is a reduction relation on A, —p is a reduction relation
on B, R is a relation from A to B.

If —p strongly simulates — 4 through R, then —p simulates the reduction
lengths of — 4 through R.

Proof: We prove by induction on k that Vk,YM,N € A2 VP € B, M —>’j;‘
NAMRP = 3Q,P —§ Q.

e For k =0: take Q@ := M = N.

e Suppose it is true for k and take M — 4 M’ —>?4 N. The strong simulation
gives P’ such that P —f P’ and M'RP’. The induction hypothesis gives Q’
such that P’ —%& Q. Then it suffices to take the prefix P —§™ @ (of length
kE+1) OfP—>;§ P’ —>]Z; Q.

Lemma 11 Vn,VM, (Vk,YN,M —*¥ N=k<n) <= M <€BN,
Proof: By transitive induction on n.
e For n = 0: clearly both sides are equivalent to M € nf ™.

e Suppose it is true for all i < n.

Suppose Vk,YN,M —* N = k < n+ 1. Then take M — M’ and assume
M’ —* N’. We have M —*+1 N’ so from the hypothesis we derive k' +
1 <n+1,ie k' <n. We apply the induction hypothesis on M’ and get
M' € BN,;". By definition of BN, ; we get M € BN, ;.

Conversely, suppose M € BN, ; and M —k N. We must prove that k < n+41.

If k = 0 we are done. If k = k' 4+ 1 we have M — M’ —¥ N; by definition of
BN, ; there is i < n such that M’ € BN;”, and by induction hypothesis we

7

have ¥ <i;hence k=k"+1<i+1<n+1.

d

Theorem 12 Suppose — 4 is a reduction relation on A, —p is a reduction relation
on B, R is a relation from A to B.
If —p simulates the reduction lengths of — 4 through R, then

Vn, R"Y(BN, 8) C BN,J* (C SN—4)

Proof:  Suppose N € BN;® and MRN. If M —>f4 M’ then by simulation
N —k N’ so by Lemma 11 we have k < n. Hence by (the other direction of)
Lemma 11 we have M € BN, . O



Definition 10 Let —; and —» be two reduction relations on A.
The relation —; can be strongly adjourned with respect to —o if
whenever M —; N —5 P there exists ) such that M —o Q(—71 U —o) T P.

Theorem 13 Let —; and —o be two reduction relations on A. If nf 2 C nf !
and —1 can be strongly adjourned with respect to —o then BN~2 C BN Y72,

Proof: From Theorem 12, it suffices to show that —5 simulates the reduction
lengths of —1 U —9 through the identity. We show by induction on k that

Vka\V/MaNa M(_>1 U_>2)k]\/vj ElQaM—>12€Q
e For k =0: take Q := M

e For k = 1: If M —5 N take Q := N; if M —; N use the hypothesis
nf~2 C nf ! to produce Q such that M —4 Q.

e Suppose it is true for k + 1 and take M(—1 U —o)P(—1 U —)* 1N,

k+1
2

The induction hypothesis provides T" such that P — T, in other words

P—>QS—>§T.

If M —5 P we are done. If M —; P we use the hypothesis of adjournment
to transform M —; P —3 S into M —5 P/(—1 U —3)"S. Take the prefix
P'(—1 U —2)**1R (of length k + 1) of P/(—; U —2)*S —& T, and apply
on this prefix the induction hypothesis to get P’ —>}2€+1 R. We thus get
M —k+t2 R,

2 Termination of A-calculus with an extra call-by-
value rule

We consider the following rule in A-calculus:
assoc  (Az.M) ((M\y.N) P) — (Ay.(Az.M) N) P)
We want to prove

Proposition 1 SN° C SN0,

Lemma 14 — ,40c is terminating in \-calculus.

