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Abstract. Inspired by the Curry-Howard correspondence, we study normalisation procedures
in the depth-bounded intuitionistic sequent calculus of Hudelmaier (1988) for the implicational
case, thus strengthening existing approaches to Cut-admissibility. We decorate proofs with proof-
terms and introduce various term-reduction systems representing proof transformations. In con-
trast to previous papers which gave different arguments for Cut-admissibility suggesting weakly
normalising procedures for Cut-elimination, our main reduction system and all its variations are
strongly normalising, with the variations corresponding to different optimisations, some of them
with good properties such as confluence.

1 Introduction

The sequent calculus G4ip (as it is called in [T'S00]) for intuitionistic propositional logic was
independently developed by Hudelmaier [Hud89,Hud92], and the first author [Dyc92]; see
also Lincoln, Scedrov & Shankar [LSS91]; it has the strong property of being depth-bounded,
in that proofs are of bounded depth and thus (for root-first proof search) no loop-checking
is required. This contrasts with other calculi for this logic such as Kleene’s G3ip, where
proofs can be of unbounded depth. Its essential ingredients appeared already in 1952 work of
Vorob’ev, published in detail in [Vor70].

Its completeness can be shown by various means, either indirectly, using the completeness
of another calculus and a permutation argument [Dyc92], or directly, such as in the work of
Negri and the first author [DN0O] where cut-admissibility is proved without reference to the
completeness of any other sequent calculus. This admissibility proof could be seen, via the
Curry-Howard correspondence, as a weakly normalising proof-reduction system. Developing
this idea, this paper presents a formulation of implicational G4ip with derivations represented
by (proof-)terms; strong (instead of weak) normalisation is proved by the use of a multi-
set path ordering. Several variations, all of them being strongly normalising, are considered,
depending on whether we want to have a system as general as possible or a system more
restricted (but simpler) implementing some reduction strategy.

The merits of G4ip for proof-search and automated reasoning have been discussed in
many papers (see [ORKO05] for some recent pointers; note its use of an old name LJT for
G4ip), because the property of being depth-bounded makes the space of derivations of a
given sequent finite.

However, a question that has been less investigated, natural though it is, is the follow-
ing: which proofs are produced by proof-search in G4ip and what are their properties? Our
approach to cut-elimination in this paper, with a strongly normalising reduction system in-
ternal to G4ip, tackles this question in terms of the behaviour of these proofs when they are
combined together with cuts. In other words, we give them an operational semantics.

A complementary approach is to give these proofs a denotational semantics and to relate
them (and their reductions) to simply-typed A-terms. We leave this approach for future work.



In contrast to previous work, this paper presents G4ip with a proof-term syntax, so
sequents are of the form I' = M:A where A is a type, M is a (proof-)term and I' is a
consistent finite set of “declarations” of the form z: B, where x is a variable and B a type.
Results about such sequents translate directly to results about traditional “logical sequents”.

Our approach to cut-elimination using proof-terms differs from that in [DNO00], which
showed (in the context of logical sequents) first the admissibility of Contraction and then the
admissibility of “context-splitting” (or “multiplicative”) Cut. Given our interest in the term
calculi, it is appropriate to use rather a “context-sharing” Cut; admissibility of Contraction
then follows as a special case of that of Cut.

Matthes [Mat02] tackled a similar problem, with a variety of motivations, such as that
of understanding better Pitts’ algorithm [Pit92] for uniform interpolation; but his approach
has not yet been brought to a successful conclusion. His work is similar to ours in using
terms to represent derivations; but it differs conceptually from ours by considering not the
use of explicit operators to encode the Cut-rule but the closure of the syntax under (implicit)
substitution, as in pure A-calculus, where the general syntax of A-terms may be considered
as the extension of the normal lambda terms by such an implicit closure. His reduction rules
are global (using implicit substitutions) rather than local (using explicit operators); strong
normalisation is shown for a subset of the reductions, but not for all that are required.

Structure of the paper The paper is organised as follows. Section 2 presents the term syntax
and typing rules of our calculus for G4ip and its auxiliary (admissible) rules. Section 3 studies
proof transformations and reduction rules of the calculus. Section 4 shows a translation from
the calculus to a first-order syntax and Section 5 shows that every reduction step satisfies
subject reduction and decreases first-order terms associated to derivations with respect to
a multi-set path ordering, thus proving strong normalisation. In Section 6 we give different
variants for the reduction system introduced in Section 3, some of them being confluent.
Finally we conclude and give some ideas for further work.

2 Syntax

2.1 Grammar

We assume we are given an infinite set of base types P (known as proposition variables or
atomic formulae in the logical interpretation) and an infinite set of variables z. We consider
the following grammars for types (also known as formulae) and terms:

Definition 1 (Grammar of Types and Terms).

A,B,C,D,E,F :=P | ADB
M,N,L n=x | o.M | z(y,z.M) | x(uw.v.M,z.N) |
inv(z,y.M) | of (M, ) | dec(x,y, z.M) | cut(M,xz.N)

In this definition, the first line defines the syntax for types, the second gives the syntax for
normal or constructor terms (corresponding to primitive derivations) and the third gives the
extra syntax for auziliary terms, which may be built up using also the “auxiliary constructors”
that appear in bold teletype font, such as cut. Six of the eight term constructors use variable
binding: in Az.M, x binds in M; in x(y, 2.M), z binds in M; in z(u.v.M, z.N), u and v bind
in M and z binds in N; in inv(x,y.M), y binds in M; in dec(x,y, 2.M), z binds in M; and
in cut(M,z.N),  binds in N.



Standard conventions are used to avoid confusion of free and bound variables, and a-
convertible terms are regarded as identical.

Certain constraints on the use of the term syntax will be evident once we present the
typing rules; these constraints are captured by the following notion of well-formed term:

Definition 2. A term L is well-formed if in any sub-term of the form

— z(y,2.M), we have x # y, with x not free in M ;

— z(u.v.M, z.N), we have u # v, with x not free in M and not free in N;
— inv(z,y.M), we have x not free in M;

— of (M, z), we have x not free in M;

— dec(z,y,2.M), we have x # y, with both of them not free in M.

Definition 3 (Ordering on (multi-sets of) types). The weight w(A) of a type A is
defined by: w(P) = 1 for any base type P and w(ADB) = 1+ w(A) + w(B). Types are
compared by their weight, i.e. we say that A is smaller than B iff w(A) < w(B).

We shall then compare multi-sets of types, equipped with the traditional multi-set order-

ing [DM79], denoted <, generated by the order relation on types.

The weight is chosen to ensure that, for every rule of the logical sequent calculus G4ip,
the multi-set of types appearing in the conclusion is greater than that of any given premiss.
Hence, we say that G4ip is depth-bounded. See [Dyc92] or [T'S00] for details, and see the next
section for the corresponding property in our version of G4ip with proof-terms.

2.2 Typing

A context I' is a consistent finite set of declarations, i.e. expressions x: A (where z is a variable
and A is a type) declaring x to be of type A; by consistent is meant that if x: A and z: B
are in ', then A = B. When we write a context in the form I, z: A it is always implicit that
there is no declaration x: B in I" of the same variable z. By removing the variable names from
a context I', but keeping the types, we obtain the multiset m(I") of types that is associated
with the context.

A sequent consists of a context I, a term M and a type A; it is written I" = M : A.

The next definition adds term notation to the rules for implication of G4ip; another view
is that it shows how the untyped normal terms of the above grammar may be typed.

Definition 4 (Typing Rules for Normal Terms).

I'z:A= M:B

Az I' = \x.M:ADB R>

Iax:A=x:A
I'y:Az:B= M:FE
I'xz:ADB,y:A = z(y,2.M):E

I'u:C,v:D>B = M:D I'z:B= N:FE
I'z:(Co>D)>B = z(uw.M,z.N):E

L0D

L>D

As remarked before these rules only construct well-formed terms; for example the notation
I')x:ADB,y: A in the conclusion of rule L0D forces x to be not free in M and = # y.

