
Solving bitvectors with MCSAT:
explanations from bits and pieces

Stéphane Graham-Lengrand, Dejan Jovanović, Bruno Dutertre

SRI International

IJCAR, July 2020

1/32



tl;dl (Too Long; Didn’t Listen)

I MCSAT (Model-Constructing Satisfiability)
is a scheme for SMT-solving (Satisfiability-Modulo-Theories),
alternative to DPLL(T ).

I To apply the scheme to a particular theory T ,
you need a form of interpolation mechanism for T .

I Designing an efficient mechanism for the full theory of bitvectors is
difficult. So we do it for 2 fragments of the theory:
I Equality + concatenation and extraction of bitvectors
I A fragment of bitvector arithmetic

Outside these fragments we use a less efficient, but generic, procedure.

I The approach is implemented in SRI’s SMT-solver Yices.

I We experimented it on the SMTLib benchmarks.
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1. Overview of MCSAT
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The model-constructing approach to SMT-solving 1/2
MCSAT introduced in [dMJ13, JBdM13, Jov17],
inspired by multiple contributions including Conflict Resolution [KTV09]
and specific decision procedures for theories such as non-linear
arithmetic [JdM12].

MCSAT tailored to theories with a standard model used for evaluating
constraints (example: arithmetic)
Evaluation is a key aspect of MCSAT
Solving satisfiability problem

(set of constraints on variables x1, . . . , xn)
= finding values for variables x1, . . . , xn

(so that constraints evaluate to true)
MCSAT offers:
I a template for decision procedures
I an integration of such procedures with Boolean reasoning
I new possibilities for combining theories [JBdM13, BGLS19]

The template is a generalisation of how CDCL works, the core calculus of
SAT-solvers.
Run = alternation of search phases and conflict analysis phases

5/32



The model-constructing approach to SMT-solving 1/2
MCSAT introduced in [dMJ13, JBdM13, Jov17],
inspired by multiple contributions including Conflict Resolution [KTV09]
and specific decision procedures for theories such as non-linear
arithmetic [JdM12].
MCSAT tailored to theories with a standard model used for evaluating
constraints (example: arithmetic)
Evaluation is a key aspect of MCSAT

Solving satisfiability problem
(set of constraints on variables x1, . . . , xn)

= finding values for variables x1, . . . , xn
(so that constraints evaluate to true)

MCSAT offers:
I a template for decision procedures
I an integration of such procedures with Boolean reasoning
I new possibilities for combining theories [JBdM13, BGLS19]

The template is a generalisation of how CDCL works, the core calculus of
SAT-solvers.
Run = alternation of search phases and conflict analysis phases

5/32



The model-constructing approach to SMT-solving 1/2
MCSAT introduced in [dMJ13, JBdM13, Jov17],
inspired by multiple contributions including Conflict Resolution [KTV09]
and specific decision procedures for theories such as non-linear
arithmetic [JdM12].
MCSAT tailored to theories with a standard model used for evaluating
constraints (example: arithmetic)
Evaluation is a key aspect of MCSAT
Solving satisfiability problem

(set of constraints on variables x1, . . . , xn)
= finding values for variables x1, . . . , xn

(so that constraints evaluate to true)

MCSAT offers:
I a template for decision procedures
I an integration of such procedures with Boolean reasoning
I new possibilities for combining theories [JBdM13, BGLS19]

The template is a generalisation of how CDCL works, the core calculus of
SAT-solvers.
Run = alternation of search phases and conflict analysis phases

5/32



The model-constructing approach to SMT-solving 1/2
MCSAT introduced in [dMJ13, JBdM13, Jov17],
inspired by multiple contributions including Conflict Resolution [KTV09]
and specific decision procedures for theories such as non-linear
arithmetic [JdM12].
MCSAT tailored to theories with a standard model used for evaluating
constraints (example: arithmetic)
Evaluation is a key aspect of MCSAT
Solving satisfiability problem

(set of constraints on variables x1, . . . , xn)
= finding values for variables x1, . . . , xn

(so that constraints evaluate to true)
MCSAT offers:
I a template for decision procedures
I an integration of such procedures with Boolean reasoning
I new possibilities for combining theories [JBdM13, BGLS19]

The template is a generalisation of how CDCL works, the core calculus of
SAT-solvers.
Run = alternation of search phases and conflict analysis phases

5/32



The model-constructing approach to SMT-solving 1/2
MCSAT introduced in [dMJ13, JBdM13, Jov17],
inspired by multiple contributions including Conflict Resolution [KTV09]
and specific decision procedures for theories such as non-linear
arithmetic [JdM12].
MCSAT tailored to theories with a standard model used for evaluating
constraints (example: arithmetic)
Evaluation is a key aspect of MCSAT
Solving satisfiability problem