Proof: Each application of the rule decreases by one the number of pairs of A
that are not nested. O

To prove Proposition 1 above, it would thus be sufficient to prove that — sss0c
could be adjourned with respect to —4 , in other words that —s0c - —3 C
assocs (the adjournment technique leads directly to the desired strong
normalisation result). When trying to prove the property by induction and case
analysis on the g-reduction following the assoc-reduction to be adjourned, all cases

allow the adjournment but one, namely:

—5 - —

(A2 M) (\-N) P) —assoc (My.(Az.M) N) P —5 (Ay. {¥,} M) P

Hence, we shall assume without loss of generality that the G-reduction is not of
the above kind. For that we need to identify a sub-relation of g-reduction — such
that



® —..oc Can now be adjourned with respect to —
e we can justify that there is no loss of generality.

For this we give ourselves the possibility of marking A-redexes and forbid reductions
under their (marked) bindings, so that, if in the assoc-reduction above we make sure
that (Ay.(Ax.M) N) P) is marked, the problematic S-reduction is forbidden.

Hence we use the usual notation for a marked redex (Ay.Q) P, but we can also
see it as the construct let y = P in @ of Ac [Mog88] and other works on call-by-value
A-calculus. We start with a reminder about marked redexes.

Definition 11 The syntax of the A-calculus is extended as follows:
M,N :=x | x.M | M N | (\x.M) N
Reduction is given by the following system 312:

1 MxM)N — {¥,}N
B2 AzM)N — {¥,IN

The forgetful projection onto A-calculus is straightforward:

o(x) = x

d(\z.M) = Az.o(M)

¢(M N) = ¢(M) ¢(N)
o((Ax.M) N) = (Az.¢(M)) ¢(N)

Remark 15 Clearly, — 12 strongly simulates —3 through ¢~ and —3
strongly simulates —g12 through ¢.

2.1 Reducing under ) and erasing )\ can be strongly ad-
journed

In this section we identify the reduction notion < (C——p12 ) and we argue against
the loss of generality by proving that — 12 can be strongly adjourned with respect
to —.

We thus split the reduction system (312 into two cases depending on whether or
not a reduction throws away an argument that contains some markings:

Definition 12

B { Ae.M) P — M ifx¢FV(M) and there is a term (Ex N)QCP
Ae.M) P — M ifx¢FV(M) and there is a term (Ax.N) Q C P

- (Ax.M) P — M if z € FV(M) or there is no term (Az.N) Q C P
p { (Ax.M) P — M if z € FV(M) or there is no term (Az.N) Q C P

Remark 16 Clearly, —pgi12 =—3, U —3x -

No we distinguish whether or not a reduction occurs underneath a marked redex,
via the following rule and the following notion of contextual closure:

Definition 13

8 MaM)P — (Ao.N)P if M —p N



Now we define a weak notion of contextual closure for a rewriting system 1:
it M — N M —; N M —; N M —; N
M —; N xeM—-; 2N MP—~ NP PM-—,PN

(Ax.P) M —; (Ax.P) N

Finally we use the following abbreviations:
Definition 14 Let <—:= — gz and ~:= —g, and ~»9:= -3
Remark 17 Clearly, —pg12 =— U ~s1 U ~>g.

Lemma 18 If (\z.N) Q C P, then there is P’ such that P — P’.
Proof: By induction on P
e The case P = y is vacuous.

e For P = \y.M, we have (Az.N) Q C M and the induction hypothesis provides
M — M', so Ay.M — \y.M’.

e For P = M; My, we have either (A\z.N) Q C M; or (\z.N) Q C M,. In
the former case the induction hypothesis provides M; — Mj, so My My —
M Ms. The latter case is similar.

e Suppose P = (\y.M;) My. If there is a term (Xac’.NL) Q' C Ms, the induction
hypothesis provides My — M}, so ()\y.]\@) My — (Ay.My) MJ. If there is no
such term (\x'.N') Q' C Ms, we have (A\y.M;) My — {M;"/y}Ml.

Lemma 19 ~»C < -~y

Proof: By induction on the reduction step ~»;.

For the base cases (Ax.M) P —g, M or (Az.M) P —g, M with z ¢ FV(M)
and (Ay.N) Q C P, Lemma 18 provides the reduction P — P’  so (Az.M) P —
(Az.M) P'~»; M and (Az.M) P — (Az.M) P’ ~»; M.