Note that we use a slight variant of the LD D rule used in [Dyc92] and [T'S00], and that
both in axioms I',x:A = x:A and in the rule L0D the type A need not be atomic. In the



rules RD, L0D and LDD the types ADB, ADB and (CD>D)DB respectively are principal; in
L0D the type A is auziliary. (This use of “auxiliary” is not to be confused with its use in
Definition 1 to describe certain kinds of term.)

Notice that in every instance of a rule in Definition 4 with conclusion I" = M : A, each
premiss I” = N:B is such that m(I") U A >, m(I") U B, where U denotes the union of
multi-sets. As a consequence, given I' and A, there are finitely many derivations concluding
I' = M : A for some (normal) term M.

Definition 5 (Typing Rules for Auxiliary Terms).

I'y:CoOD = M:FE I' = M:A>B
. Inv oOf
I''z:D = inv(z,y.M):E I''z:A = of(M,x):B
I'z:(CoD)>DB = M:A I'=M:A z:A)' = N:B

Dec ut

I'z:C,y:DDB = dec(z,y,z.M): A I' = cut(M,z.N):B

As remarked before these rules only construct well-formed terms; for example the notation
I',z: A in the conclusion of rule Inv forces x to be not free in M.

In the Cut-rule, we say that A is the cut-type. Derivations are the labelled trees whose
leaves are axioms and whose internal nodes match rules: each label is a sequent and each
internal node is also labelled by the name of the rule. A derivation is normal if it uses only
the primitive rules, i.e. those of Definition 4. The height of a derivation is just its height as a
tree; so a tree with one node has height 0.

Remark 1. Notice that for each proved sequent I' = M : A there is a unique derivation tree,
which can be reconstructed using the information of the term M that represents the proof
(hence the notion of proof-term).

We will occasionally find it necessary to rename free variables. The renaming by the
variable y of all the free occurrences of = in M, written {y/xz}M, is defined whenever y and
x are distinct variables, M is a well-formed term and y is not free in M.

This is an implicit operation on terms, not an explicit term constructor. In other words,
renaming is a transformation of terms, and it is sound with respect to typing, as shown by
the first of the two results of admissibility of Lemma 1. Admissibility is considered in the
standard sense (see for instance [T'S00]):

Definition 6. A rule R is admissible in an inference system S if and only if, for each instance
whose premisses are all derivable in S, the conclusion is also derivable in S.

Lemma 1. The following rules are admissible both in the system of normal derivations and
in the full system with auxiliary terms, with the proviso that y # x in the (Ren) rule.

I'z:B= M:A I'= M:A

(Ren) (W)
I'y:B = {y/z}M:A I''y:B = M:A

Proof: Routine induction on the height of the derivation of the premiss. Some swapping
of bound variable names may be necessary: recall our convention about a-conversion and
identity of terms. Remember that the notation I',y: B forces y to be not free in M. O

We parenthesise the names of those two rules to indicate their admissibility.



3 Proof Transformations and Reduction Rules

The starting point of this section is the admissibility in the (cut-free) logical sequent calculus
G4ip of the following inference rules (i.e. the logical counter-part of the typing rules for
auxiliary terms given in Definition 5):

F,CDD:>EI I'= ADB of
I'D=E '™ I A= B
I (CoD)>B= A = A A I'= B
I.C.DoB—= 4 De =B Cut

The admissibility of Inv and Of in G4ip can be proved, independently, by induction on
the height of the derivation. For the admissibility of Dec and Cut we can use a simultaneous
induction, the admissibility of one rule being recursively used for the admissibility of the other.
The measure is now the multi-set of types appearing in the unique premiss for Dec and in
the second premiss for Cut. In other words, the induction can be done on {I',(CDD)D>B, A}
for Dec and on {I, A, B} for Cut.

We do not include here the detail of those proofs of admissibility, because they become a
corollary (Corollary 2) of the properties that we show for our calculus with proof-terms.

With proof-terms, those admissibility properties mean that a proof-term M with auxiliary
constructors inv(,_._), of(-,.), dec(., -, -.-) or cut(_,_._) can be transformed into another
proof-term M’ with the same type in the same context that does not use these constructors.

This motivates the notion of logical admissibility in a system with proof-terms:

Definition 7. A rule R is logically admissible in system S if, given an instance with con-
clusion I' = M : A and derivations in system S of its premiss(es), there exists a derivation
inS of ' = M': A for some proof-term M'.

Remark that this notion corresponds to the standard notion of admissibility (Definition 6)
when proof-term annotations are erased.

Indeed, the proofs of admissibility above can be seen as weakly normalising term re-
duction systems that specify how to eliminate the auxiliary constructors inv(_, _._), of(-, ),
dec(_, ., _._) and cut(_, _._).

The reduction systems, given hereafter, must satisfy the following properties:

1. A term containing an auxiliary constructor is reducible by these systems.
2. They satisfy the Subject Reduction property, i.e. preservation of typing.
3. They satisfy some termination property.

Concerning point 3, the weak normalisation property of these systems suffices to prove
the results of admissibility, and the proofs suggested above can be expressed as a terminating
innermost strategy for these reduction systems. Nevertheless, we give in this paper reduction
systems that are in fact strongly normalising. While this can be inferred for the orthogonal
systems that we present in Section 6 (since weak innermost normalisation is equivalent to
strong normalisation for orthogonal systems [O’D77]), the result is not straightforward for
the non-orthogonal ones. However, the measures for induction mentioned above can be taken
as part of a Multi-Set Path Ordering [KL80,BN98] in order to conclude strong normalisation
as well (see Section 4).



We now give in Tables 1, 2 and 3 the reduction systems that eliminate the auxiliary
constructors of, inv and dec. All these rules that we call system oid will be part of the
different variants that we are going to introduce.

(y,2) —o1 Y(T,2.2)
(Ay.M, x) —o2 {z/ytM

of (y(z,w.N), x) —03 Y(z,w.0f (N, x))
(y(uv.M,w.N),x) —o4 y(u.v.M,w.0of(N,x))

Table 1. Reduction Rules for of-terms

inv(z,y.y (uv.M,2.N)) —iq ¥ (uv.inv(z,y.M), z.inv(z,y.N))

inv(z,y.2) —i 2
inv(z,y.y) —iy AZ.T
inv(z,y. 2. M) —iy Az.inv(z,y.M)
inv(z,y.y(w,z.N)) —i, {z/2}N
inv(z,y.y(u.v.M,2.N)) —is {z/2}N
inv(z,y.w(y, z.N)) —i w(wv.z, z.inv(z,y.N))
inv(z,y.y'(w, 2.N)) —ir ¥ (w, z.inv(z, y.N))

(

Table 2. Reduction Rules for inv-terms

dec(z,y, z.2'(z,2'.M)) —gr r(uwvo(zr, 2" y(Z" ww)), 2 dec(x,y, 2.M))
dec(z,y, z.2(uv.M,2'.N)) —qye cut({z/ul{y/v}M,y' y(y', ' .N))

dec(z,y, z.w) —dqy W
dec(zx,y, 2.2) —dy AU (2, wy(w,u.u))
dec(z,y, z. Aw.M) —q3 Aw.dec(z,y, z.M)
dec(z,y, zw(uw.v.M,w'.N)) —4, w(uw.v.dec(x,y, z.M),w' .dec(z,y, 2.N))
dec(z,y, z.w(y', 2/.M)) —ds w2 dec(x,y,2.M))
dec(z,y,z.2(y', 2'.M)) —ds ¥ (x, 2" y(2", 2 inv(2",y . M)))

(

(

Table 3. Reduction Rules for dec-terms

In order to reduce the cuts we now suggest a general system called cegs for cut-elimination
in Tables 4 and 5 (variants are presented in Section 6). The whole system is called gs and
contains the reduction rules in cegs (Tables 4 and 5) plus the ones in oid (Tables 1, 2 and 3).

