
Strong Normalisation of Cut-Elimination
that Simulates β-Reduction

Long version

Kentaro Kikuchi1 and Stéphane Lengrand2

1 RIEC, Tohoku University, Japan
2 CNRS, Laboratoire d’Informatique de l’Ecole Polytechnique, France

Abstract This paper is concerned with strong normalisation of cut-
elimination for a standard intuitionistic sequent calculus. The cut-elimination
procedure is based on a rewrite system for proof-terms with cut-permutation
rules allowing the simulation of β-reduction. Strong normalisation of the
typed terms is inferred from that of the simply-typed λ-calculus, using the
notions of safe and minimal reductions as well as a simulation in Nederpelt-
Klop’s λI-calculus. It is also shown that the type-free terms enjoy the preser-
vation of strong normalisation (PSN) property with respect to β-reduction
in an isomorphic image of the type-free λ-calculus.

1 Introduction

It is now established that cut-elimination procedures in sequent calculus have a com-
putational meaning (see e.g. [Her94,CH00,UB99,San00]), in the same sense as that
of proof transformations in natural deduction. The paradigm of the Curry-Howard
correspondence is then illustrated not only by (intuitionistic implicational) natural
deduction and the simply-typed λ-calculus [How80], but also by a typed higher-
order calculus corresponding to the (intuitionistic implicational) sequent calculus.

In [Kik06], the first author identified through a Prawitz-style translation a subset
of proofs in a standard sequent calculus that correspond to simply-typed λ-terms,
and defined a reduction relation on those proofs that precisely corresponds to β-
reduction of the simply-typed λ-calculus. The reduction relation was shown to be
simulated by a cut-elimination procedure, so the system of proof-terms for the
sequent calculus is a conservative extension of the λ-calculus in both term-structure
and reduction. Since the correspondence holds also for the type-free case, the rewrite
system in [Kik06] can simulate β-reduction of the type-free λ-calculus, which means
that it is strong enough to represent all computable functions. It was also shown
in [Kik07] that a restriction of the rewrite system in [Kik06], which is still strong
enough to simulate β-reduction, is confluent.

The present paper presents the first proof of strong normalisation of the cut-
elimination procedure in [Kik07]. Since the cut-elimination procedure can simulate
β-reduction of the simply-typed λ-calculus, its strong normalisation is at least as
hard as that of the latter. In fact, the proof we develop in this paper relies on strong
normalisation of the simply-typed λ-calculus. However, a naive simulation of the cut-
elimination procedure by β-reduction fails, so we refine the approach by using two
techniques formalised in [Len05,Len06] as the Safeness & Minimality technique and
the simulation in the λI-calculus of [Klo80] through a non-deterministic encoding.
A by-product of our method is a proof of strong normalisation of the type-free
terms that encode strongly normalising type-free λ-terms through the Prawitz-style
translation. This is known as the property of Preservation of Strong Normalisation
(PSN) in the field of calculi with explicit substitutions.



Strong normalisation of cut-elimination has been studied by a number of authors.
Here we mention some of them that treat cut-elimination procedures consisting of
(Gentzen-style) local proof transformations in a standard sequent calculus. The first
is Dragalin’s cut-elimination procedure and simple proof of its strong normalisation,
which can be found in Chapter 7 of [SU06]. However, the cut-elimination procedure
does not allow any permutation of cuts, so cannot simulate β-reduction. A cut-
elimination procedure that simulates β-reduction can be found in [Urb00] (for the
classical sequent calculus), with a proof of strong normalisation. However, the cut-
permutation rules involve extra kinds of cuts that are allowed to pass over usual cuts;
therefore it is not clear how the proof of strong normalisation could be adapted to
our case, which leaves the simple syntax of the calculus untouched. Recently, [Nak07]
introduced another cut-elimination procedure and proved its strong normalisation.
The cut-elimination procedure is a modification of the one in [Kik06], but differs
from the one in the present paper. The proof technique for strong normalisation
in [Nak07] does not work for our system, and our proof in this paper solves a
related problem that was explicitly given in Section 6 of [Nak07]. Finally, [SU07]
presents a proof of strong normalisation for a cut-elimination system that is not
intended (and is unlikely) to simulate β-reduction. However, their technique is also
inspired by Nederpelt and Klop’s works on λI and how it compares to ours, different
though the cut-elimination systems are, remains to be investigated.

The structure of the paper is as follows. In Section 2 we introduce a term as-
signment system for a standard sequent calculus and a rewrite system for a cut-
elimination procedure in the sequent calculus. In Section 3 we explain our proof
techniques and apply them to showing strong normalisation for the typed terms
and the PSN property for the type-free terms. In Section 4 we discuss related work
and conclude in Section 5.

2 A Rewrite System for Cut-Elimination

2.1 Term Assignment for Sequent Calculus

We start by giving a proof-term assignment system for a standard intuitionistic se-
quent calculus, following [Kik06]. The syntax of proof-terms can be found in various
textbooks (e.g. [TS00,SU06]) and papers (e.g. [DP99]) with notational variants. Here
we call the proof-terms λG3-terms. Our cut-elimination procedure is represented as
reduction rules for typed λG3-terms.

First, the set of raw λG3-terms is defined by the grammar:

M ::= x | λx.M | 〈xM/x〉M | [M/x]M

where x ranges over a denumerable set of variables. 〈 / 〉 and [ / ] are term
constructors similar to explicit substitutions ([ / ] is called the cut-constructor).
We use letters x, y, z, w for variables and M, N,P, Q for λG3-terms. To denote that
M is a strict subterm of N , we write M < N or N = M . The notions of free and
bound variables are defined as usual, with an additional clause that the variable x in
〈yM/x〉N or [M/x]N binds the free occurrences of x in N . The set of free variables
of a λG3-term M is denoted by FV(M). We often use the notation 〈xM/y〉N to
denote 〈xM/y〉N if x /∈ FV(M)∪FV(N). The symbol ≡ denotes syntactical equality
modulo α-conversion; so for example 〈zP/x〉〈xM/y〉N ≡ 〈zP/w〉〈wM/y〉N .

The proof-term assignment system for a standard intuitionistic sequent calculus
is given in Figure 1. We define a typing context, ranged over by Γ , as a finite set
of pairs {x1 : A1, . . . , xn : An} where the variables are pairwise distinct. Γ, x : A
denotes the union Γ ∪ {x : A}, and x /∈ Γ means that x does not appear in Γ . For
precise representation of proofs by terms, we should specify formulas on binders, but
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we will omit them for brevity. If x /∈ FV(M) ∪ FV(N) in the λG3-term 〈xM/y〉N ,
we assume x /∈ Γ in the rule L ⊃, which means the formula A ⊃ B is introduced
without implicit contraction.