The induction step is straightforward as the same contextual closure is used on
both sides (namely, the weak one). O

Lemma 20 ~g - — C — - —>'ﬁ"12
Proof: By induction on the reduction step —.

e For the base case where the [k-reduction is a [(2-reduction, we have
M ~5 (Az.N) P — {¥,} N with z € FV(N) or P has no marked redex
as a subterm. We do a case analysis on the reduction step M ~+3 (Az.N) P.
If M = (\z.N’) P~ (Ax.N) P because N’ — 315 N then (\z.N') P —
{171-}1\7/ —p12 {171-}N-

If M = (Ax.N) P’ ~»; (Ax.N) P because P’ ~», P, then it means that
P has a marked redex as a subterm, so we must have z € FV(N). Hence

(Az.N) P' — {P//I}N—>;12 {7a}N.



e For the base case where the [(F-reduction is a Fl-reduction, we have
M ~5 (Az.N) P — {Z,} N with x € FV(N) or P has no marked redex
as a subterm. We do a case analysis on the reduction step M ~+y (Ax.N) P.

If M = M' P~ (Ax.N) P because M’ ~» Az.N then M’ must be of the
form Az.M" with M” ~»5 N. Then (Az.M") P — {Z/,} M" (in case P has
a marked subterm, notice that z € FV(N) C FV(M")), and {74} M" — 412

{7.}N.
If M = (Ax.N) P’ ~5 (Ax.N) P because P’ ~3 P, then it means that
P has a marked redex as a subterm, so we must have z € FV(N). Hence

(\z.N) P’ {P/l.}N_gm {Z.}N.

e The closure under A is straightforward.

e For the closure under application, left-hand side, we have M ~»9 N P — N’ P
with N — N’. We do a case analysis on the reduction step M ~+, N P.

If M = M' P ~s9g N P with M’ ~, N, the induction hypothesis gives
M’<—>-—>g12 N’ and the weak contextual closure gives M’ P<—>-—>g12 N’ P.

IfM = N P~ N Pwith P’ ~»5 P, we can also derive N P’ < N’ P’ — 319
N’ P.

e For the closure under application, right-hand side, we have M ~s9 N P —
N P’ with P — P’. We do a case analysis on the reduction step M ~+9 N P.
If M = M P~y N P with M’ ~5 N, we can also derive M’ P —
M/ P/ —p12 N P/.

If M =N M ~5 N P with M’ ~» P, the induction hypothesis gives
M’<—>~—>§12 P’ and the weak contextual closure gives N M’<—>~*>§12 N P'.

e For the closure under marked redex we have M ~»3 (Az.P) N < (Az.P) N’
with N — N’. We do a case analysis on the reduction step M ~» (Az.P) N.

If M = (Az.P’') N ~3 (Az.P) N because P’ —p15 P, we can also derive
(\z.P') N — (A.P') N' — 315 (a.P) N

If M = (Ax.P) M’ ~3 (Az.P) N with M’ ~»5 N, the induction hypothesis
gives M’ — QH}}Q N’ and the weak contextual closure gives (Az.P) M’ —
(Az.P) Qq—}4,, (Az.P) N'.

Corollary 21 —g12 can be strongly adjourned with respect to —.

Proof: Straightforward from the last two theorems, and Remark 17. O

2.2 assoc-reduction

We introduce two new rules in the marked A-calculus to simulate assoc:

assoc  (A\v.M) Ay.N) P — (Ay.(Az.M) N) P
act  (\z.M) N — (Az.M) N

Remark 22 Clearly, —sssocact strongly simulates —s,e0c through ¢~ 1.



Notice that with the let = in -notation, assoc and act are simply the rules of
Ac
assoc letz=(lety=PinN)inM — lety=Pinleta=NinM
act (Ax.M) N — letz=Nin M

Lemma 23 —zsocact - — C — - assocact

Proof: By induction on the reduction step —.

e For the first base case, we have M —zsseact (Ax.N) P — {&x}N with
x € FV(N) or P has no marked subterm. Since root assocact-reduction pro-
duces neither A-abstractions nor applications at the root, note that M has
to be of the form (Az.N') P’, with either N' —zgscact N (and P’ = P) or
P’ —3ssscact P (and N’ = N). In both cases, z € FV(N) C FV(N') or P’ has

no marked subterm, so we also have (Az.N') P’ — {P/ }N’ tsscact {Va}N.