Summing up :



Kind1

cut(M, z.x) —q M

cut(M, z.y) —p Y

cut(M,z.\y.N) —c Ay.cut(M,z.N)

cut(M, z.y(z,w.N)) —q y(z,w.cut(inv(w,y.M),z.N))

(
(
(
cut(M, z.y(uv.N' w.N)) —¢ y(uv.cut(dec(u,v,y.M),x.N'),w.cut(inv(w,y.M),z.N))
cut(A\z.M,z.y(x,w.N)) — y(u.v.cut(u,z.dec(u,v,y.M)),w.cut(inv(w,y. z.M),z.N))
( y(

cut(z, z.y(z,w.N)) —4 y(z,w.cut(z,z.N))
Kind2
cut(y(z,w.M),z.N) —r y(z,w.cut(M, z.inv(w, y.N)))

(
cut(y(u.v.M',w.M),x.N) —¢ y(uv.M' w.cut(M,z.inv(w, y.N)))

Table 4. Cut Elimination Rules cegs (Kind; and Kinds)

Kind3

cut(M,z.z(z,w.N)) — 4 cut(cut(z,y.0f(M,y)),w.N)

cut(M, z.x(uv.N',w.N)) —p cut(cut(Au.cut(Az.inv(z, y.0f (M, y)),v.N'),y.0f (M, y)), w.N)

Table 5. Cut Elimination Rules cegs (Kinds)

Name of the System| Reduction Rules
oid Tables 1, 2 and 3

cegs Tables 4, 5

gs oid U cegs

As in most cut-elimination systems, the cut-reduction rules can be split into three kinds
(Kindy, Kindz, Kinds), according to whether they push cuts to the right, to the left, or they
break a cut into cuts on smaller types.

Here, owing to the particular inference rules of G4ip and the linearity constraints they
impose on free variables, the first two kinds must use the auxiliary constructs inv(_, _._) and
dec(-, -, —._), rather than just propagate the cuts.

For the third kind of cut-reduction rules, we usually expect both sub-proofs of the cut to
introduce the cut-type (on the right and on the left, respectively). In particular, this requires
the first argument of the cut-constructor to be a wvalue, i.e. a variable or an abstraction, with
a functional type, i.e. an implication ADB. However, just as any A-term can be turned into a
value by an n-expansion, here any term can be turned into a value by the use of the of(_, _)
constructor, with the following rule, which we also call 7:

M —, Ax.of (M, x) ifx ¢ FV(M)

Notice that in both cases this is only sound with respect to typing if the type of the original
term is an implication.

Remark 2. All rules of system gs are such that well-formed terms reduce to well-formed terms.



4 A First-Order Syntax for Typed G4ip-Terms

Termination of the above rewrite systems on typed terms will be proved by the decrease of a
measure associated to typing derivations. The latter are mapped to a first-order syntax with
the following infinite signature:

Y ={x/0,1/1,K/2,J/1} u{D™/1,C™/2 | m is a multiset of types}

where the notation f/n is used to say that the symbol f has arity n, and the symbols have
the following precedence relation:

C"=D"> o= =" =D" = J=K>=1>% if n >, m

Remark 3.

1. The order on types (Definition 3) is well-founded, so >, | is well-founded [DM79].
2. The order >, | is well-founded, so - is also well-founded.
3. The order > is well-founded, so the Multi-Set Path Ordering >>,,, is also well-founded.

We now consider the Multi-set Path Ordering (mpo) [KL80,BN98] on first-order terms
induced by the above precedence relation on symbols. This is the relation defined inductively
as follows:

S <<mpo t;
t; mpo f(t17~-->tn) 5§ Kmpo f(t1>-~-7tn)
U; <<mpo f(tl, .. ,tn) for all 7 g {{t’l, ... ,t/n}} <<mpo mul{tlv o ,tn}}
glut, -y ) Kmpo f(t1, - tn) F@, o th) <mpo f(t1, .- tn)

where ¢ and f are first-order symbols with arities m and n, respectively, and
t1yeeestn, by, oyt UL, ..o U, s are first-order terms.

It can be shown that <, is a well-founded order on first-order terms satisfying the
subterm property, i.e. if s is a subterm of ¢ then s <0 t.

Derivations are mapped to this first-order syntax. In particular, since each sequent I' = M : A
has at most one derivation, we write I' = M : A for such a translation, and even M when the

context and type are clear from the text, as in the right-hand sides of the following definition.

Iz:A=z:A =%

I' = \x.M:ADB =I(M)

I'z:ADB,y:A = x(y,2.M):E =I(M)

I'z:(C>D)>B = z(uw.M,2.N):E =K(M,N)

I''z:D = inv(x,y.M): E = J(M)

I''z:A= of(M,z):B = J(M)

I'z:C,y:DDB = dec(x,y,2.M): A = D{{F’(CDD)DB’A}(F,z:(CDD)DB = M:A)
I' = cut(M,z.N):B =CtABY T =M A2 A T = N:B)

Observe that M = {z/y} M for any renaming of M.



5

In this section we show two fundamental properties of system gs. The first one is subject
reduction and it guarantees that types are preserved by the reduction system. The second
one is strong normalisation and it guarantees that there is no infinite reduction sequence
starting from a typed term. Strong normalisation is shown by a decreasing measure given by

Subject Reduction and Strong Normalisation

the Multi-Set Path Ordering of Section 4.

Theorem 1. If ' = L:E and L —gs L', then I’ = L':E and L >y, L.

Proof: By induction on the proof I' F ¢ : A. We consider only the cases where reduction

takes place at the root.

ol

02

o3

of (y,x) —o1 y(z,2.2)
The derivation

I'"y:ADB = y:ADB Az

I''y:ADB,x:A = of(y,z): B

Of

rewrites to

I'z:A,z:B= z:B Az

I''y:ADB,x:A = y(x,2.2): B L0S
Also, L = J(*) >>mpo I(*) = L’ since J = I.
ot (\y.M, ) —on {x/y}M
The derivation
I''y:A= M:B
RD
I' = \y.M:ADB of
I'z:A= of(\y.M,z):B
rewrites to
I'y:A= M:B
Ren

I'z:A= {z/y}M:B
Also, L = J(I(M)) >>mpo M = L’ by the subterm property of <o -

of (y(z,w.N),x) —o03 y(z,w.0f(N,z))
The derivation

I 2:C,w:D = N:ADB
I'" 2:C,y:C2>D = y(z,w.N): ADB
I 2:C,y:C2D,x: A = of(y(z,w.N),x): B

L0>
Of

rewrites to
I'" z2:C,w:D = N:ADB

I'z:Ciw:D,z:A = of(N,z):B
I'" 2:C,y:CoD,x: A = y(z,w.0f(N,z)):B
Also, L =J(I(N)) >mpo |(J(N)) = L' since J > |.

Of

L0D



o4 of (y(uv.M,w.N),z) —o4 y(u.v.M,w.0of(N,z)) So A is of the form CDD.
The derivation

I w:C,v:D>B' = M:D I w:B"= N:ADB
I'" y:(CoD)DB' = y(uwv.M,w.N): ADB
I'" y:(CoD)DB',x: A = of(y(u.v.M,w.N),z): B

LoD
Of

rewrites to

I'"w:B'= N:ADB
(W) I''Jw:B',x:A = of(N,z):B

I w:C,v:D>B' = M:D
I'" u:C,v:D>B'",2:A = M:D
I y:(CoD)DB,x: A = y(uv.M,w.0f(N,z)): B

of

LoD
Also, L = J(K(M,N)) >0 K(M,J(N)) = L’ since J = K.

il inv(x,y.2) —;

it
The derivation

I'' 2:E,y:ADB = z:FE Az

I'"2:E,x:B = inv(z,y.2): E

Inv

rewrites to

A
I''2:E,2:B = z:FE v

Also, L = J(*) >mpo * = L/ holds by the subterm property of <npo -

i2 inv(z,y.y) —i, Az.x
The derivation

I'"y:ADB = y:ADB Ax

I'"x:B = inv(z,y.y): ADB Inv

rewrites to

I''v:B,2:A = x:B Az

I" v:B = \z.2:ADB R
Also, L = J(x) = I(x) = L’ holds by J = I.

i3 inv(z,y.Az.M) —; Az.inv(z,y.M) with E = CDD

The derivation
I'" y:A>B,2:C = M:D

I'",y:ADB = \z2.M:C>D I
I'" x:B = inv(z,y.\2.M):CDD n

RD

rewrites to
I y:ADB,2:C = M:D

I'z:B,2:C = inv(z,y.M): D
I'"z:B = A\z.inv(z,y.M):CDD

Also, L =J(I(M)) >>mpo 1(J(M)) =L by J = I.