Ax
Γ, x : A ` x : A

L ⊃ Γ ` M : A Γ, y : B ` N : C

Γ, x : A ⊃ B ` 〈xM/y〉N : C
y /∈ Γ

R ⊃ Γ, x : A ` M : B

Γ ` λx.M : A ⊃ B
x /∈ Γ Cut

Γ ` M : A Γ, x : A ` N : B

Γ ` [M/x]N : B
x /∈ Γ

Figure 1. Proof-term assignment for sequent calculus

We write Γ `λG3 M :A if the sequent is derivable with the inference rules of Figure 1.
We also write Γ `λ t : A if it is derivable with the standard inference rules of the
simply-typed λ-calculus.

In order to understand the semantics of λG3, we can re-express Gentzen’s trans-
lation of proofs in sequent calculus to those in natural deduction using λG3-terms
and λ-terms (

{
�

}
means usual implicit substitution).

G1(x) := x
G1(λx.M) := λx.G1(M)
G1(〈xM/y〉N) :=

{
x G1(M)�y

}
G1(N)

G1([M/x]N) :=
{
G1(M)�x

}
G1(N)

Notice that terms of λG3cf (i.e. λG3-terms without the cut-constructor) are always
mapped to λ-terms in normal form.

We can also give a backward translation from natural deduction to sequent
calculus:

G2(x) := x
G2(λx.t) := λx.G2(t)
G2(t s) := [G2(t)/x]〈x G2(s)/y〉y

In the above translation, normal forms of λ-calculus are not necessarily mapped to
λG3cf-terms. This is fixed by a Prawitz-style encoding:

Pr(x) := x
Pr(λx.t) := λx.Pr(t)
Pr(t s) := Prx.x(t s)

Prx.M (y s) := 〈yPr(s)/x〉M
Prx.M ((λy.t) s) := [λy.Pr(t)/z]〈zPr(s)/x〉M
Prx.M (t1 t2 s) := Prz.〈zPr(s)/x〉M (t1 t2)

Theorem 1 (Preservation of typing).

– If Γ `λG3 M :A then Γ `λ G1(M) :A.
– If Γ `λ t :A then Γ `λG3 G2(t) :A.
– If Γ `λ t s :A and Γ, x :A `λG3 M :B then Γ `λG3 Prx.M (t s) :B.
– If Γ `λ t :A then Γ `λG3 Pr(t) :A.

The following theorems can be found in the literature, some of them in [DP99].

Theorem 2 (Properties of the encodings).
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– G1 is surjective, its restriction G1
|λG3cf to cut-free terms is surjective on normal

λ-terms, and neither is injective.
– G2 and Pr are both injective but not surjective on λG3.
– G1 ◦ G2 = Idλ and G1 ◦ Pr = Idλ.
– Neither G2 ◦ G1 6= IdλG3 nor Pr ◦ G1 6= IdλG3.
– G2 ◦ G1 does not leave λG3cf stable3 but Pr ◦ G1 does.

2.2 The Cut-Elimination Procedure

Our cut-elimination procedure is based on a rewrite system for λG3-terms. The
system is the same as the one in [Kik07], which is a confluent restriction of the
system in [Kik06]. (Although confluence is not used in this paper, the system in
[Kik06] so far seems to resist the present technique.)

Figure 2 shows the reduction rules of the rewrite system. Each of these reduction
rules corresponds to a local cut-elimination step (cf. Appendix A). The reduction
rules (1) through (5) correspond to cut-elimination steps that permute a cut upwards
through its right subproof. The rules (6) and (7′) correspond to steps permuting
a cut upwards through its left subproof. The rule (B) corresponds to the key-case
which breaks a cut on an implication into two cuts on its subformulas. The rules
(Perm1) and (Perm2) permute two cuts with some restrictions. In (Perm1), the left
rule over the lower cut is another cut, and the right rules over both cuts must be L ⊃
that introduces the cut-formula without implicit contraction. In (Perm2), the right
rule over the lower cut is another cut, which must construct a proof corresponding
to a redex of the rule (B).

(1) [M/x]y → y (y 6≡ x)

(2) [M/x]x → M

(3) [N/x](λy.M) → λy.[N/x]M

(4) [P/z]〈xM/y〉N → 〈x([P/z]M)/y〉[P/z]N (x 6≡ z)

(5) [P/x]〈xM/y〉N → [P/x]〈x([P/x]M)/y〉[P/x]N if x ∈ FV(M) ∪ FV(N)

(6) [z/x]〈xM/y〉N → 〈zM/y〉N
(7′) [〈xM/y〉N/z]〈zM ′/w〉N ′ → 〈xM/y〉[N/z]〈zM ′/w〉N ′

(B) [λz.P/x]〈xM/y〉N → [[M/z]P/y]N

(Perm1) [[P/x]〈xM/y〉N/z]〈zM ′/w〉N ′ → [P/x][〈xM/y〉N/z]〈zM ′/w〉N ′

(Perm2) [Q/w][λz.P/x]〈xM/y〉N → [[Q/w](λz.P )/x][Q/w]〈xM/y〉N

Figure 2. Rewrite system for cut-elimination

The reduction relation −→cut is defined by the contextual closures of the re-
duction rules in Figure 2. We use −→+

cut for its transitive closure, and −→∗
cut for

its reflexive transitive closure. The set of λG3-terms that are strongly normalising
with respect to −→cut is denoted by SNcut. These kinds of notations are also used
for the notions of other reductions in this paper.

The rewrite system without the rule (B) is called x. It was shown in [Kik07] that
the system x is strongly normalising and confluent.

The original rewrite system in [Kik06] has instead of (7′) the rule (7) which
is obtained by replacing 〈zM ′/w〉N ′ in (7′) by a general term P . However then
the system becomes non-confluent (e.g. the critical pair w ← [〈xM/y〉N/z]w →
〈xM/y〉[N/z]w is not joinable). We study in this paper the system with (7′), which

3 (i.e. if M is cut-free, G2(G1(M)) might not be)
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was shown to be confluent in [Kik07] and which is still strong enough to simulate
β-reduction.

Theorem 3 (Simulation of β-reduction).
−→cut strongly simulates −→β through the translation Pr, i.e. if M −→β M ′

then Pr(M)−→+
cut Pr(M ′).