e For the second base case, we have M —zssscact (Xac.N) P — {17$}N
with 2 € FV(N) or P has no marked subterm. We do a case analysis on
M ——3ssocact ()\IN) P

If M = (Xa'.My) (Az.M3) P —ssoe  (Ax.(A\a/.My) M) P with N =
(A’ .My) Ms, we also have M = (Az’.My) (Ax.Ms) P — (A2’ .My) {74} M,

{ZLIN.
If M = (\e.N) P —,cc (A2.N) P then M — {J/,}N.
If M = (XJTN/) Pl —assocact (XIN) P With either N/ ~assocact N (and

P’ = P)or P —sssweact P (and N’ = N), we have, in both cases, = €
FV(N) C FV(N’) or P’ has no marked subterm, so we also have (Az.N') P/ —

{P/x}N/—}:%Tact {171}]\7
e The closure under A is straightforward.

e For the closure under application, left-hand side, we have () —3ss5cact M N —
M’ N with M — M’. We do a case analysis on Q —sssocact M N.

If Q = M" N —ssscacc M N with M" —ssscace M, the induction
hypothesis provides M"— oo M/ so M" Ne— . —* M’ N.

If Q=M N —ss5cact M N with N/ —zss5cact N, we also have M N’/ —
M/ NI —3ssocact M/ N

assocact

e For the closure under application, right-hand side, we have ) —3ssseact
M N — M N’ with N — N’. We do a case analysis on QQ —sssogcact M N.

If Q=M N —3ss0cact M N with M’ —3ss5cacc M, we also have M’ N —
M/ NI ——3ssocact M N/.

IfQ=MN" —zsscactc M N with N —zs5cact N, the induction hypoth-
esis provides N"— . —* __  N'so M N'—.—* __ M N’

assocact assocact

e For the closure under marked redex, the <—-reduction can only come from the
right-hand side because of the weak contextual closure (— does not reduce
under \), so we have QQ —assocact (A\y-M) P — (\y.M) P’ with P — P’
We do a case analysis on Q —zsseeact (Ay.M) P
If Q= (z.M') (Ay.N) P —zssoe (Ay.(Ax.M’) N) P with M = (Az.M’) N,
we also have Q = (A\x.M’) (A\y.N) P — (Az.M') (A\y.N) P’ —zss5c (\y.(Az.M') N) P'.
If Q = (\y.M) P —.e (Ay.M) P, then we also have Q = (\y.M) P —
(Ay.M) P —,t (A\y.M) P’.
O



Lemma 24 —*____ - ——pg12 can be strongly adjourned with respect to —.

assoc,act
Proof: We prove that Vk, —>’§55W7act c——g12 - C—- —>Zssﬁ7act - —pg12 by
induction on k.
e For k = 0, this is Corollary 21.
e Suppose it is true for k. By the induction hypthesis we get
—assoc,act '—>]a€ssT,act T p12 - —assoc,act * " —>:55W)act T T B12
Then by Lemma 23 we get
—assoc,act ' 7" —>2557,act - —p12 € < —3ssec,act '—>:SST,aCt T B12
O

Remark 25 Note from Lemma 18 that nf~ C nf7'">2 C nf %12 C nfassee.act 12

Theorem 26 BN~ C BN asocact ‘812
Proof: We apply Theorem 13, since nf~ C nfasesac T2 4 clearly

12 ) U= = —he i - ——p12

*
—_—
( assoc,act assoc,act

Theorem 27 BN’ C BN assoc 5

Proof:  Since —4 strongly simulates < through ¢, we have ¢~'(BN?) C
BN™ C BN #eeest 2 Hence ¢(¢~ ! (BN®)) C (BN smscact 512 ) Since
¢ is surjective, BN® = ¢(¢~1(BN?)). Hence BN? C (BN asocact “~7512 ) Algo,
Yeoc - —p through ¢!, so