Inv
RD

10



i4

inv(z,y.y(w,2.N)) —;, {x/2}N
The derivation
I w:A,z:B = N:FE

I'w:Ay:ADB = y(w,2.N):E
I'w:A,z:B = inv(z,y.y(w,2.N)): E

L0D

Inv

rewrites to
I''w:A,z:B = N:E

I'w:Ax:B = {z/2}N:E
Also, M = J(I(N)) >mpo N = M’ holds by the subterm property of <po -

Ren

inv(z,y.y(u.v.M,2.N)) —5 {x/2}N with A= CDD
The derivation

I''u:C,v:D>B = M:D I',2:B= N:E
I'y:A>B = y(uwv.M,z.N):E
I''z:B = inv(z,y.y(uv.M,z.N)): E

LD>D

Inv

rewrites to
I"'2:B= N:E

I''z:B = {z/z}N:E

(Ren)

Also, L = J(K(M, N)) >mpo N = L’ holds by the subterm property of <po -

inv(z,y.w(y, 2.N)) —5 w(w.v.z,z.inv(z,y.N))
The derivation

I y:ADB,z:C = N:E
I'" w:(ADB)>C,y:ADB = w(y,2.N):E
I''w:(ADB)DC,x: B = inv(z,y.w(y,2.N)): E

L0D

Inv

rewrites to
A I y:ADB,2:C = N:E
I 2:B,u:A,v:B>C = z:B I'"x:B,z:C = inv(z,y.N)
I'w:(ADB)DC,z:B = w(u.v.x, z.inv(z,y.N)): F

Also, L = J(I(N)) >mpo K(x,J(N)) = L' by J = K, .

N5 Inv
LoD

inv(z,y.y' (w,2.N)) —i; ¢ (w, z.inv(z,y.N))
The derivation
I'"w:C,z:D,y:ADB = N:E
I' w:C,y:CoD,y:ADB = y/(w,2.N):E
I'w:C,y:CoD,z:B = inv(z,y.y'(w,2.N)): E

L0D

Inv

rewrites to
I''w:C,z:D,y:ADB = N:E

I'"w:C,2:D,z:B = inv(z,y.N): E
I'w:C,y:CoD,z:B = y'(w, 2.inv(z,y.N))

Inv
v L0D
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Also, L =J(I(N)) >mpo IJ(N)) =L by J = 1.

inv(z,y.y (u.v.M,2.N)) —ig ¥ (wv.inv(z,y.M), z.inv(z,y.N))
The derivation

I y:ADB,u:C,v:DD>B" = M:D I'"y:ADB,2:B' = N:E

I'y:(CoD)DB,y:ADB = y/(uv.M,2.N): E
Iy :(CoD)DB',z:B = inv(z,y.y (u.v.M,2.N))

LoD

B Inv

rewrites to

I y:ADB,u:C,v:D>B" = M:D / I'"y:ADB,2:B' = N:E /
I x:B,u:C,v:DDB' = inv(z,y.M):D b I'" z2:B,z:B' = inv(x,y.N):E Lm}
D)

I'y:(CoD)D>B',x:B = y(u.v.inv(x,y. M), z.inv(z,y.N)): E

Also, T = J(K(M, N)) Smpo KM, J(N)) = T by J = K.

dec(z,y,z.w) —4,; w, where z,y, z and w are all distinct.
The derivation

A
" w:E,z:(COD)>B = w:E "

I'w:E,z:C,y:DD>B = dec(x,y,z.w): E

Dec

rewrites to

I''w:E,z2:C,y:D>B = w:FE Ax

Also, L = D™ (x) >mpo x = L', where m = {I"", E,(COD)>B, E}.

dec(w,y, 2.2) —qy Av.0(z, w.y(w,u.u)).
The derivation

Ax

I'' z:(CoD)>B = 2:(C>D)D>B
Dec

I''x:C,y:DDB = dec(z,y,2.2): E

rewrites to

I''2:C,w:D,u:B = u:B Aw

I'x:C,w:D,y:DD>B = y(w,u.u): B
I x:C,y:DD>B,v:C>D = v(x,w.y(w,u.u)): B
I'z:C,y:DD>B = \.w(z,w.y(w,u.u)): (COD)DB

Also, L = D™(%) >mpo 1(I(I(x))) = L', where m = {I",(C>D)>B,(C>D)>B}, by
D™~ 1.

L0D

L0D
RD

dec(z,y, 2. \w.M) —y, Aw.dec(z,y,z.M).
The derivation

12



d4

db

I 2:(CoD)>B,w:FEy = M:E;
I 2:(C>D)D>B = Aw.M: E1DF;
I'" z2:C,y:DD>B = dec(z,y, 2. \w.M): E1DFE»

R

Dec

rewrites to
I z2:(CoD)D>B,w:Ey = M:FE»

I x:C,y:DD>B,w:E; = dec(z,y,2.M): F>
I x:C,y:DD>B = \w.dec(x,y,z.M): By DEs

Dec
RD

Let m = {I",(C>D)>B,E1DEs}} and n = {I",(CD>D)DB, E1, E2}}. We have

L= D™ (1(M)) >mpo I(D"(M)) = r

since D" = I, D" because m >, | 7

dec(z,y, zw(uw.v.M,w'.N)) —q, w(uw.v.dec(z,y,z.M),w' dec(z,y,2z.N)).
The derivation

I'v:F,u:GDH,z:(COD)>B = M:G I',w':H,z:(COD)DB = N:FE
I'w:(F>G)DH,z:(C>D)>B = w(u.v.M,w' .N):E
I'" w:(FOG)DH,x:C,y:DDB = dec(x,y, z.w(u.v.M,w'.N)): E

LoD

Dec

rewrites to

I'v:F,u:GOH,x:(Co>D)>B = M:G D I'w:H,z:(COD)>B = N:E
I v:F,u:GoH,z:C,y:D>B = M:G ~°C T'w:H,z:C,y:D>B = N':E
I'w:(F>G)>H,z:C,y:DD>B = w(uwv.M' ,w'.N'):G

Dec
LoD

with M’ = dec(z,y,2.M) and N’ = dec(z,y,2.N).
Let k = {I",(F>G)D>H,(C>D)>B,E} and m = {I",F,GD>H,(C>D)>B,G} and n =
{I",H,(C>D)>B, E}. We have

L = D¥(K(M,N)) >mpo K(D™(M,D"(N)) = T/
since D = K, D™, D" because k > mul M 1

dec(z,y, zw(y', 2/ .M)) —q5 w(y', 2 dec(z,y, z.M)).
The derivation

'y :F 2:G,z:(CoD)>B = M:FE

'y :F,w:FOG,z:(CoD)>B = w(y,z .M):E
Iy :F,w:FOG,z:C,y: DDB = dec(z,y,z.w(y, 2 .M)): E

L0D

Dec

rewrites to

13



d6

d7

I'y:F,2:G,2:(CoD)DB = M:FE
I'y:F,2:G,x:C,y:DDB = dec(x,y,2.M): E
I'y:F,w:FOG,z:C,y:DD>B = w(y, 2 .dec(z,y,2.M)): E

Dec

L0D

Let k= {I",F,F>G,(C>D)D>B,E} and m = {I"", F,G,(C>D)>B, E}}. We have
L = D*(I(M)) >ppo I(D™(M)) = I/

since D¥ = 1, D™ because k > mul M-

dec(z,y,z.2(y, 2. M)) —qq V' (z,2" . y(2", 2 inv(2",y' . M))).
The derivation
I"y:CoD,?:B= M:E
I'"2:(CoD)>B,y :CoD = 2(y,2/.M):E