Proof. This is a minor variant of the proof in [Kik06]. The proof is by induction on
the derivation of the reduction step, using various lemmas. ut

3 Strong Normalisation

In this section we prove strong normalisation of −→cut on (typed) λG3-terms. Since
this reduction relation can simulate β-reduction in λ-calculus, its strong normali-
sation is at least as hard as that of the simply-typed λ-calculus. In fact, our proof
relies on the latter.

A by-product of our method is a proof of strong normalisation of those λG3-
terms that encode strongly normalising type-free λ-terms through the Prawitz-style
translation. This is known as the property of Preservation of Strong Normalisation
(PSN) [BBLRD96]. In other words, the reduction relation of λG3 is big enough to
simulate β-reduction through the Prawitz-style translation, but small enough to be
strongly normalising.

The PSN property arose from the study of calculi with explicit substitutions
(e.g. [ACCL91,BR95,BBLRD96]). Such constructs, which use specific substitution
constructors and which can be reduced, thus implement the notion of substitution
by means of which β-reduction can usually be decomposed. In a wider sense, the
cut-constructor of λG3 can also be seen as an explicit substitution in that it can be
interpreted as (i.e. mapped to) an (implicit) substitution in λ-calculus (with rules
manipulating the constructor that are valid with respect to this interpretation).
Indeed, the most natural typing rule for an explicit substitution is precisely a cut-
rule. Many techniques aimed at proving normalisation results about calculi with
explicit substitutions are in fact relevant for cut-elimination in sequent calculus.

Melliès [Mel95] gave an unexpected counter-example to the PSN property that
applies to many calculi with explicit substitutions that have a notion of composition,
by which, for example, one explicit substitution can be permuted into another. The
counter-example also leads to the failure of the strong normalisation of typed terms,
which can usually be inferred from PSN. Such calculi are for instance λσ [ACCL91]
or λσ⇑ [HL89], but although λG3 does need cut-permutation rules (very similar to
composition) to simulate β-reduction, we show here that it still satisfies the PSN
property.

The basic idea in proving that a term M of λG3 is SN is to simulate the reduction
steps from M by β-reduction steps from a strongly normalising λ-term G1(M).
Indeed, this would be relevant for PSN since G1(Pr(t)) = t, as well as for the
strong normalisation of a typed λG3-term M , since G1(M) is a simply-typed λ-
term. The idea of simulating cut-elimination by β-reductions has been investigated
in [Zuc74,Pot77].

Unfortunately, Gentzen’s encoding into λ-calculus, which allows the simulation,
needs to interpret cut-constructors (and constructors for L ⊃) as implicit substi-
tutions such as {u�x}t. Should x not be free in t, all reduction steps taking place
within the term of which u is the encoding would not induce any β-reduction in
{u�x}t. Therefore, the reduction relation that is only weakly simulated, i.e. the one
consisting of all the reductions that are not necessarily simulated by at least one
β-reduction, is too big to be proved terminating (in fact, it is not).
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In order to overcome the aforementioned problem, we combine two techniques
formalised in [Len05,Len06] as the Safeness & Minimality technique and the simu-
lation in the λI-calculus of [Klo80] through a non-deterministic encoding.

3.1 Safeness & Minimality

We first define safe and minimal reductions for the rewrite system of −→cut on
(some class of) λG3-terms.

The intuitive idea is that a reduction step is minimal if all the (strict) subterms
of the redex are in SNcut. Theorem 4(1) says that in order to prove that −→cut is
terminating, we can restrict our attention to minimal reductions only, without loss
of generality.4 Similarly, a reduction step is safe if the redex itself is in SNcut, which
is a stronger requirement than minimality. Theorem 4(2) says that safe reductions
always terminate. Those ideas are made precise in the following definition:

Definition 1 (Safe & minimal reduction). Given a subsystem h of our cut-
elimination system, we define the following rules:

minh M −→ N if M −→h N and for all P < M , P ∈ SNcut

safeh M −→ N if M −→h N and M ∈ SNcut

and denote their contextual closures by −→minh and −→safeh respectively.

We say that a reduction step M −→h N is safe (resp. minimal) if
M −→safeh N (resp. M −→minh N) and that it is unsafe if not.5

Remark 1. We shall constantly use the following facts:

1. −→min(safeh) =−→safe(minh) =−→safeh

2. −→safe(h,h′) =−→safeh,safeh′

3. −→min(h,h′) =−→minh,minh′

We have the following theorems (proofs can be found in [Len05,Len06]):

Theorem 4. 1. SNmincut = SNcut.
2. For every λG3-term M , M ∈ SNsafecut.

In other words, safe reductions terminate, and in order to prove that a term is
strongly normalising, it suffices to prove that it is strongly normalising for minimal
reductions only.

This leads directly to the following corollary:

Theorem 5 (Safeness & minimality theorem). Given a rewrite system h sat-
isfying −→safecut ⊆−→h ⊆−→mincut , suppose that we have:

– the strong simulation of −→mincut \ −→h in a strongly normalising calculus,
through a total relation H

– the weak simulation of −→h through H
– the strong normalisation of −→h .

Then −→cut is strongly normalising.

4 Note that a perpetual strategy, in the sense of [vRSSX99], can be defined so that only
minimal reductions are performed. Also, the technique seems close to that of dependency
pairs (see e.g. [AG00]) and formal connections should be studied.

5 In both rules we could require M −→h N to be a root reduction so that M is the redex,
but −→safeh and −→minh would be the same as they are.
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A naive attempt would be to take h = safecut, which terminates by Theo-
rem 4(2). Unfortunately, this situation is too coarse, that is to say, the relation
−→h is too small so that −→mincut \ −→h is too big to be strongly simulated.
Hence, in order to define h, we use the safeness criterion in a more subtle way, that
is, we define h = safeB,minx.

Among the conditions to apply Theorem 5, we first prove the third one, i.e. the
strong normalisation of safeB,minx. For this we give a technical definition. The idea
is to distinguish a class of terms with cut-constructors, reflecting the restrictions on
permutations of two cuts in the rules (Perm1) and (Perm2).

Definition 2 (Application term). A λG3-term of the form [M/x]N is called
an application term if N is one of the forms: [P/w]〈xM ′/y〉N ′, 〈xM ′/y〉N ′ and
[〈xM ′/y〉N ′/z]〈zM ′′/w〉N ′′ where x occurs only once in N .

Lemma 1. If [M/x]N is an application term and N −→cut N ′, then [M/x]N ′ is
also an application term.

Proof. It suffices to check each case. ut
Next we briefly recall the lexicographic path ordering. For a more detailed de-

scription and proofs, the reader is referred to, e.g. [KL80,BN98].