G(BN ™ amoc,act 012 ) C BN Tamee 0 O

— i scac ° ——p12 strongly simulates —

Theorem 28 SN° C SN?s°8

Proof:  First, from Lemma 4, BN asoc "8 C SN ases "¢ Then from
Lemma 14, —,ss0c is terminating and hence SN?*°¢ is stable under — 4 . Hence

we can apply Lemma 9 to get SN3°% = SN™asec "5 _ From the previous theo-
rem we thus have BN® C SN***°°’. Now, noticing that S-reduction in A-calculus is
finitely branching, Lemma 3 gives BN® = SN” and thus SN® C SN3s°<#, O

3 ALJQ

Definition 15 (ALJQ) e The syntax of ALJQ comes as two syntactic cate-
gories, the first one of which being that of values:

v, V' n= x| e M| (VXaV')
M,N,P == [V]]|z[V,y.N]| <V\I.N> | (M {z.N)

e We define z-covalues as those terms of the form [z] or z[V,y.M] with = ¢
FV(V)UFV(M).

e We define principal cuts as those terms of the form ([V]1x.M) where M is
an z-covalue.
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rEYv:A

oA z:A L'k [V]:A
Iz:A+- M:B Iz:A-BFY V:A T,2:A—B,y:BF N:C
'Y Az.M:A—B I',z:A—B + z[V,y.N]:C
'tV v:A Iz:ArV VB 'Y V:A T,z:A+ N:B
I'EY (Vxz.V'):B 't (VXa.N):B

'-M:A TI''z:A+ N:B

' {(Mt{z.N):B

Figure 1: Typing system of ALJQ

e The typing rules are shown in Fig. 1. Derivability, in the typing system of
ALJQ, of the sequents ' Y V:A and T' - M: A, is denoted T’ }—\){LJQ V:A and
I' Fyiq M: A, respectively.

e The reduction system, also called ALJQ, is shown in Fig. 2.

([Az.M] 1 y.y[V, z.P]) — {([V]ta.M)tzP) ify¢gFV(V)UFV(P)
([2] Ty.N) — {N
(M ty.[y]) — M

(ViyPlTaN) — 2[V,y. (Ptz.N)|

(VTtyylV.zPl)t2.N) — (V]tyylV,z2. (PfzN)])
if y ¢ FV(V)UFV(P)

(MtyP)tz.N) — (Miy(Ptz.N))
if the redex is not one of the previous rule
(M.M]tz.N) — (Ay.MXz.N) if N is not an z-covalue

<V’\x.x> — V

<V’\x.y> —

<V\:£./\y.M> — Ay. <V\x M>

(Vxz.[V']) — <V\:U V’>

éV\x.x[V’,z.PD — (V]tza[(VXaV’'), z.(VXz.P)])
VXaz.a' [V, 2.P)) — (VR V'), 2 <V\x P)]
(VXz.(M 1y.P)) — (VX M>Ty<V\x P))

Figure 2: Reduction rules of ALJQ

As mentioned earlier, the purpose of this paper is to prove that if ' = M : A
then M € SN.
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MeVy
Viev (VXyM)eV

Figure 3: Pseudo values

— ¢ FV{V)UFV(M
z[V,y.M] € S, ZRVV) (M)
MeS, MesS,

(Vg M)es, ZRVV) (MigN)es, FVN)

Figure 4: Pseudo x-covalues

4 Strong normalisation of A\LJQ

4.1 An encoding into \-calculus

Definition 16 In Fig. 3 and Fig. 4, we inductively define the set V of pseudo values
and the set S, of pseudo x-covalues, respectively. A cut (N {x.M) is said to be
pseudo principal if N € V and M € S,.

Remark 29 Note that VNS, = () and its immediate corollary that pseudo principal
cuts cannot be in S, (nor of course in V).

Remark 30 V and S, are stable under reduction.

Remark 31 Suppose z # y and « # z. If M isin S, (resp. in V) then sois {7} M.
Hence if M is a pseudo principal cut then so is {7, } M.