L0D

I'"x:C,y:D>B,y:C2>D = dec(x,y,z.2(y, 2/ . M)): E Dee
rewrites to
I'",y:CoD,2:B = M:E s
I'2":D,2":B = inv(Z",y . M):E v 0
I'",2":D,y:D>B = y(2", 2 .inv(2",y/.M)): E - (W)
I x:C,2":D,y:D>B = y(z", 2/ .inv(2",y .M)): E
L
I'y:CoD,z:C,y:DDB = y/(z, 2" .y(2", 2 .inv(2",y'.M))): E 0>

Also, L = D*(I(M)) >mpo 1(1(J(M))) = L' since D* = I, J, where k = {I",(C>D)>B,C>D, E}.

dec(z,y, 2.2' (2,2 .M)) —q, z(uv.v(z, 2" y(2", ww)), 2 .dec(z,y, z.M)).
The derivation
I 2:(CoD)2>B,7':A= M:FE
I 2":(CoD)D>B)DA,z:(CoD)DB = /(2,2 .M): E
I'" 2" :((Co>D)>B)DA,z:C,y:DDB = dec(z,y,2.2' (2,2 .M)): E

L0D

Dec

rewrites to

I'"2:(C>D)D>B,7:A= M:E
I'...=uvx"y" ww)):B I 2:C,y:DDB,2': A = dec(z,y,z.M): E
I z:((Co>D)D>B)DA,y:C,2:DDB = z(uv.w(z, 2" .y(z", ww)), 2 .dec(x,y,2.M)): E

Dec
LoD

with first premiss is constructed as follows

I 2:C,w:B,u:BDA,2":D = w:B Az

I x:C,y:DD>B,u:BDA,2":D = y(",ww):B
I''x:C,y:D>B,u:BD>A,v:C2D = v(z, 2" y(z",ww)): B

L0>

L0>
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Let k= {I",(C>D)>B,((Co>D)>B)DA,E} and m = {I",(C>D)D>B, A, E}. We have
L = D¥(I(31)) 3 mpo K(I(1(x)), D™ (31)) = T/

since D* = K, I, %, D™ because k >mul M-

dec(z,y, z.2(u.v.M, 2" .N)) — e cut({y/ut{z/v} M,y y(y', 2'.N)).
The derivation
I v:C,u:D>B = M:D I''?:B= N:E
I'",z2:(CoD)2>B = 2(uw.M,z.N):E
I x:C,y:DDB = dec(z,y,2.2(uv.M,2 .N)): E

LoD
Dec

rewrites to

I"?2:B= N:FE
WD , (")
I oCowDoB = M-D y:D, [ x:C,2:B= N:FE oo
— ' (Ren) o' :D,I",x:C,y:D>B = y(y',2/.N):E
I'z:C,y:DD>B = {y/ul{z/v}M:D

I'" x:C,y:DD>B = cut({y/u}{z/v} M,y y(y',2'.N)):E
Let k= {I",(C>D)>B,E} and j = {I",D,C,D>B, E}}. We have
L =DNK(M,N)) >mpo C(M,I(N)) = L/

Cut

. k g .
since D¥ = C/, | because k >, J-

cut(M,z.x) —4 M.
The derivation

Ax

I'=M:A I''v:A=2:A
Cut

I' = cut(M,z.x):A

rewrites to

I'=M:A
Also, L = C"™(M, %) >mpo M = L', where m = {I, A, A}.

cut(M,z.y) —p y.
The derivation

Ax

I''y:E= M:A I''y:E,x:A= y:E
Cut

I'y:FE = cut(M,z.y):E

rewrites to

I''y:E = y:E
Also, L = C"(M,*) >mpo x = L', where m = {I", E, A, E}.
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cut(M,x. \y.N) —. Ay.cut(M,xz.N).
The derivation

x:A, I y:C = N:D
I'= M:A z:A, T = \y.N:CDOD
I' = cut(M,z.\y.N):C>D

RO

ut

rewrites to

I'y:C= M:A x:A, I y:C = N:D
I'y:C = cut(M,x.N):D
I' = \y.cut(M,x.N):C>D

Let k= {A,I',CoD} and j = {A,I',C,D}. We have

Cut

L =CFHM,I(N)) > pmpo (CI(M,N)) =T/

since C¥ > |, C/ because k >mul J-

cut(M,z.z2(y,w.N)) —4 z(y,w.cut(inv(w, z.M),z.N)).
The derivation

AT, y:C,w:B = N:E
I''y:C,2:CoB= M:A xz:AI",y:C,2:COB = 2(y,w.N):E
I'"y:C,z2:C2>B = cut(M,z.2(y,w.N)): E

L0D
Cut

rewrites to
I y:C,z:CoB = M:A s
I'" y:C,w:B = inv(w,z.M): A n 2: A, I, y:C,w:B = N:FE
I y:C,w:B = cut(inv(w,2.M),z.N): E
I'y:C,2:C2>B = z(y,w.cut(inv(w, 2.M),z.N)): E
Let k= {A,I",C,CoB,E} and j = {A,I",C, B, E}}. We have

Cut

L0D

L= C*(M(N)) > mpo (CTJ(M),N) =T

since C* = I, 7, J because k >, J-

cut(M,z.y(u.v.N, 2.N")) —¢ y(u.v.cut(dec(v,u,y.M),z.N), z.cut(inv(z,y.M),z.N")).
The derivation

AT v:C,u:D>B = N:D z:AI',2:B= N"E
I y:(CoOD)DB = M:A z: A, I",y:(C>D)>B = y(uw.N,z.N'):E
I'"y:(C>D)>B = cut(M,z.y(u.v.N,z.N')): E

LoD

Cut

rewrites to
D D’
I'"v:C,u:DDB = cut(dec(v,u,y.M),z.N):D I’ ,z:B = cut(inv(z,y.M),z.N'):E
I'"y:(C>D)D>B = y(u.v.cut(dec(v,u,y.M),z.N), z.cut(inv(z,y.M),z.N')): E

LoD
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where D is the following derivation:

I''y:(COD)DB = M:A D
I'" v:C,u:DDB = dec(v,u,y.M): A e 2: A, I, v:C,u:DDB = N:D
I'" v:C,u:D>B = cut(dec(v,u,y.M),z.N):D

ut

and D’ is the following derivation:
I y:(CoD)DB = M:A
I 2:B = inv(z,y.M): A v: AT, 2:B= N":E
I'' z:B = cut(inv(z,y.M),z.N'): E

Inv

Cut

Let k = {A, I",(CoOD)D>B,E} and j = {A, I",C,D>B,D} and i = {A,I"', B,E} and
h={I",(Co>D)>B, A}.
We have

L =CFHM,K(N",N)) > mpo K(C/(D"(M), N"),C*(J(M),N) = I/

since C¥ - K, J, C7, C!, D" because k > h,i.

mul J»

cut(A\z. M, z.y(z,w.N)) —¢ y(u.v.cut(u, w.dec(w,v,y.M)), w.cut(inv(w,y. \z.M),z.N)).
The derivation

2:C, I",y:(CoOD)>B = M:D R 2:COD,I"w:B = N:FE
I'"y:(C>D)D>B = X\2.M:CD>D z:CD>D,I",y:(C>D)2>B = y(z,w.N): E
I'"y:(C>D)D>B = cut(A\z.M,z.y(x,w.N)): E

L0D
Cut

rewrites to
D D’
I''w:C,v:D>B = M'":D I w:B= N"E
I y:(C>D)>B = y(uw.M',w.N'):E

LD>D

where M’ = cut(u, w.dec(w,v,y.M)), N' = cut(inv(w,y.\z.M),z.N), D is the following
derivation:

w:C, I, y:(C>D)DB = M:D

I w:C,v:D>B = u:C Az I'"uw:C,w:C,v:DD>B = dec(w,v,y.M):D gej
I'" u:C,v:DD>B = cut(u,w.dec(w,v,y.M)): D Y
and D’ is the following derivation:
I'"y:ADB = \2.M:C>D I
I w:B = inv(w,y\z.M):CoD """ 2:0>D,I",w:B = N:E t
u