(set of constraints on variables x1, . . . , xn)
= finding values for variables x1, . . . , xn

(so that constraints evaluate to true)
MCSAT offers:
I a template for decision procedures
I an integration of such procedures with Boolean reasoning
I new possibilities for combining theories [JBdM13, BGLS19]

The template is a generalisation of how CDCL works, the core calculus of
SAT-solvers.
Run = alternation of search phases and conflict analysis phases

5/32



The model-constructing approach to SMT-solving 2/2

I Like CDCL’s trail assigns Boolean values to Boolean variables,
MCSAT’s trail assigns
I Boolean values to theory atoms; these constitute theory contraints
I model values to first-order variables (e.g., x ← 3/4)

I As in CDCL, MCSAT successively guesses assignments. . .
. . . while maintaining the invariant that
no constraint evaluates to false according to the assignments;

I To pick a value for variable y after x1, . . . , xn were assigned values
v1, . . . , vn, simply worry about constraints over variables x1, . . . , xn, y

(i.e. constraints that have become unit in y)

I If all variables get values while maintaining invariant: SAT.
illustration on the next slide.
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Search phase (satisfiable case)
Free var within Constraints (unit ones in red) Feasible set Var
{x1} C1

1 , . . . ,C1
j , . . . x1

{x1, x2} C2
1 ,C2

2 , . . . ,C2
j , . . . x2

{x1, x2, x3} C3
1 ,C3

2 , . . . ,C3
j , . . . x3

. . .
{x1, . . . , xi} C i

1,C i
2, . . . ,C i

42, . . . ,C i
j , . . . xi

SAT

If at any point the invariant cannot be maintained, it means:
I Some variables x1, . . . , xn have already been assigned values

v1, . . . , vn (here n = i−1): this constitutes a partial model M;

I No value can be assigned to y = xi to extend M into a model of the
constraints {C1, . . . ,Cm} unit in y : M falsifies ∃y(C1 ∧ · · · ∧ Cm),
denoted M 6|= ∃yA, where A is C1 ∧ · · · ∧ Cm.

Backtrack and try new values v ′1, . . . , v ′n to assign to x1, . . . , xn
(i.e. try another M′)
To avoid picking the same values (i.e. the same M) or another model M′
that fails “for the same reason” M fails, we generalise M into a class of
failing models and characterise this class by a conflict explanation.
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v1, . . . , vn (here n = i−1): this constitutes a partial model M;
I No value can be assigned to y = xi to extend M into a model of the

constraints {C1, . . . ,Cm} unit in y : M falsifies ∃y(C1 ∧ · · · ∧ Cm),
denoted M 6|= ∃yA, where A is C1 ∧ · · · ∧ Cm.

Backtrack and try new values v ′1, . . . , v ′n to assign to x1, . . . , xn
(i.e. try another M′)
To avoid picking the same values (i.e. the same M) or another model M′
that fails “for the same reason” M fails, we generalise M into a class of
failing models and characterise this class by a conflict explanation.
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Conflict explanation

The conflict explanation
is a quantifier-free B
(with fv(B) ⊆ {−→x })
over-approximating ∃yA:
I T |= (∃yA)⇒ B
I M 6|= B

B is an interpolant of ∃yA at M.

y

x1

x2
M

A

∃yA

B
¬B

MCSAT considers the theory lemma A⇒ B
that rules out not only M but a set of similar models
(we impose that B be a clause, so A⇒ B is a clause).

If some of the constraints in the conflict result from Boolean propagation,
it performs Boolean conflict analysis on A (Boolean resolutions).

It backtracks to a point where A⇒ B is no longer violated,
e.g., B no longer evaluates (to false).
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MCSAT theories

For a theory T to be turned into an MCSAT “plugin”, we need:
I an efficient way of representing domains of feasible values,

and how they are affected (i.e. reduced) by unit constraints;
I such an explanation mechanism

,
producing interpolants as clauses ,
satisfying some suitable conditions for termination.

MCSAT framework is implemented in Yices (SRI’s main SMT-solver),
with plugins for Boolean, non-linear arithmetic, EUF (can be mixed),
. . . and now bitvectors.
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2. The bitvector theory in MCSAT
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Bitvectors

Traditional approach to bitvectors in SMT-solving:
Bitvector formulae can be encoded into Boolean logic (one Boolean
variable for each bit of each variable): bit blasting.

In this paper:
our approach to turn the bitvector theory into an MCSAT plugin.