Definition 17 e We give in Fig. 5 an encoding of A\LJQ into the A-calculus.

x =
N M = |
(vxavry = {7

V] =V
V] = OyID) @ T)
(Ntz.M) = YV, +M NeVAMEeS,

N+taxz.M) = (Ax.M) (N) otherwise

Figure 5: From ALJQ to A-calculus
e We define in ALJQ the set of B-bounded terms (and values) as
B:= {M e AJQ|YNE M,N eSN° AVV' C M, V' € SN°}
U{V € ALIQ|VYNCV,NeSN’ AWV CV,V €SN}

Remark 32 Note that FV(M) C FV(M) and, from Remark 31, {¥,.} M = {¥.} M.
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Remark 33 (A\z.M) N—7 5 (Nt 2. M)—% s {N/x}ﬂ
Theorem 34 If M € B (resp. Ve B) and M — 159 N (resp.iV —agg V'),
then N € B (resp. V' € B) and M—" N (resp. V—"0c5 V')-

assoc3 asso

Proof: By induction on the reduction steps M — 1 1q N (resp. V —iaiq V).
The following table gives the base case of the induction: for each reduction rule, the
left-hand side shows a term to which M (resp. V') assoc-reduces (by Remark 33),

while the right-hand side shows a term that assoc-reduces (by Remark 33) to N
(resp. V7).

Az.P) (I Dz M) V) —= (Az.P) (Mz.M) V)

) assocf3 /o
{@}N _>:ssocﬁ fy}N
{]\/I?J}y _>:ssocﬁ M
M) (WD) (2 7)) — ey O9.00N) P) (= 7)
Ax.N) ((Az.P) (V''V)) assocs (Az.(Az.N) P) (V''V)
(Az.N) ( ﬁy}ﬁ) —— rss0c 71/ ((Ax.N) P) if (M {y.P) is pseudo principal
(and thus (M {y.(P { z.N)) is pseudo principal)
(Az.N) ((\y.P) M) assoc (AU (Ax.N) P) M if not
{I Ay M/x}N :ssoc,B P 73? N
?T €T *):ssocﬁ 14
V/:D Yy :ssocﬁ Y
v/w (I )‘yM) —):ssocﬁ l )\y {v/w}ﬁ
7/1 W —):ssocﬁ {v/w}il
Vit (A2.P) (& V7)) fssocy (A2 4 Ve P) (V V4 0 V7)
Ve f(Q2P) (0 V1)) —igsees A2\ Va [ P) (2 {70} V)
{V/T} {T/y}ﬁ —lsocs {{%}My} {v/r}? if (M {y.P) is pseudo principal
(and thusi<<V\x.J\74> Ty.<V\x.P>> is pseudo principal)
{V/m}(()\y.ﬁ) M) —issocs (MY {Vw}?) {Vw}ﬁ if not

The rest of the induction is straightforward, since —,ss0cs is context-closed
and principal cuts are stable under reduction (Remark 30). O

4.2 A labelled LPO

Definition 18 We define a first-order syntax by giving the following infinite sig-
nature:

{x/0,i/1,ii/2,C}M /2,C} /2, Cl: /2, CM 2}

with M ranging over the set of A-terms in SN”.
We give them the following (terminating!) precedence:

x<i<ii<CV <<l <cl<cM

1because of Theorem 28
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for all M, N € SN**°% such that M (— socs U J)*N.
We now consider the (terminating) lexicographic path ordering induced by this
precedence over first-order terms (see e.g. [Ter03]).

We now want to encode (-bounded ALJQ-terms into this first-order syntax to
show that ALJQ-reduction decreases first-order encodings w.r.t. the LPO. For that
we need to make a case distinction to encode (N tz.M), as either a C,-construct
or a C;;;-one. Those to be encoded as a C;-construct are identified as the set HP
defined in Fig. 6.

v & FV(V) UFV(M
V] oy erp " & YUV

Mes, M e HP
(VXaz.M) € HP (M z.N) € HP

Figure 6: Set of “small” cuts

Remark 35 Note that VOWHP = (). Consequently, if (M t2.N) € HP with M € V,
then it is of the form ([V]{x.z[V’,y.P]) with = & FV(V) UFV(P).

Remark 36 If M—* M', N—* N’, V—* V' and (M t z.N) (resp. (VXz.N))
is in HP, then so is (M’ { z.N’) (resp. (V'Xz.N')).