Definition 3 (Lexicographic path ordering). Let Â be a transitive and ir-
reflexive ordering on the set of function symbols in a first-order signature, and let
s ≡ f(s1, . . . , sm) and t ≡ g(t1, . . . , tn) be terms over the signature. Then s >lpo t,
if one of the following holds:

1. si ≡ t or si >lpo t for some i = 1, . . . , m,
2. f Â g and s >lpo tj for all j = 1, . . . , n,
3. f ≡ g, s >lpo tj for all j = 1, . . . , n, and s1 ≡ t1, . . . , si−1 ≡ ti−1, si >lpo ti for

some i = 1, . . . , m.

Theorem 6. >lpo is well-founded if and only if Â is well-founded.

Now we encode λG3-terms into a first-order syntax given by the following ordered
infinite signature:

sub(_,_) Â app(_,_) Â ii(_,_) Â i(_) Â cM

where for every M ∈ SNcut there is a constant cM . Those constants are all below
i(_), and the precedence between them is given by cM Â cN if M−→+

cut N or
M = N . Then the precedence relation is well-founded, and so >lpo induced on
the first-order terms is also well-founded. The encoding aforementioned is given in
Figure 3.

M := cM if M ∈ SNcut

otherwise
λx.M := i(M)

〈xM/y〉N := ii(M, N)

[M/x]N := app(M, N) if [M/x]N is an application term
[M/x]N := sub(M, N) otherwise

Figure 3. Encoding of λG3 into a first-order syntax

Lemma 2. If M −→safeB,minx M ′ then M >lpo M ′. Hence, −→safeB,minx is strongly
normalising.

Proof. By induction on the derivation of the reduction step. If M ≡ [P/x]N is an
application term and N −→safeB,minx N ′, then we use Lemma 1. (A detailed proof
can be found in Appendix B.) ut

7



3.2 Simulation in λI

Now we have to find a strongly normalising calculus and a total relation H
to strongly simulate −→mincut \ −→h therein. Since a simple simulation in
λ-calculus fails we use instead the λI-calculus of [Klo80], based on earlier work
by [Chu41,Ned73]. For instance, the technique works for proving PSN of the ex-
plicit substitution calculus λlxr of [KL07]. We refer the reader to [Sør97,Xi97] for
a survey on different techniques based on the λI-calculus to infer normalisation
properties.

On the one hand, λI extends the syntax of λ-calculus with a “memory operator”
so that, instead of being thrown away, a term U can be retained and carried along
in a construct [ − , U ]. With this operator, those bodies of substitutions are encoded
that would otherwise disappear, as explained above. On the other hand, λI restricts
λ-abstractions to variables that have at least one free occurrence, so that β-reduction
never erases its argument.

Definition 4 (Grammar of λI). The set ΛI of terms of the λI-calculus of [Klo80]
is defined by the following grammar:

T,U ::= x | λx.T | T U | [T, U ]

with the additional restriction that every abstraction λx.T satisfies x ∈ FV(T ).

The following property is straightforward by induction on terms.

Lemma 3 (Stability under substitution [Klo80]).
If T, U ∈ ΛI, then

{
U�x

}
T ∈ ΛI.

Definition 5 (Reduction system of λI). The reduction rules are:

(β) (λx.T ) U → {
U�x

}
T

(π) [T,U ] T ′ → [T T ′, U ]

The following remark is straightforward [Klo80]:

Remark 2. If T −→β,π T ′ then FV(T ) = FV(T ′) and
{

T�x

}
U−→+

β,π

{
T ′�x

}
U

provided that x ∈ FV(U).

Performing a simulation in λI requires the encoding to be non-deterministic,
i.e. we define a relation H between λG3 and λI, and the reason for this is that,
since the reductions in λI are non-erasing reductions, we need to add this memory
operator at random places in the encoding, using such a rule:

M H T
U ∈ ΛI

M H [T, U ]

The reduction relation of λG3 must then satisfy the hypotheses of Theorem 5.
Namely, −→mincut \ −→h should be strongly simulated by −→β,π through H ,
and safeB,minx should be weakly simulated by −→β,π through H .

The relation H between λG3-terms and λI-terms is inductively defined in
Figure 4.

It satisfies the following properties:

Lemma 4. If M H T , then

1. FV(M) ⊆ FV(T )
2. T ∈ ΛI
3. x /∈ FV(M) and U ∈ ΛI implies M H {

U�x

}
T
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x H x
M H T

λx.M H λx.T
x ∈ FV(T )

M H U N H T

〈xM/y〉N H {
x U�y

}
T

y ∈ FV(T )

M H T
M H [T, U ]

U ∈ ΛI
M H U N H T

[M/x]N H {
U�x

}
T

x ∈ FV(T ) ∨M ∈ SNcut

Figure 4. Relation between λG3 & λI

4. {y�x}M H {y�x}T
Theorem 7 (Simulation in λI). Suppose M H T .

1. If M −→minB N is unsafe then there exists U such that N H U and T−→+
βπ U .

2. If M −→minB N is safe then there exists U such that N H U and T−→∗
βπ U .

3. If M −→minx N then there exists U such that N H U and T−→∗
π U .

Proof. By induction on the derivation of the reduction step, by case analysis for
root reduction. Indeed, for root-reduction, remember that we only simulate minimal
reductions. Hence, when reducing a redex, all its subterms are in SNcut, so the side-
condition in the encoding of the cut-constructor is thus satisfied.

For the contextual closure, we have to ensure that, in the first of the above
three points, the one reduction step that must take place is preserved through the
inductive argument. This comes from the assumption that the reduction is unsafe,
which ensures that, in the side-condition x ∈ FV(T ) ∨M ∈ SNcut, it must be true
that x ∈ FV(T ).

A more detailed proof can be found in Appendix C. ut

3.3 Concluding the Proof

Finally, we need the fact that every term M of λG3 that we wish to prove strongly
normalising can be encoded into a strongly normalising term of λI, to start off the
simulations. The following method works:

1. Encode the term M as a strongly normalising λ-term t, such that no subterm
is lost, i.e. not using implicit substitutions.

2. Using a translation i from λ-calculus to λI, introduced in this section, prove
that i(t) reduces to one of the non-deterministic encodings of M in λI, that is,
that there is a term T such that M H T and i(t)−→∗

β,π T .

The technique is summarised in Figure 5.