I''w:B = cut(inv(w,y.\z.M),z.N): E

Let k= {Co>D,I",(C>D)D>B,E} and j = {I",C,C,DD>B,D} and h = {C,I",(C>D)D>B,D}
and i = {CDOD,I",B,E}.
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We have
L = CH(I(M),[(N)) >mpo K(C (, D" (M)), C'(J((M)), N)) = L
since C¥ = K, %, J,1,C?, C?, D" because k >

mul J: 8 1

cut(z,y.2(y,w.M)) —4 2(y,w.cut(z,y.M)).
The derivation

z:Ay:Aw:B,I" = M:E

I 2:A z:ADB = x: A Aw r:Ay: A z:ADB, I = z(y,w.M):E éoi
I'x:A z: ADB = cut(z,y.2(y,w.M)): E “
rewrites to
/ Ax /
I'z:Aw:B = x:A x: Ay Aw:B,I" = M:FE .
u

I''x:Ayjw:B = cut(z,y.M):E
I''z:A 2:ADB = z(y,w.cut(z,y.M)): E

Let k= {A A ADB,I",E} and j = {A, A, B, I",E}.
We have

L0D

L = C* (56, (M) > ppo 1(CI (3, M) = T

since C¥ > 1, C7 because k >mul J-

cut(z(y,w.M),xz.N) —, z(y,w.cut(M,z.inv(w, z.N))).
The derivation

I'"y:C,w:B= M:A
I y:C,2:C2B = 2(y,w.M): A x: AT y:C,z:CoB = N:E
I'y:C,2:Co>B = cut(z(y,w.M),z.N):E

L0>

Cut

rewrites to
x:A I, y:C,2:C>B = N:E
I'y:Cow:B= M:A z:A,1",y:C,w:B = inv(w,2.N): E
I''y:C,w:B = cut(M,z.inv(w, 2.N)): E
I'y:C,2:CoB = 2(y,w.cut(M, z.inv(w, 2.N))): E

Let k= {A,I",C,CoB,E} and j = {A,I",C, B, E}.
We have

Inv
Cut

L0D

L= C*I(M),N) > ppo I(CI(M,J(N)) = T/

since CF = 1, C7, J because k >mul J-

cut(y(u.v.M,z.M'),x.N) —4 y(u.v.M,z.cut(M', z.inv(z,y.N))).
The derivation

I v:C,u:D>B = M:D I',2:B= M":A
I''y:(C>D)D>B = y(uwv.M,z.M'): A z: A, I",y:(C>D)DB = N:FE
I'"y:(C>D)D>B = cut(y(u.v.M,z.M'),z.N): E

LD>D

ut
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rewrites to

z: A I, y:(COD)DB = N:E

O
I'"'z:B= M'":A z:A,I",2:B = inv(z,y.N):E Cf
I v:C,u:D>B = M:D F’,Z:B:>cut(M’,m.inv(z,y.N)):EL ut
I''y:(C>D)>B = y(uw.M, z.cut(M',z.inv(z,y.N))): E -
Let k = {A,I",(CoD)DB,E} and j = {A,I", B, E}.
We have
L =CHK(M,M"),N) >po K(M,C (M, J(N))) =L
since C¥ = K, C?, J because k >mul J-
cut(M,z.x(z,w.N)) — 4 cut(cut(z,y.0f(M,y)),w.N).
The derivation
I' 2:2C,w:B= N:E 0
I'2:C= M:CoB I 2:C,z:C>B = z(2,w.N):E o ?
I z:C = cut(M,z.z(z,w.N)):E b
rewrites to
I 2:C = M:CoB
/ Az / £ of
I'z.C= z:C F,z:C,y:C:of(M,y):BC
I'" 2:C = cut(z,y.0f(M,y)): B ut I" 2:C,w:B= N:E Cut
u

I, 2:C = cut(cut(z,y.0f(M,y)),w.N): E

Let k= {I",C,COB,E} and j = {I"',C,B,E}} and i = {I",C,C, B}. We have

L =CF(M,I(N)) >mpo C(Ci(x,J(M)),N) = L'

since k >, J, % and CF %, J,C7, C.

cut(M,z.z(u.v.N,2.N')) —p cut(cut(Au.cut(\y .inv(y/, y.0f (M, y)),v.N),y.0f (M, y)), z.N").
The derivation

uw:C,v:DDB,I' = N:D z:B,I' = N':E
I'= M:(CoD)DB z:(CoD)DB, I’ = z(uw.N,z.N'): E
I' = cut(M,z.z(u.v.N,z.N")): E

LoD
Cut

rewrites to

D I'= M:(CoD)DB
I'= M:CoD TI',y:Co>D = of(M,y):B
I' = cut(M',y.0f(M,y)): B 2:B,I'= N":E
I' = cut(cut(M’,y.0f(M,y)),2.N'):E

of
Cut

Cut
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where M’ = Au.cut(A\y'.inv(y/, y.0f (M, y)),v.N) and D is the following derivation:

= M:(COD)SB
I'y:CoD = of(M,y):B (W)
I'u:C,y:CoD = of(M,y):B
I'u:C,y':D = inv(y',y.0f(M,y)): B
Iiu:C = \y.inv(y/,y.0f(M,y)): DDB - u:C,v:DDOB,I' = N:D
I'u:C = cut(A\y.inv(y/, y.of (M,y)),v.N):D
I' = \u.cut(\y.inv(y, y.0f (M, y)),v.N):CDD

Inv

Cut

)

Let k = {(CoD)D>B,I'E}and j ={B,IE} andi = {I',C>D,B} and h = {C,D>B,I",D}.
We have
f: . .
CH(M,K(N, N") >mpo C(C(I(C"IJU(M))), N)), J(M)), N')
=T
since C¥ > 1,J,C7, C', C" because k >

mul J» % e

Corollary 1 (Strong Normalisation). System gs is strongly normalising on typed terms.

Proof: This is a consequence of Theorem 1 and Remark 3. O

Corollary 2. Rules Inv,Of, Dec, and Cut are logically admissible in the system of Defini-
tion 4.

Proof: Every term with an auxiliary constructor is reducible by system gs. O

6 Variants of reduction systems

We investigate in this section some variants of the cut-elimination system presented in Sec-
tion 3.

We discuss in Section 6.1 the rules of Kinds, noticing that the of(_, )-constructor is only
introduced by the reductions of gs in order to include n-conversion in the system. We present
two variations without n-conversion, called system rs and system ars, that no longer use the
of (., -)-constructor.

Without n-conversion, the only critical pairs of those variations are between the rules of
Kind; and those of Kinds, so in Section 6.2, which only concerns rules of Kind; and Kinds, we
present two ways of removing those critical pairs, i.e. of making systems rs and ars orthogonal.

All the systems presented in this paper can be summarised in the following table:
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of, inv and dec| cut = (Kind; + Kinds) + Kinds Whole system
oid cegs = Table 4 + Table 5 gs
oid cers = Table 4 + Table 6 rs
oid cears = Table 4 + Table 7 ars
oid cecbn = Table 8 + (Table 6 or Table 7) cbn
oid cecbv = Table 9 + (Table 6 or Table 7) cbv

6.1 Avoiding the of-constructor

In this section we remove n-expansion from the reduction system so that the of (_, _)-constructor
is no more used by the cut elimination rules. We obtain two variants, depending on whether
we want variables to behave like their n-expansions or we want the elimination of a cut with
a variable to be simpler and closer to renaming.

The rules A and B of system gs introduce the of(_, _)-constructor to model n-expansion,
turning the first argument of the cut into an abstraction.

Theorem 2. Rule A (resp. B) can be factorised into an n-expansion followed by rule C' (resp.
D) below:

cut(A\y.M, z.x(z,w.N)) — ¢ cut(cut(z,y.M),w.N)
cut(\y.M, z.z(u.v.N',w.N)) —p cut(cut(Au.cut(Az.inv(z,y.M),v.N'),y. M), w.N)

Proof:

(Rule A) cut(M,z.z(z,w.N))
—y cut(Ay.of(M,y),z.x(z,w.N))
—¢ cut(cut(z,y.0f(M,y)), w.N)
(Rule B) cut(M z.z(u.v.N',w.N))
—y t(/\y of (M, y), z.x(u.v.N',w.N))
ut(cut(Au.cut(Az.inv(z, y. of(M y)),v.N"),y.0f (M,y)),w.N)

—p

a

Note that the n-expansion of an abstraction reduces, by direct elimination of the of(_, ),
to the abstraction itself:

Ay M —, Az.of(Ay.M,z) —o2 Az{z/y}M =, \y.M with « ¢ FV (M)

This justifies the following theorem:

Theorem 3. Rules C and D can be respectively derived from rules A and B using system
oid.