Remark 37 If M is in HP then so is {¥,} M.

Fig. 7 then gives the encoding into the first-order syntax.

x = %

Ax.M = i(M)
ey = (N w
\4 = i)

zViyM] =iV, M)

(Ntz.M) = c<N“ MYN,M) (Ntz.M)eHP
(NixM) = CS\ZTT M) (N M)  otherwise
(VXa.M) = AN o) (k) e P
<V\x M) = CSUV\%M>(K,M) otherwise

Figure 7: Encoding into the first-order syntax
Remark 38 By Remark 37, {¥},} M = M.
Remark 39
1. CQ=M N(N M) (35U =) (N f2.M) (U =) ci{%}ﬁ(m M)

2. CZ»{?I}H(M,M) (>U=) (NXz.M) (>U =) Ci{?z}ﬁ(ﬂ,ﬂ)
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Theorem 40 If M € B (resp. V € B) and M — 1,9 N (resp. V. — x50 V'),
then N € B (resp. V' € B) and M>>N (resp. V>>V').

Proof: By induction on the reduction steps M —yjq N (resp. V —iq V).
The following table gives the base case of the induction: for each reduction rule, the
left-hand side shows a term that is (by Remarks 33 and 39) greater than or equal to
M (resp. V), while the right-hand side shows a term that is (by Remark 33 and 39)
greater than or equal to N (resp. V).

Cl()\z.ﬁ) (I (\z. M) V)(i(i(M)), i(V, P)) > C()\Z P) ((Az.M) V)(c(kx M) V( (V), M), P)

K223 1

CN (4, N) > N
P v > M

C(>\T N) (M\y.P) (= V))(II(V P),N) = ii(V, Cg\iy-(/\ﬂlﬁ) P) (2 V)(P N))

=M L(CLiv), (v, P, ) s> €O 7 D) ¢, )
with L = (A\z.P) (V' V) and L' = (Az.N) P

(342

The next rule splits into two cases:?

cPm M E(cl(M, P),N) > CME) M (P, N)) it (M 1y.P) € HP

with L = (\y.P) M and L' = (Az.N) P
Chr ™ H(Ch(AL P), N) > CH(M, C
if (M ty.P) is pseudo prlnmpal L= {

ﬁ(P N)) if not, with,
P and L' = {/y}(()\xN) P)

otherwise = (\y. f) M and L' = (\y.(A\z.N) P) M
The last rule, again, splits into two cases:?

{I )\y.g/m}ﬁ {I Ay.@m}ﬁ
Ciii (ii(M)),N) > G (i(M),N)  fNeS,

™ O any, ) > b oann it

(XX}

2Given the condition on (M 1 y.P) for the rule to apply, (M 1 y.P) € HP if and only if M € HP
if and only if (M Ty.(P{x.N)) € HP if and only if (M {y.P){z.N) € HP. Moreover, in the
first case, (M ty.P) € HP entails that it is not pseudo principal (by Remark 35), hence the shape
of L (and note that L —assoc (A\y.(Az.N) P) M 1 L').

3In both cases of the last rule, we have encoded the redex as a C,;;-construct since it cannot
be in HP (by Remark 35).
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(V) >V
Cl, (V%) o
D iy s i w, any
Mwiwy sl vy o
CL(V.i(V, P)) »w%mwdﬁﬁvmcﬁf@ﬂ»
with L = {Vm (\2.P) (z V7))
CL ViV, P)) s w v, S w ey
with L = {V/m} (\2.P) (' V7))

The last rule splits into two cases:?

Ci{zz}L(K, CH(M,P) > Ci{v} (Chm(v, M), ChP
with L = (A\y.P) M, Ly,

“‘h

V,P)) if (MtyP)eS,
M, and Lp — {%}F

Il
—_—C
Z~3\<\
|

C{VJ}L(K, CL(M P) > C{i} (CLM(V M), cL P (V,P)) if not

(2 211

with L = (\y.P) MorL_{ }P LM_{V/ M, ande:{Vx}ﬁ

The inductive argument is straightforward, given that S, and HP are stable
under reduction and the fact that, by Theorem 34, internal reductions can only
decrease labels with respect to (—assocg U J). O

Corollary 41 B C SN

Proof: By Theorem 8: the decreasing and terminating LPO simulates ALJQ-
reductions through ( - ) . O

4.3 Conclusion

Lemma 42 IfT' = M: A then, for every N T M (resp. V.E M), T =, M:A (resp.
'k, V:A) in the simply-typed \-calculus.