On the whole SMTlib bitvector benchmarks,
MCSAT does not perform as well as long established bitblasting solvers
(comparison later in this talk),
but there is a decent subset of instances where it performs better. . .
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A trivial example

(set-info :smt-lib-version 2.6)
(set-logic QF_BV)
(set-info :source |
We verify that (x < y) -> (x + 1 <= y)
...
|)
(set-info :status unsat)
(declare-fun x () (_ BitVec 29980))
(declare-fun y () (_ BitVec 29980))
(assert (bvult x y))
(assert (bvugt (bvadd x (_ bv1 29980)) y))
(check-sat)
(exit)

The best 2 solvers of the SMT-comp 2019 (which use bitblasting) cannot
solve this.
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An MCSAT plugin for bitvectors - encoding domains

We need a nice way of representing domains of feasible values,
and how they are affected (i.e. reduced) by unit constraints:

Binary Decision Diagrams (BDD)

encode functions {0, 1}n → {0, 1}.
When considered over the bits of a n-bit bitvector variable y ,
a BDD can encode any set of bitvector values for y .

Updating the set of feasible values when a constraint becomes unit
corresponds to computing a conjunction of 2 BDDs.
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An MCSAT plugin for bitvectors - explanation mechanism
We need an explanation mechanism producing clausal interpolants
(satisfying some suitable conditions for termination – easy here);

If ∃y(C1 ∧ · · · ∧ Cm) evaluates to false in M = {x1←v1, . . . , xn←vn}
(i.e., if v1, . . . , vn are the values picked for x1, . . . , xn, and C1, . . . ,Cm are
the constraints that leave no feasible values for y)

I Naive explanation mechanism: Take
¬B = x1 ' v1 ∧ · · · ∧ xn ' vn

(only rules out M)

I Default explanation mechanism:
Bitblast the unsat formula C1 ∧ · · · ∧ Cm ∧ x1 ' v1 ∧ · · · ∧ xn ' vn,
and get an unsat core identifying the bits of x1, . . . , xn that mattered.

Better than the naive mechanism, but still inefficient:
Many bit-level explanations may be needed to capture a property
that could be expressed at the word level.
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Word-level explanations

The difficulty is the diversity of word-level bitvector operations.

In the paper we identify 2 fragments of the bitvector theory
for which we design nice explanation mechanisms.

To produce an interpolant for ∃y(C1 ∧ · · · ∧ Cm) at model M,
I we get a conflict core without redundant constraints,

using the QuickXplain algorithm on BDDs; then
I we aggressively rewrite the remaining constraints. . .

. . . in the hope that they fit into one of these two fragments.

If they don’t, we use bitblasting + unsat core for an explanation.

The fragments:
I Equality with concat + extract
I A fragment of linear bitvector arithmetic
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Equality with concat + extract

Constraints C ::= t ' t | t 6' t
Terms t ::= e | y [h:l ] | t ◦ t

where e ranges over evaluable terms, i.e., terms without variable y
(their free variables x1, . . . , xn have values in the current model M)

Explanation mechanism given in the paper, utilising slicing and
model-aware E-graph.
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A fragment of bitvector arithmetic - concrete example
M = {x1←1100, x2←1101, x3←0000}
Constraint C1: ¬(y ' x1)

forbids values in interval I1: [x1; x1 + 1[

Constraint C2: (x1 ≤u x3 + y)

forbids values in interval I2: [−x3; x1 − x3[

Constraint C3: ¬(y − x2 ≤u x3 + y)

forbids values in interval I3: [x2;−x3[

Space of values for y (feasible ones in white, forbidden ones in red):

M(I1)

M(I2)

M(I3)

Z/24Z

0. . . 0

The explanation is (x1+1) ∈ I3 ∧ (−x3) ∈ I2 ∧ (x1 − x3) ∈ I1
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More generally on bitwidth w
Each constraint Ci forbids an interval Ii with interpretation M(Ii) and
upper bound ui .

M(I1)

M(I2)

M(I3)

M(I4)

Z/2wZ

0. . . 0

All values in Z/2wZ end up being forbidden because:
M(u1) ∈M(I2) and M(u2) ∈M(I4) and M(u4) ∈M(I3) and M(u3) ∈M(I1)
The explanation is (u1 ∈ I2) ∧ (u2 ∈ I4) ∧ (u4 ∈ I3) ∧ (u3 ∈ I1)
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Things to do in practice

I For each constraint Ci , compute the forbidden interval Ii
(there are exactly 12 cases to consider – see Table 1 in the paper)

I From the set {I1, . . . , Im} of intervals corresponding to constraints
C1, . . . ,Cm,
extract a sequence Iπ(1), . . . , Iπ(q) covering Z/2wZ in model M,
two consecutive intervals being hooked together.
In the example, the sequence is I1, I3, I2

I Express constraints “a ∈ [d ; u[” in the language of linear
bv-arithmetic: a−d <u u−d
In the example, the explanation

