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The model-constructing approach to SMT-solving

MCSAT introduced in [dMJ13, JBdM13, Jov17],
following work on specific decision procedures for theories such as
non-linear arithmetic [JdM12].

MCSAT offers:
I a template for decision procedures
I an integration of such procedures with Boolean reasoning
I new possibilities for combining procedures [JBdM13, BGLS17]

The template is a generalisation of how CDCL works.
Run = alternation of search phases and conflict analysis phases
Boolean theory can be given the same status as other theories.

Terms and literals are created that do not belong to the input
problem.
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Search phase

1. For each variable awaiting a value, track the set of feasible
values (those not yet ruled out by the current constraints)

2. For one of the variables, pick a value out of that set.
3. With that choice, some of the constraints may become unit:

all of their free variables are assigned a value but one.
4. See whether and how those new constraints unit in y restrict

the feasible values for y , and update that set
5. Repeat until

all variables are assigned values & all constraints are satisfied
or one of these sets becomes empty: there is a conflict

Simple process:
we only look at what the constraints say once they become unit.

Until then, we simply maintain for each constraint a watch list of
variables, to detect when they become unit (as in CDCL).
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Search phase (satisfiable case)

Free var within Constraints (unit ones in red) Feasible set Var
{x1} C1

1 , . . . ,C1
j , . . . x1

{x1, x2} C2
1 ,C2

2 , . . . ,C2
j , . . . x2

{x1, x2, x3} C3
1 ,C3

2 , . . . ,C3
j , . . . x3

. . .
{x1, . . . , xi} C i

1,C i
2, . . . ,C i

42, . . . ,C i
j , . . . xi

SAT
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Search phase (conflict case)
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Implementing the set of feasible values for y

This has to be a data-structure with operations for
1. updating the set whenever a new constraint becomes unit in y ,
2. detecting when the set becomes empty, and
3. proposing a value from the feasible set.

This is theory-dependent:
I For LRA, this can be an interval
I For bit-vectors, [ZWR16] use the combination of

I an interval, e.g. [0000, 0010] (understanding bitvectors in
arithmetic modulo)

I and a pattern imposing the value of some of the bits, e.g. ???1
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Alternative proposition:
Use a Binary Decision Diagram (BDD) over the bits of y .

BDD provide unique rep. for functions from {0, 1}n to {0, 1}.
Can exactly represent the set of feasible values for bv-variable y of
length n, describing e.g. the dependencies between bits.

Imagine a constraint (y <u x)
over two bv-variables of length 4.
Setting x to 0011 makes it unit in y .
Update the BDD for y ,
replacing it by its conjunction with

F T

y [3]

y [2]

y [1]

y [0]
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Using BDD

Imagine that we already knew y must satisfy pattern ???1, then

F T

y [0]

∧
F T

y [3]

y [2]

y [1]

y [0]

gives
F T

y [3]

y [2]

y [1]

y [0]

When the BDD becomes F , we have detected a conflict.
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Conflict explanation in MCSAT
At this point, we have a conjunction of constraints:

A(~x , y) = A1 ∧ . . . ∧ Am

as well as some attempted assignments x1 7→ v1, . . . , xn 7→ vn
forming a partial modelM, and making A1, . . . ,Am unit in y ; and

M cannot be extended with a value for
y in a way that satisfies A(~x , y).
In other words,M falsifies ∃yA(~x , y).

Models of
∃yA(~x , y)

M

I(~x)

Conflict explanation explains why that is.
Technically, by producing an interpolating clause I(~x) such that

I A(~x , y)⇒ I(~x) is valid (or equivalently (∃yA(~x , y))⇒ I(~x))
I M falsifies I(~x)

Then we can analyse the conflict described by the conflict clause
A(~x , y)⇒ I(~x), almost as it would be done by CDCL.
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Conflict explanation for bit-vectors
An inefficient interpolant generation method:
If values can be expressed in the language (as in BV),
we could take x1 6' v1 ∨ . . . ∨ xn 6' vn as interpolant,
simply ruling out modelM.

In BV, this would even terminate,
and provide a complete (though impractical) procedure.

A default interpolant generation method for BV:
Bit-blast the conflict, i.e. turn

A1 ∧ . . . ∧ Am ∧ (x1 ' v1) ∧ . . . ∧ (xn ' vn)

into a CNF: Cconstraints ∧ Cmodel (Cmodel are unit clauses)

Solve and extract an unsat core C core
constraints ∧ C core

model ,
where C core

model represent “the bits assigned byM that mattered”

and take I(~x) to be the negation of C core
model
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Conflict explanation for bit-vectors

It is good to have a default mechanism that can always apply.