Proof: Straightforward induction on the typing tree, using the typing property
of substitution in A-calculus. O

Theorem 43 IfT'+ M:A then M € SN.

Proof: By Lemma 42 and the strong normalisation of the simply-typed A-calculus,
M € B so M € SN by Corollary 41. O
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A Examples

Example 1 We give examples of unwanted reductions (leading to non-termination),
which motivated the side-conditions of two rules of ALJQ.

Suppose that W is an abstraction and N is a y-covalue. The reductions
(W] §5.N) T 2.P) — (W)Ty.(N T 2P)) and (W] y.N) — ([W]Xy.N) are
not valid (as the side-conditions of the rules are not satisfied). Our first-order
encoding translates them to

% %

C()‘yﬁ) {WU}N(C{W/U}N . {W‘U}((AZﬁ) N)

(i(W),N),P) % C (W), c=P NN, P))

1% /1 “iig

2

?

M ), ) 5 P w

2

C

Indeed, non-termination of these reductions can be seen as we can turn ( } . ) into
( X\ . ) and back:

(W]1y.N)T2.P)
/ N\
(w \y.<zlv t2.P))  (((W]ty.N')tzP)
<<W’\y.]lf> f2.P)
(W]ty.N")12.P)

where P’ = (WXy.P) (but note that y ¢ FV(P)) and N’ is the y-covalue obtained
by pushing W inside the y-covalue N.
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Example 2 On the other hand, the following reductions are allowed (under which
the image by ( - ) is unchanged).

(VXa.(((W]1y.N) { 2.P))
s ]Ly.<V\+x.N>> t2.P')
/ N\

(W] J[y.<<V’Ix.N> t2.P')) <<W”\y.<V\ix.N>> tz.P")
((W"] Ty.(f\f’ T 2.P") ((W'Xy.N") 1 z.P")
<W”\y-<JlV’ tz.P')) (W' Ty.N") 1 z.P')
<<W’\y.Jlf'> tz.P")

(W11 y.N")12.P")

where W' = (VXa.W), P' = (VXa.P), P" = (W'Xy.P’) (but note that y ¢
FV(P')), N’ is the y-covalue obtained by pushing V inside the y-covalue N, and
N""is the y-covalue obtained by pushing W’ inside the y-covalue N’.

This motivated the case distinctions leading to C;,C,;,C,;, and C,, and their
precedence. Indeed we have

%)

Ci{U%E(AZi) {Wj}? w. e {?}N(Ci{ %EN )1, P)
S A e W A e L A W e

In the first branch we then get
. C‘{‘@y}((,\zﬁ) {Z}N)(i(m) C(f\z.ﬁ) {Z}N(C{E}N

W2\ (A= P N7 I R
C{ J}(( 2.P") )<i(M),C(/\Z'P) N (M,B))

> [V o 991

s AT g 0P T ()
S {T’W<C5KW(M,M)7E)
R S ate SO W AW 4

In the second branch we then get

> 147 % v
O Y gy, v,y
2. P’ w/ 2 w/ 7
s O I L G e )

In this example, we performed reductions dangerously close to the forbidden
ones above (destroying or activating the principal cut), and both branches look
like loops that turn ( { . ) into < X . > and back, except that this time, we have
consumed V along the way.

Indeed, the first-order terms we have produced along the reductions are rather

wP) {WIN (W N
big (note the C,;;-constructs) in comparison to CE v { } (Cl{ } (i(Ww),N), P),

but in fact they are never compared against it but against the C,, -construct of
<V\x.>. In other words, we have been able to perform this dangerous reductions
only at the cost of pushing V' in, and such things to push are not in infinite supplies.
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