Definition 6 (Encoding of λG3 into λ-calculus). We encode the λG3 into λ-
calculus by slightly refining Gentzen’s encoding as follows:

G1↑(x) := x

G1↑(λx.M) := λx.G1↑(M)
G1↑(〈xM/y〉N) :=

{
x G1↑(M)�y

}
G1↑(N) if y ∈ FV(N)

G1↑(〈xM/y〉N) := (λy.G1↑(N)) (x G1↑(M)) if y /∈ FV(N)
G1↑([M/x]N) :=

{
G1↑(M)�x

}
G1↑(N) if x ∈ FV(N)

G1↑([M/x]N) := (λx.G1↑(N)) G1↑(M) if x /∈ FV(N)

The reason why the above encoding is interesting for strong normalisation of
some λG3-terms lies in two facts:

9
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Figure 5. The general technique to prove that M ∈ SN

Lemma 5.

1. For the strong normalisation of typed terms:
If Γ `λG3 M :A then Γ `λ G1↑(M) :A

2. For proving PSN:
G1↑(Pr(t)) = t

Proof. Straightforward inductions on M and t. ut

Now we recall from [Len05,Len06] an encoding of λ-calculus into λI6 :

Definition 7 (Encoding of λ-calculus into λI). We encode the λ-calculus into
λI as follows:

i(x) := x
i(λx.t) := λx.i(t) if x ∈ FV(t)
i(λx.t) := λx.[i(t), x] if x /∈ FV(t)
i(t u) := i(t) i(u)

The above encodings satisfy the following properties:

Lemma 6. For any λG3-term M , there is a λI-term T such that M H T and
i(G1↑(M))−→∗

β,π T .

Proof. By induction on M . ut

Theorem 8 ([Len05,Len06]). For any λ-term t, if t ∈ SNβ, then i(t) ∈ SNβ,π.

Hence we get

Corollary 1. If G1↑(M) ∈ SNβ, then M ∈ SNcut.

6 Note that a similar encoding (without the case distinction for abstractions) can be found
in [Klo80]; unfortunately we have found it necessary to twist it to prove Theorem 8,
which we have not found in the literature.
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Proof. Suppose G1↑(M) ∈ SNβ . Then by Theorem 8, i(G1↑(M)) ∈ SNβ,π, and so
by Lemma 6, there is a λI-term T such that M H T and T ∈ SNβ,π. Now apply
Theorem 5 with Theorem 7 and Lemma 2. ut

Finally this gives the two strong normalisation results:

Theorem 9 (Strong normalisation & PSN).
If Γ `λG3 M :A, or if M = Pr(t) with t ∈ SNβ, then M ∈ SNcut.

Proof. It suffices to combine Lemma 5 and Corollary 1. ut

4 Related Work

In this section we discuss related work on strong normalisation of cut-elimination
procedures. We focus on those cut-elimination procedures that have the ability to
simulate β-reduction of the simply-typed λ-calculus.

Danos et al. [DJS95,DJS97] introduced strongly normalising cut-elimination pro-
cedures in sequent calculi for classical logic. The cut-elimination procedures include
global proof transformations analogous to proof transformations in natural deduc-
tion. In rewrite systems for proof-terms, such cut-elimination procedures are im-
plemented by reduction rules that use meta-operations like implicit substitution in
the λ-calculus. Urban [Urb00] described a cut-elimination procedure for the classi-
cal sequent calculus in such a rewrite system. Many strong normalisation results of
cut-elimination procedures with global proof transformations in the literature can
be derived from Urban’s result, in both classical and intuitionistic cases, including
those for systems in the style of λµµ̃ [CH00] (cf. e.g. [Len03]).

On the other hand, strong normalisation of cut-elimination procedures consist-
ing of Gentzen-style local proof transformations requires us to use techniques from
the field of calculi with explicit substitutions. Urban [Urb00] proved strong nor-
malisation of such a cut-elimination procedure using the technique of [BG99] and
the strong normalisation result of his procedure with global proof transformations
mentioned above. The cut-elimination procedure involves labelled cut, which are
allowed to pass over usual cuts. In the present paper, cut-elimination uses only one
kind of cut, and does not seem to be directly simulated by Urban’s cut-elimination
procedure. For example, the rule (Perm1) corresponds to a permutation of labelled
cuts, which is not included in Urban’s reduction rules.

Another example of a cut-elimination procedure that consists of local proof
transformations is the one by Dyckhoff and Urban [DU03] for Herbelin’s sequent
calculus [Her94]. Our method of proving strong normalisation works also for their
system without using a simulation in λI. For the details, see [Len05,Len06].

Recently, Nakazawa [Nak07] introduced a cut-elimination procedure for a stan-
dard intuitionistic sequent calculus, which is close to ours. The main difference
between the two cut-elimination procedures is as follows. In his cut-elimination
procedure, the redex [λz.P/x]〈xM/y〉N of the rule (B) is reduced to [M/z][P/y]N ,
while it is reduced to [[M/z]P/y]N in our cut-elimination procedure. This differ-
ence corresponds to the order of applications of cuts in the resulting proofs. Strong
normalisation of his cut-elimination procedure was proved by an inductive method
as in [Blo97], but it does not work for our rule (B) as explained in Section 6 of
[Nak07]. Another difference is that his cut-elimination procedure does not entirely
follow Gentzen-style local steps; the cut-permutation rules of his cut-elimination
procedure can be decomposed into two steps of ours (cf. Notes 3 and 4 of [Nak07]).
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5 Conclusion

We have proved strong normalisation of a cut-elimination procedure for a standard
intuitionistic sequent calculus, by using the safeness and minimality technique and
a simulation in λI, both of which are formalised in [Len05,Len06]. We have also
established the PSN property of the type-free terms with respect to β-reduction
through a Prawitz-style translation from the type-free λ-terms.

We consider our cut-elimination procedure for the intuitionistic sequent calculus
as a canonical one, since it is strong normalising and confluent, consists of com-
pletely local steps (without an extra kind of cut), and can simulate β-reduction.
For future work, it will be interesting to show strong normalisation of more liberal
cut-elimination procedures such as the one in [Kik06].
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A Cut-Elimination Steps for Sequent Proofs

In this appendix we display the cut-elimination steps corresponding to the reduction
rules in Figure 2. First we need the following lemma.

Lemma 7. Let Γ `λG3 M :A where x does not appear in Γ . Then Γ, x :B `λG3 M :
A.

Proof. By induction on the structure of derivations. ut

In the following x :B means a declaration added by the above lemma.