Note however that the generated interpolant is at the bit level, and
having an interpolant in (or closer to) the word level is desirable.
It seems difficult to design a conflict explanation mechanism

I that generate interpolants at the word level,
I that would work for a conjunction of bit-vector constraints

with arbitrarily diverse bit-vector operations.

However if the constraints A(~x , y) conflicting withM live in a
sub-theory of BV, then a specialised explanation mechanism may
be used to provide better explanations than bit blasting.
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An example of specialised conflict explanation mechanism
Core of BV:

A ::= t ' u | t 6' u
t, u ::= x | c | t[h:l ] | t ◦ u

A(~x , y) made of
I a set of equalities E = {ai ' bi}i∈E, and
I a set of disequalities D = {ai 6' bi}i∈D.

First task for conflict explanation is to slice terms in E and D
into their coarsest-base slicing [CMR97, BS09]:

The more constraints are in A(~x , y), the thinner the slices.
In the worst case, slices = bits.
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An example of specialised conflict explanation mechanism

A(~x , y) is thus transformed into
I a set Es of equalities, and
I a set Ds of disjunctions of disequalities

between (non-overlapping) slices of ~x and y , and constants.

M assigns values to ~x -slices and constants, but cannot be
extended with values for y -slices in a way that satisfies Es ∧ Ds .

In our preliminary report,
we generate the interpolant for the transformed problem:
Were it not for the cardinality constraints of bit-vectors,
it is almost a pure equality problem,
so we base our algorithm on an E-graph between slices.
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Computing UNSAT cores before conflict explanation
Our specialised conflict explanation mechanism is optimised under
the assumption that A(~x , y) is an UNSAT core relative toM:
Removing any constraint from A(~x , y), there exists a value v for y
such thatM, y 7→v satisfies the constraints.

When conflict is detected (the BDD for y becomes empty), the
constraints that are unit in y do not necessarily form such a core:
We propose to use BDDs to isolate a core Ac ⊆ A,
e.g. by relying on the quick-explain mechanism [Jun01],

. . . then decide which explanation procedure to apply depending on
the fragment of BV where Ac lives.

The smaller Ac is, the higher the chances are that it lives in an
isolated fragment of BV.

Even for a given conflict explanation mechanism (as with slicing),
the smaller Ac is, the higher the chances are that our interpolant
is close to the word level.
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Related work

An MCSAT treatment of bit-vectors was proposed in [ZWR16]
A lot of the work there goes into propagation mechanisms,
e.g. if (y <u x) and y 7→1110 then x 7→1111 is propagated,
and the justifications for such propagations are recorded
(for conflict analysis).
Whereas our BDD approach relies on learning.

Very recently, [CBB17] suggested techniques for bit-vectors similar
to MCSAT. Shares with [ZWR16] the use of patterns (e.g. ?0?1)
to record constraints on bv-variables, and recording justifications
for why some of the bits have been assigned.
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Conclusion and Further work
I To do:

identify conflict explanation mechanisms for other fragments
e.g. [JW16] should provide an conflict explanation mechanism
specialised to bit-vector arithmetic. Details to be checked.

I Implementation is ongoing =⇒ no experimental results yet
I Using BDD to solve arbitrary problems in Boolean logic can

be slow, especially as in the case of bit-vectors, the number of
variables can be huge.
Here, we limit their use to the bit variables of a single
bv-variable, so their size is controlled.

I BDD have also been proposed as an approach to quantified
bit-vector formulae, with Q3B implementation [JS16].
To do: look at quantified problems, as one key ingredient of
MCSAT, namely producing an interpolant I(~x) for ∃yA(~x , y)
with respect to a modelM for ~x , relates to quantifier
elimination.
Investigating the connection with [BJ15] is on our agenda.
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Thank you!
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More on related works 1/2

In [ZWR16], a lot of the work goes into propagation mechanisms,
e.g. if (y <u x) and y 7→1110 then x 7→1111 is propagated,
and the justifications for such propagations are recorded
(for conflict analysis).

In our setting, such propagations correspond to situations where
the BDD for a variable becomes a singleton.
The assignment, here x 7→1111, can then also be propagated,
but the justification for it is not readily available.
It will come up later and on demand,
when looking for an explanation of a conflict involving x 7→1111.

The two approaches are not incompatible:
If a specific propagation rule can apply with a readily available
justification, record the justification. Otherwise propagate the
value when the BDD becomes a singleton, without justification.
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More on related works 2/2

In [ZWR16], another part of the work goes into generalising
conflicts, so that they rule out as many models as possible:
When x 7→v led to a conflict, see if the conflict still holds

I by widening v into an interval containing v ;
I by unassigning some of the bits in v .

We hope that this will no longer be necessary with specialised
conflict explanation mechanisms whose role is to describe what
was wrong with x 7→v .
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