Proof:

(Rule C) cut(\y. M, x. x(z w.N))
— 4 cut(cut(z,w.of(A\y.M,w")),w.N)
—02 cut(cut(z,w . {w'/y} M), w.N)
=a cut(cut(z,y. M), w.N)

(Rule D) cut(\y.M, z.z(u.v.N', wN))
—p cut(cut(Au.cut(Az.inv(z, w' .of (\y.M,w')),v.N'), 2’ .0of (\y.M, 2')),w.N)
—*02 cut(cut(Au.cut(Az.inv(z, w' {w'/y} M), v.N"), 2" {z'/Jy} M), w.N)
=q cut(cut(Au.cut(Az.inv(z,y.M),v.N'),y.M), w.N)
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O
Similarly, direct elimination of the of(_, _)-constructor is allowed by rule ol in the case of a

variable (y —, Az.0of(y,x) —o1 ¥y(x,z.2) with x ¢ FV(M)), so this suggests that two
rules £ and F, treating the case of a variable, can also be derived from rules A and B:

Theorem 4. The following rules E and F' can be respectively derived from A and B using
system gs:

cut(y, z.x(z,w.N)) —pr y(z,w .cut(w,w.inv(vw', y.N)))
cut(y, z.z(uv.N w.N)) —p y(u' v .cut(v/,u.P),w cut(w w.inv(w’,y.N)))
where P = dec(u/,v',y.cut(\y".y(u.v.y”, z.2),v.N"))

Proof:
(Rule F) cut(y, z.z(z,w.N))
—4 cut(cut(z, y 0f(y,y)), w.N)
o1 cut(cut(e, v y(y', w' ), w.N)
—y cut(y(z w'.cut(z,y W), w.N)
—p  cut(y(z,w'.w'),w.N)
— y( w'.cut(w', w.inv(w’,y.N)))

(Rule F) cut(y, z.z(u.v.N';w.N))
—p cut(cut ()\u.cut(L,v.N’),y’.of(y y’/)) N)

—* cut(cut()\u.cut(L’,v.N’),y’.of(y, ), w.N)
—01 cut(cut(Au.cut(L/,v.N'), y’ y(y',w'aw')), w.N)
—*  cut(y(v/ v'.cut(v/,u.P),w w'),w.N)

u
—y y(u' v cut(v,u.P),w .cut(w’,w.inv(w’,y.N)))

where the first —* is justified by

L= ylinv(y,ulot(y,u))
—o1 Ay inv(y”, w'y(w', z.2))
—is N y(y1yey”, 2 inv(y”, W' .2))
—i M y(yryey, 2.2) _

and the last —* is justified by
cut(Au.cut(L,v.N"), v .y(y', w' .w'))
— ¢ y(u' v cut(v, u.dec(v, v, y.cut(L,v.N'))), v’ .cut (inv(w’, y. Au.cut (L', v.N")),
—p y(u' v .cut(v/,u.dec(u/, v, y.cut (L', v.N))), w" w")
= gy .cut(v,u.P),w w)

Now, by construction, rules ¥ and F' make variables have the same functional behaviour
as their n-expansion.

Notice also that the new rules C, D, E and F (together with rules 7 and ¢) can now
replace any use of rules A and B, thus forming a system, called cers, that is still complete for
cut-elimination and makes no use of the of(_, _)-constructor. We show in Table 6 only the cut
reduction rules of Kinds, in which cegs and cers differ, the rules of Kind; and Kinds being the
same. System cegs can thus be seen as system cers to which n-expansion has been integrated
by the use of the auxiliary constructor of(_, _).

The behaviour of functionals is interesting in G4ip, because it is a depth-bounded calcu-
lus. For instance, among all Church’s numerals, only 0 and 1 can be represented in G4ip, so
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Kind3

cut(A\y.M, z.z(z,w.N)) —¢ cut(cut(z,y.M),w.N)

cut(\y.M,z.z(uv.N',w.N)) —p cut(cut(Au.cut(Az.inv(z,y.M),v.N"),y.M),w.N)

cut(y, z.z(z,w.N)) — g y(z,w .cut(w w.inv(w’, y.N)))

cut(y, z.x(u.v.N';w.N)) —p y(u' v .cut(v/,u.P),w .cut(w', w.inv(w’, y.N)))
where P = dec(u/, v, y.cut(\y".y(u.v.y”, 2.2),v.N"))

Table 6. Cut Elimination Rules in System cers (Kinds)

when reducing the term that represents (using cuts) “1 + 1”, we should expect some seman-
tical anomaly in the reductions (which is quite similar to the one reported by Vestergaard
in [Ves99]). Such an anomaly is to be found in rules B and D, and for abstractions we have
no alternative choice. However in system rs we have made the choice of making variables have
the same functional behaviour as their n-expansions, hence rule F' inherits the anomaly. But
instead we might rather follow the intuition that cutting a variable with a another variable is
almost renaming, and replace rule F' with a new rule G, thus forming system cears presented
in Table 7 (again we only show rules of Kinds, but rules of Kind; and Kindy are the same as
in cegs or cers). This new rule is simpler and more natural than rule F'; however the reducts
are semantically different and thus the choice of rule G breaks the property that a variable
and its n-expansion have the same behaviour.

Kind3

cut(A\y.M, z.z(z,w.N)) —¢ cut(cut(z,y.M),w.N)

cut(\y.M, z.x(uv.N',w.N)) —p cut(cut(Au.cut(Az.inv(z,y.M),v.N"),y.M),w.N)

cut(y, z.z(z,w.N)) —p y(z,w .cut(w', w.inv(w’, y.N)))

cut(y, z.x(u.v.N';w.N)) —¢ y(u' v .cut(v/,u.P"),w cut(w, w.inv(w’,y.N)))
where P’ = cut(v/,v.dec(u/,v',y.N"))

Table 7. Cut Elimination Rules in System cears (Kinds)

Since all the rules of system rs are derived from system gs, it is clear that the former
inherits from the latter the Subject Reduction property as well as the Strong Normalisation
of typed terms. However, for system ars, those properties are not inherited, so we have to
check that rule G satisfies the Subject Reduction property and decreases the multi-set path
ordering from Section 4.

cut(y, z.z(uv.N' w.N)) —¢g yu' v .cut(v/,u.P'),w' .cut(w', w.inv(w’, y.N)))

Let I'=1",y:(C>D)D>B.

The derivation
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I''u:C,v:DDB = N":D I''w:B= N:E
I' = y:(CoD)DB I'z:(Co>D)>B = z(uv.N',w.N):E

LoD

I' = cut(y,z.z(uv.N,w.N)):E Cut

rewrites to

Ax L

I'v:C,w':D>B = u:C I''u:C,v:C,v':DDB = P':D . )7
I''uw:Cv:D>B = cut(v/,u.P'): D Y F’,w’:B:>M:EL

I'" y:(CO>D)DB = y(u'.v' .cut(v/,u.P"),w'.L'): E -

where M = cut(w’, w.inv(w’,y.N)), the premiss L is constructed as follows:
I'" y:(CoD)D>B,u:C,v:D>B = N':D 5
ec

I'w:Cou':C,v":DDOB = v':D>B I u:C,v:DD>B,u':C,v':DD>B = dec(u/,v',y.N'): D
I'u:C,u':C,v':DDB = cut(v',v.dec(v,v',y.N')): D

Cut

and the second premiss L’ is constructed as follows:
I'"y:(CoD)DB,w:B = N:E
I''vw:B=w:B I'w:B,w:B = inv(w',y.N):E
I'' w':B = cut(w,w.inv(w’,y.N)): E

Inv
Cut

Let k = {I",(Co>D)D>B,(CoD)>B,E} andi={I"',B,B,E}and j = {I",C,C,DDB, D}
and h = {I",C,D>B,C,D>B,D} and | = {I"’,(C>D)>B,C,D>B, E} and
We have

cut(y, z.x(u.v.N';w.N))

o KN, N)) o K(C (x, C"(%, D' (N"))), C'(%, J(N)))

y(u' v cut (v, u.P"),w .cut(w, w.inv(w', y.N)))

since C* = K, C7, C", D!, C' because k > i, 4, h, L.