Cut-Elimination Steps for Sequent Proofs

(1) [M/x]y → y (y 6≡ x)

Γ, y : A ` M : B Γ, x : B, y : A ` y : A
Ax

Γ, y : A ` [M/x]y : A
Cut → Γ, y : A ` y : A

Ax

(2) [M/x]x → M

Γ ` M : A Γ, x : A ` x : A
Ax

Γ ` [M/x]x : A
Cut → Γ ` M : A

(3) [N/x](λy.M) → λy.[N/x]M

Γ ` N : A

Γ, x : A, y : B ` M : C

Γ, x : A ` λy.M : B ⊃ C
R ⊃

Γ ` [N/x](λy.M) : B ⊃ C
Cut →

Γ, y : B ` N : A Γ, x : A, y : B ` M : C

Γ, y : B ` [N/x]M : C
Cut

Γ ` λy.[N/x]M : B ⊃ C
R ⊃

(4) [P/z]〈xM/y〉N → 〈x([P/z]M)/y〉[P/z]N (x 6≡ z)

Γ, x : B ⊃ C ` P : A

Γ, z : A ` M : B Γ, z : A, y : C ` N : D

Γ, z : A, x : B ⊃ C ` 〈xM/y〉N : D
L ⊃

Γ, x : B ⊃ C ` [P/z]〈xM/y〉N : D
Cut

→

Γ, x : B ⊃ C ` P : A Γ, z : A, x : B ⊃ C ` M : B

Γ, x : B ⊃ C ` [P/z]M : B
Cut

Γ, x : B ⊃ C, y : C ` P : A Γ, z : A, x : B ⊃ C , y : C ` N : D

Γ, x : B ⊃ C, y : C ` [P/z]N : D
Cut

Γ, x : B ⊃ C ` 〈x([P/z]M)/y〉[P/z]N : D
L ⊃
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(5) [P/x]〈xM/y〉N → [P/x]〈x([P/x]M)/y〉[P/x]N if x ∈ FV(M) ∪ FV(N)

Γ ` P : A ⊃ B

Γ, x : A ⊃ B ` M : A Γ, x : A ⊃ B, y : B ` N : C

Γ, x : A ⊃ B ` 〈xM/y〉N : C
L ⊃

Γ ` [P/x]〈xM/y〉N : C
Cut

→ Γ ` P : A ⊃ B

Γ ` P : A ⊃ B Γ, x : A ⊃ B ` M : A

Γ ` [P/x]M : A
Cut

Γ, y : B ` P : A ⊃ B Γ, x : A ⊃ B, y : B ` N : C

Γ, y : B ` [P/x]N : C
Cut

Γ, x : A ⊃ B ` 〈x([P/x]M)/y〉[P/x]N : C
L ⊃

Γ ` [P/x]〈x([P/x]M)/y〉[P/x]N : C
Cut

(6) [z/x]〈xM/y〉N → 〈zM/y〉N

Γ, z : A ⊃ B ` z : A ⊃ B
Ax

Γ, z : A ⊃ B ` M : A Γ, z : A ⊃ B, y : B ` N : C

Γ, z : A ⊃ B, x : A ⊃ B ` 〈xM/y〉N : C
L ⊃

Γ, z : A ⊃ B ` [z/x]〈xM/y〉N : C
Cut

→ Γ, z : A ⊃ B ` M : A Γ, z : A ⊃ B, y : B ` N : C

Γ, z : A ⊃ B ` 〈zM/y〉N : C
L ⊃

(7′) [〈xM/y〉N/z]〈zM ′/w〉N ′ → 〈xM/y〉[N/z]〈zM ′/w〉N ′

Γ ` M : A Γ, y : B ` N : C ⊃ D

Γ, x : A ⊃ B ` 〈xM/y〉N : C ⊃ D
L ⊃

Γ, x : A ⊃ B, z : C ⊃ D ` 〈zM ′/w〉N ′ : E

Γ, x : A ⊃ B ` [〈xM/y〉N/z]〈zM ′/w〉N ′ : E
Cut

→ Γ, x : A ⊃ B ` M : A

Γ, x : A ⊃ B , y : B ` N : C ⊃ D Γ, x : A ⊃ B, y : B , z : C ⊃ D ` 〈zM ′/w〉N ′ : E

Γ, x : A ⊃ B, y : B ` [N/z]〈zM ′/w〉N ′ : E
Cut

Γ, x : A ⊃ B ` 〈xM/y〉[N/z]〈zM ′/w〉N ′ : E
L ⊃

(B) [λz.P/x]〈xM/y〉N → [[M/z]P/y]N

Γ, z : A ` P : B

Γ ` λz.P : A ⊃ B
R ⊃ Γ ` M : A Γ, y : B ` N : C

Γ, x : A ⊃ B ` 〈xM/y〉N : C
L ⊃

Γ ` [λz.P/x]〈xM/y〉N : C
Cut

→
Γ ` M : A Γ, z : A ` P : B

Γ ` [M/z]P : B
Cut

Γ, y : B ` N : C

Γ ` [[M/z]P/y]N : C
Cut

(Perm1) [[P/x]〈xM/y〉N/z]〈zM ′/w〉N ′ → [P/x][〈xM/y〉N/z]〈zM ′/w〉N ′

Γ ` P : A ⊃ B Γ, x : A ⊃ B ` 〈xM/y〉N : C ⊃ D

Γ ` [P/x]〈xM/y〉N : C ⊃ D
Cut

Γ, z : C ⊃ D ` 〈zM ′/w〉N ′ : E

Γ ` [[P/x]〈xM/y〉N/z]〈zM ′/w〉N ′ : E
Cut

→ Γ ` P : A ⊃ B

Γ, x : A ⊃ B ` 〈xM/y〉N : C ⊃ D Γ, x : A ⊃ B , z : C ⊃ D ` 〈zM ′/w〉N ′ : E

Γ, x : A ⊃ B ` [〈xM/y〉N/z]〈zM ′/w〉N ′ : E
Cut

Γ ` [P/x][〈xM/y〉N/z]〈zM ′/w〉N ′ : E
Cut
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(Perm2) [Q/w][λz.P/x]〈xM/y〉N → [[Q/w](λz.P )/x][Q/w]〈xM/y〉N

Γ ` Q : D

Γ, w : D ` λz.P : A ⊃ B Γ, w : D, x : A ⊃ B ` 〈xM/y〉N : C

Γ, w : D ` [λz.P/x]〈xM/y〉N : C
Cut

Γ ` [Q/w][λz.P/x]〈xM/y〉N : C
Cut

→
Γ ` Q : D Γ, w : D ` λz.P : A ⊃ B

Γ ` [Q/w](λz.P ) : A ⊃ B
Cut

Γ, x : A ⊃ B ` Q : D Γ, w : D, x : A ⊃ B ` 〈xM/y〉N : C

Γ, x : A ⊃ B ` [Q/w]〈xM/y〉N : C
Cut

Γ ` [[Q/w](λz.P )/x][Q/w]〈xM/y〉N : C
Cut

B Proof of Lemma 2

In this appendix we give a detailed proof of Lemma 2. In the proof we use the
following facts:

1. If s = t then s >lpo t. (the subterm property)
2. >lpo is context-closed.

Lemma 2. If M −→safeB,minx M ′ then M >lpo M ′. Hence, −→safeB,minx is strongly
normalising.