(x1+1) ∈ I3 ∧ (−x3) ∈ I2 ∧ (x1 − x3) ∈ I1
is expressed as

(x1+1−x2 <u −x3−x2) ∧ (0 <u x1) ∧ (−x3 <u 1)
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Extending the method - by enhancing the algorithm
The 12 cases of constraints turning into forbidden intervals capture the
following grammar:
Constraints C ::= a ¬a
Atoms a ::= e1 + y ≤u e2 + y e1 ≤u e2 + y e1 + y ≤u e2

Terms t ::=

t[:l ] t + e1 − t 0k ◦ t t ◦ 0k

where e1, e2 range over evaluable terms.
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Atoms a ::= e1 + t ≤u e2 + t e1 ≤u e2 + t e1 + t ≤u e2
Terms t ::= y [h:] t[:l ] t + e1 − t 0k ◦ t t ◦ 0k

where e1, e2 range over evaluable terms.

Generalization 2:
also with nestings of upper-bit extraction, addition of evaluable terms,
negation, and concatenations with 0s (or with evaluable terms).
See Figure 1 in the paper.
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Extending the method - by adding rewrites

We normalise the constraints in the conflict with the following rules
(Figure 3 in the paper):

u1 <
s u2  ¬(u2 ≤s u1) u1 ≤s u2  u1+2|u1|−1 ≤u u2+2|u2|−1

u1 <
u u2  ¬(u2 ≤u u1) u1 ' u2  u1 − u2 ≤u 0

u[h:l]  u[h:][:l] u[:l][h:]  u[h+l :][:l]
(u1◦u2)[:l]  u1[:l−|u2|] if |u2| ≤ l (u1◦u2)[h:]  u2[h:] if h ≤ |u2|
(u1◦u2)[:l]  u1 ◦ u2[:l] if not (u1◦u2)[h:]  u1[h−|u2|:] ◦ u2 if not
2n × u  u[|u|−n:] ◦ 0n (n < |u|) (u1+u2)[h:]  u1[h:] + u2[h:]
bvnot(u)  −(u + 1) (u1 × u2)[h:]  u1[h:]× u2[h:]
±-extendk (u)  (0k◦(u+2|u|−1))−(0k◦2|u|−1) (−u)[h:]  −u[h:]
u1◦u2  (u1◦0|u2|) + (0|u1|◦u2)

This allows the plugin to cover (at least) the following grammar:
Atoms a ::= e1 + t l e2 + t e1 l e2 + t e1 + t l e2 e1 l e2
Terms t ::= t[h:l ] t + e1 − t e1 ◦ t t ◦ e1 ±-extendk(t)

where l is any comparison symbol in {≤u, <u,≤s , <s ,'}, and terms
can also involve arbitrary extracts, sign-extensions, etc
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3. Experimentation on the SMTLib benchmarks
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Effects of explanation mechanisms and propagation
. . . on the 41,547 instances in SMTLib (QF_BV)
Timeout is 3 minutes
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Numbers

Total number of instances solved by all: 33,236
(14,174 solved by pure preprocessing + 19,062 using MCSAT)
I 14,313 are solved without ever calling the default bitblasting baseline

(' half of the benchmarks are entirely within the two fragments)
I 4,749 instances are solved by a combination of the three explainers.

With the same 3-minute timeout,
I Yices+CadiCal solves 40,962 instances
I Boolector+CadiCal solves 40,763 instances

using bitblasting.

MCSAT not as good on the whole, but in the paper we identify classes of
instances where MCSAT is better, e.g.,
arithmetic explanation mechanism is insensitive to big bitwidths.
For instance, MCSAT could solve 794 instances for which
Boolector+CadiCal timed out.
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4. Conclusion
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Related work

MCSAT approach to bitvectors first explored in [ZWR16], using
I bitvector intervals and masks to represent domains;
I eager propagation mechanisms instead of interpolation-based

conflict-explanations.
Our numbers on SMTLib seem to improve on [ZWR16] quite a bit.

Our work extends preliminary work [GLJ17, GLJ19]. Main improvements:

I Use of arbitrary evaluable terms to extend the scopes of the 2
fragments;

I Generalization 2 of the arithmetic explanation mechanism;
I Normalization of conflicts by rewrite rules
I Experimentation
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Future work and MCSAT beyond ground SMT-solving

I Extend the fragments little by little, e.g., handling a bigger fragment
of bitvector arithmetic, e.g., with arbitrary coefficients for the
conflict variable y in polynomials.

I Explore whether techniques used for quantified bitvector solving can
help MCSAT
I invertibility conditions [NPR+18]
I other techniques inspired by quantifier elimination, e.g., [JC16]

I Even if MCSAT ends up not performing as well as bitblasting on
ground instances, it may still be interesting to produce word-level
explanations of conflicts.
Two applications of these MCSAT explanations currently
investigated at SRI:
I General interpolation problems in the bitvector theory
I Solving quantified problems in the bitvector theory
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Questions?
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