6.2 Orthogonal systems

In this section we suggest two ways of restricting the rules of Kind; and Kinds to make systems
rs and ars orthogonal, and hence confluent.

In the restricted systems gs and ars there is an overlap between the right and left propaga-
tion sub-systems, i.e. there is a critical pair between any rule in {a, b, ¢, d, e} and any rule any
in {7, ¢}. This is shown in the following table, where column headers represent the different
cases concerning the first premiss of the cut, while row headers represent the different cases
for the second one (marking inside parentheses the status of the cut-type).
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Axiom RD L0D LoD
Axiom (Principal) a a am ag
Axiom (Non-Principal) b b b bo
RD c c cm cp
L0D (Non-Principal, Non-Auxiliary)| d d dm do
L>> (Non-Principal) e e em o)
L0D (Non-Principal, Auxiliary) g f T )
L0D (Principal) E C T o)
L>D (Principal) ForG D T o)

This overlap is well-known in sequent calculus, and corresponds to the choice of whether
to push a cut into the proof of its left premiss or into the proof of its right premiss. The
former corresponds to a call-by-value strategy and the latter corresponds to a call-by-name
strategy.

Since the overlap only concerns cut reduction rules of Kind; and Kinds, we shall only study
those kinds of rules and leave the rules of Kinds as they are in system cers or in system cears
since both are possible.

Call-by-name One way to make the system orthogonal is to give preference to rules a-b-c-
d-e over rules m-¢, thus restricted to the case when NN is an x-covalue @), i.e. is of the form
z(y,w.N) or x(u.v.M,w.N). We show the resulting reduction rules of Kind; and Kinds in
Table 8.

Kindy
cut(M,z.x) —a M

cut(M, z.y) —p Y

cut(M,xz.\y.N) —¢ Ay.cut(M,z.N)

cut(M,z.y(z,w.N)) —q y(z,w.cut(inv(w,y.M),x.N))

cut(M, z.y(u.v.N',w.N)) —. y(u.v.cut(dec(u,v,y.M),x.N'), w.cut(inv(w,y.M),x.N))

cut(Az.M,z.y(x,w.N)) — y(u.v.cut(u,z.dec(u,v,y.M)),w.cut(inv(w,y.Az.M),z.N))
( y(

cut(z, z.y(z,w.N)) —4 y(z,w.cut(z,z.N))

Kinds

cut(y(z,w.M),z.Q) —r y(z,w.cut(M, z.inv(w, y.Q)))
cut(y(uwv.M' w.M),z.Q) —4 yluv.M' w.cut(M,z.inv(w,y.Q)))

Table 8. Cut Elimination Rules in system cecbn (Kind; and Kinds)

Notice that in order to reduce a term like cut(M,z.y(x,w.N)), there is no choice other
than left-propagation (rules m and ¢) until a similar redex is found in which M is a value,
and then only rules f or g can be applied.
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Axiom RD L0D LoD
Axiom (Principal) a a a a
Axiom (Non-Principal) b b b b
RO c c c c
L0> (Non-Principal, Non-Auxiliary)| d d d d
L>> (Non-Principal) e e e e
L0D (Non-Principal, Auxiliary) g I T 10)
L0> (Principal) E C T o)
L>D (Principal) F(G) D T o)

Call-by-value Alternatively, preference might be given to rules 7 and ¢, which we can for-
malise as restricting rules a-b-c-d-e to the case when M is a value V' (variable or abstraction).
We show the resulting reduction rules of Kind; and Kinds in Table 9.

Kind1

cut(V,z.z) —e V

cut(V,z.y) —p Y

cut(V,z.\y.N) —¢ Ay.cut(V,z.N)

cut(V,z.y(z,w.N)) —q y(z,w.cut(inv(w,y.V),z.N))

cut(V,z.y(uv.N',w.N)) —. y(u.v.cut(dec(u,v,y.V),z.N'),w.cut(inv(w,y.V),x.N))
cut(A\z.M,z.y(x,w.N)) — y(u.v.cut(u,z.dec(u,v,y.M)),w.cut(inv(w,y. z.M),z.N))
cut(z, z.y(z,w.N)) —4 y(z,w.cut(z,z.N))

Kindg

cut(y(z,w.M),x.N) —r y(z,w.cut(M, z.inv(w, y.N)))

(
cut(y(uv.M' wM),z.N) —4 y(uv.M' w.cut(M,z.inv(w,y.N)))

Table 9. Cut Elimination Rules in system cecbv (Kind; and Kinds)

This choice is particularly coherent because the two rules of right-propagation f and g only
apply to cuts whose first argument is a value. This suggests that G4ip has an inherent call-by-
value flavour, echoing the idea that it is somehow based on the call-by-value sequent calculus
LJQ. Indeed, completeness of LJQ gives a short proof of the completeness of G4ip [DLO06].

Axiom RD L0D LoD
Axiom (Principal) a a ™ o)
Axiom (Non-Principal) b T 0]
RD c c T ¢
L0D (Non-Principal, Non-Auxiliary)| d d T 10)
L>> (Non-Principal) e e T o)
L0D (Non-Principal, Auxiliary) g I T 10)
L0> (Principal) E C T o)
L>>D (Principal) F(G) D v o)

We finish this section by stating the following property of the orthogonal systems presented
here.
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Theorem 5. Reduction systems cbn and cbv are confluent, hence normal forms are unique.

Proof: Systems cbn and cbv can be seen as particular orthogonal CRS, so they enjoy con-
fluence (see [vOvR94] for details). O

7 Another proof of strong normalization

We present here a second proof of strong normalization.

Lemma 2. If N € SNy, then inv(x,y.N) € SNys.

Proof. By induction on (N, |N|) w.r.t the lexicographic order (—,>).
Lemma 3. If N € SNgs, then of(N,x) € SNgs.

Proof. By induction on (N, |N|) w.r.t the lexicographic order (—,>).

Lemma 4. Suppose I',z: A+ N : E and N € SNgs. Then

1. If A= (CD>D)DB, and x,y are fresh, then dec(z,y,2.N) € SNgs;
2. Let I' = M : A with M € SNgs; then cut(M,z.N) € SNgs.

Proof. By simultaneous induction on tuples (({I", A, E}, N, M) w.r.t. the lexicographic order

(>multisets = —)-

Theorem 6. If I't= M : A, then M € SNgs.

Proof. By induction on the structure of M using Lemmas 2, 3 and 4.
Theorem 7. If ' M : A, then M € SNs.

Proof. This is evident since every rs-reduction step can be simulated by a non-empty sequence
in gs.

Theorem 8. If '+ M : A, then M € SNys.

Proof. One can do the same proof as in Theorem 6 by remarking that rule G also decreases
the measure of sequents.
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8 Conclusion

This paper defines various proof-term calculi for the depth-bounded intuitionistic sequent
calculus of Hudelmaier. Using standard techniques of rewriting, we prove subject-reduction
and strong normalisation for all of them, so Cut-admissibility turns out to be a corollary. The
cbn and cbv systems presented in this paper are also orthogonal, which guarantees confluence
(and uniqueness of normal forms).

Some relations between G4ip and other calculi for intuitionistic logic are studied in [DLO06].
Our approach also suggests how to obtain a term calculus for G4ip but (as in A-calculus)
with implicit, rather than explicit, operators to model cut-elimination. This would bring our
calculus closer to that of Matthes [Mat02], and with a strong normalising cut-elimination pro-
cedure. As mentioned in the introduction, defining a denotational semantics for our calculi
as well as investigating the connexions with the simply-typed A-calculus would reveal more
properties of the proofs in G4ip. This is left for further investigations.
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