Proof. By induction on the derivation of the reduction step. First we consider the
cases where the reduction is at the root. If the reduction step is safe, i.e. if the redex
itself is in SNcut, then M ≡ cM >lpo cM ′ ≡ M ′. So let the reduction step be −→minx
where the redex (and the result of reduction) is not in SNcut.

(1) [M/x]y −→minx y (y 6≡ x)

LHS : [M/x]y = sub(M, y)

RHS : y = y

(2) [M/x]x −→minx M

LHS : [M/x]x = sub(M, x)

RHS : M = M

(3) [N/x](λy.M) −→minx λy.[N/x]M

LHS : [N/x](λy.M) = sub(N, λy.M)

= sub(N, cλy.M )

RHS : λy.[N/x]M = i([N/x]M)

= i(sub(N, M))

= i(sub(N, cM ))

If [N/x]M is an application term then the RHS is even smaller.
(4) [P/z]〈xM/y〉N −→minx 〈x([P/z]M)/y〉[P/z]N (x 6≡ z)

LHS : [P/z]〈xM/y〉N = sub(P , 〈xM/y〉N)

= sub(P , c〈xM/y〉N )

RHS : 〈x([P/z]M)/y〉[P/z]N = ii([P/z]M, [P/z]N)

= ii(sub(P , M), sub(P , N))

= ii(sub(P , cM ), sub(P , cN ))

If [P/z]M or [P/z]N is an application term then the RHS is even smaller.
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(5) [P/x]〈xM/y〉N −→minx [P/x]〈x([P/x]M)/y〉[P/x]N if x ∈ FV(M) ∪ FV(N)

LHS : [P/x]〈xM/y〉N = sub(P , 〈xM/y〉N)

= sub(P , c〈xM/y〉N )

RHS : [P/x]〈x([P/x]M)/y〉[P/x]N = app(P , 〈x([P/x]M)/y〉[P/x]N)

= app(P , ii([P/x]M, [P/x]N))

= app(P , ii(sub(P , M), sub(P , N)))

= app(P , ii(sub(P , cM ), sub(P , cN )))

If [P/x]M or [P/x]N is an application term then the RHS is even smaller.
(6) [z/x]〈xM/y〉N −→minx 〈zM/y〉N

LHS : [z/x]〈xM/y〉N = app(z, 〈xM/y〉N)

= app(z, c〈xM/y〉N )

RHS : 〈zM/y〉N = c〈zM/y〉N

(7′) [〈xM/y〉N/z]〈zM ′/w〉N ′ −→minx 〈xM/y〉[N/z]〈zM ′/w〉N ′

LHS : [〈xM/y〉N/z]〈zM ′/w〉N ′ = app(〈xM/y〉N, 〈zM ′/w〉N ′)

= app(c〈xM/y〉N , 〈zM ′/w〉N ′)

RHS : 〈xM/y〉[N/z]〈zM ′/w〉N ′ = ii(M, [N/z]〈zM ′/w〉N ′)

= ii(M, app(N, 〈zM ′/w〉N ′))

= ii(cM , app(cN , 〈zM ′/w〉N ′))

(Perm1) [[P/x]〈xM/y〉N/z]〈zM ′/w〉N ′ −→minx [P/x][〈xM/y〉N/z]〈zM ′/w〉N ′

LHS : [[P/x]〈xM/y〉N/z]〈zM ′/w〉N ′ = app([P/x]〈xM/y〉N, 〈zM ′/w〉N ′)

= app(c[P/x]〈xM/y〉N , 〈zM ′/w〉N ′)

RHS : [P/x][〈xM/y〉N/z]〈zM ′/w〉N ′ = app(P , [〈xM/y〉N/z]〈zM ′/w〉N ′)

= app(P , app(〈xM/y〉N, 〈zM ′/w〉N ′))

= app(cP , app(c〈xM/y〉N , 〈zM ′/w〉N ′))

(Perm2) [Q/w][λz.P/x]〈xM/y〉N −→minx [[Q/w](λz.P )/x][Q/w]〈xM/y〉N

LHS : [Q/w][λz.P/x]〈xM/y〉N = sub(Q, [λz.P/x]〈xM/y〉N)

= sub(Q, c[λz.P/x]〈xM/y〉N )

RHS : [[Q/w](λz.P )/x][Q/w]〈xM/y〉N = app([Q/w](λz.P ), [Q/w]〈xM/y〉N)

= app(sub(Q, λz.P ), sub(Q, 〈xM/y〉N))

= app(sub(Q, cλz.P ), sub(Q, c〈xM/y〉N ))

The cases where the reduction is not at the root are immediate from the induction
hypothesis, since >lpo is context-closed. Note that if M ≡ [P/x]N is an applica-
tion term and N −→safeB,minx N ′, then M ′ ≡ [P/x]N ′ is an application term by
Lemma 1. ut

C Proof of Theorem 7

First, note the following facts:
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– If M H U and x 6∈ FV(M) then M H {
V�x

}
U .

– If M H U then for all V there is U ′ such that M H U ′ and
{

[x,V ]�x

}
U−→∗

π U ′.

Theorem 7 (Simulation in λI). Suppose M H T .

1. If M −→minB N is unsafe then there exists U such that N H U and T−→+
βπ U .

2. If M −→minB N is safe then there exists U such that N H U and T−→∗
βπ U .

3. If M −→minx N then there exists U such that N H U and T−→∗
π U .

Proof. By induction on the derivation of M H T .

– The case of the rule
x H x

is vacuous.
– For the rules

M H T
λx.M H λx.T

x ∈ FV(T )
and

M H U N H T

〈xM/y〉N H {
x U�y

}
T

y ∈ FV(T )

the reduction must take place within M or N so we can simply apply the
induction hypothesis, remembering that reduction in λI preserves free variables
so the side-condition remains satisfied.
Moreover, for the second rule, an unsafe (minimal) B-reduction of M is simu-
lated by at least one reduction step from U and that step is preserved in the
reduction of

{
x U�y

}
T since y ∈ FV(T ).

– For the rule
M H T

M H [T, U ]
U ∈ ΛI

we simply apply the induction hypothesis.
– The interesting case is

M H U N H T

[M/x]N H {
U�x

}
T

x ∈ FV(T ) ∨M ∈ SNcut

If the reduction takes place within M or N , we apply the induction hypothesis
again, and the side-condition remains satisfied. Moreover, an unsafe (minimal)
B-reduction of M is simulated by at least one reduction step from U (Indeed,
since the B-reduction is unsafe, we know that M 6∈ SNcut and hence we must
have y ∈ FV(T )). The simulating reduction step from U is therefore preserved in
the reduction of

{
U�y

}
T . This is the precise point where the distinction between

safe and unsafe reductions plays its role.
Otherwise, we have a (minimal) root reduction and the case analysis below
inspects all rules. Note that, by minimality, both M and N (in the rule above)
are in SNcut. In each case, we express the most general shape of the (non-
deterministic) encoding of the redex, and show how it reduces to an encoding
of the reduct. Our notational convention is that M H M , N H N , etc. . .
(1)

[M/x]y H
{

M�x

}
[y,
−→
R ]

↓ =
y H [y,

{
M�x

}−→
R ]

with (y 6≡ x).
(2)

[M/x]x H
{

M�x

}
[x,
−→
R ]

↓ =
M H [M,

{
M�x

}−→
R ]
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(3)

[N/x](λy.M) H
{

N�x

}
[λy.M,

−→
R ]

↓ =
λy.[N/x]M H [λy.

{
N�x

}
M,

{
N�x

}−→
R ]

since N ∈ SNcut.
(4)

[P/z]〈xM/y〉N H
{

P�z

}
[
{

x M�y

}
N,
−→
R ]

↓ =

〈x([P/z]M)/y〉[P/z]N H [
{

x
{

P�z

}
M�y

}{
P�z

}
N,

{
P�z

}−→
R ]

since P ∈ SNcut.
(5)

[P/x]〈xM/y〉N H
{

P�x

}
[
{

x M�y

}
N,
−→
R ]

↓ =

[P/x′]〈x′([P/x]M)/y〉[P/x]N H
{

P�x′
}

[
{

x′
{

P�x

}
M�y

}{
P�x

}
N,

{
P�x

}−→
R ]

with x ∈ FV(M) ∪ FV(N) and again P ∈ SNcut.
(6)

[z/x]〈xM/y〉N H
{

[z,
−→
R′]�x

}
[
{

x M�y

}
N,
−→
R ]

= [
{

[z,
−→
R′] M

•
�y

}
N
•
,
−→
R′′]

∗ ↓π

↓ [
{

[z M
•
,
−→
R′]�y

}
N
•
,
−→
R′′]

=

[
{

z M
•
�y

}{
[y,
−→
R′]�y

}
N
•
,
−→
R′′]

∗ ↓π

〈zM/y〉N H [
{

z M
•
�y

}
U ′,

−→
R′′]

with
−→
R′′ =

{
[z,
−→
R′]�x

}−→
R , M

•
=

{
[z,
−→
R′]�x

}
M (resp. N

•
=

{
[z,
−→
R′]�x

}
N) and

M H M
•
(resp. N H N

•
) obtained from x 6∈ FV(M) (resp. x 6∈ FV(N)).

The previous remark provides N H U ′, and
y ∈ (FV(N) \ {x}) ⊆ FV(N

•
) ⊆ FV(

{
[y,
−→
R′]�y

}
N
•
) = FV(U ′) implies

〈zM/y〉N H [
{

z M
•
�y

}
U ′,

−→
R′′].

(7′)

[〈xM/y〉N/z]〈zM ′/w〉N ′ H
{

[
{

x M�y

}
N,
−→
R ]�z

}
〈zM ′/w〉N ′

={{
x M�y

}
N�z

}{
[z,
−→
R ]�z

}
〈zM ′/w〉N ′

↓ ∗ ↓π{{
x M�y

}
N�z

}
U ′

=
〈xM/y〉[N/z]〈zM ′/w〉N ′ H

{
x M�y

}{
N�z

}
U ′
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with 〈zM ′/w〉N ′ H U ′. Note that z ∈ FV(〈zM ′/w〉N ′). Hence we also
have z ∈ FV(

{
[z,
−→
R ]�z

}
〈zM ′/w〉N ′), so z ∈ FV(U ′), which, together with

y ∈ FV(N), ensures that y ∈ FV(
{

N�z

}
U ′).

(B)
[λz.P/x]〈xM/y〉N H

{
[λz.P ,

−→
R1]�x

}
[
{

x M�y

}
N,
−→
R2]

=
↓ [

{
[λz.P ,

−→
R1] M

•
�y

}
N
•
,
−→
R3]

∗ ↓βπ

[[M/z]P/y]N H [
{

[
{

M•�z

}
P,
−→
R1]�y

}
N
•
,
−→
R3]

where M
•

=
{

[λz.P ,
−→
R1]�x

}
M , and N

•
=

{
[λz.P ,

−→
R1]�x

}
N and

−→
R3 =

{
[λz.P ,

−→
R1]�x

}−→
R2

(note that M H M
•
and N H N

•
since x 6∈ FV(M) ∪ FV(N)). Since

M ∈ SNcut, [M/z]P H [
{

M
•
�z

}
P ,
−→
R1] and since y ∈ (FV(N) \ {x}) ⊆ N

•
,

we finally have [[M/z]P/y]N H [
{

[
{

M•�z

}
P,
−→
R1]�y

}
N
•
,
−→
R3].

(Perm1)

[[P/x]〈xM/y〉N/z]〈zM ′/w〉N ′ H
{

[
{

P�x

}
〈xM/y〉N,

−→
R ]�z

}
〈zM ′/w〉N ′

↓ =
[P/x][〈xM/y〉N/z]〈zM ′/w〉N ′ H

{
P�x

}{
[〈xM/y〉N,

−→
R ]�z

}
〈zM ′/w〉N ′

since P ∈ SNcut and 〈xM/y〉N ∈ SNcut.
(Perm2)

[Q/w][λz.P/x]〈xM/y〉N H
{

Q�w

}
[
{

λz.P�x

}
〈xM/y〉N,

−→
R ]

↓ =

[[Q/w](λz.P )/x][Q/w]〈xM/y〉N H [
{{

Q�w

}
λz.P�x

}{
Q�w

}
〈xM/y〉N,

{
Q�w

}−→
R ]

since Q ∈ SNcut and x ∈ (FV(〈xM/y〉N) \ {w}) ⊆ FV(
{

Q�w

}
〈xM/y〉N).

ut
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