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Context: Satisfiability Modulo Theories (SMT)
CDCL (Conflict-Driven Clause Learning)

I procedure for deciding the satisfiability of Boolean formulae
I uses assignments of Boolean values to variables, e.g., l←true

MCSAT (Model-Constructing Satisfiability) [dMJ13, Jov17]
I generalises CDCL to theory reasoning
I uses first-order assignments, e.g., x←

√
2

CDSAT (Conflict-Driven Satisfiability) [BGLS17]
I generalises MCSAT: generic combinations of abstract theories
I can also use first-order assignments
I models theory reasoning with modules made of inference rules

MCSAT and CDSAT can explicitly provide, for satisfiable formulae,
the model’s assignments of values to variables
This paper concerns the dual situation of unsatisfiable formulae:
there exists a proof (of the formula’s negation)
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Questions addressed
I Which information does CDSAT need to record, during a run,

in order to justify an answer “unsat” by a proof?

I Is the production of a proof by CDSAT tied to a particular
proof format?

I Can we trust a CDSAT implementation to produce correct
answers “unsat” without building proofs in memory?
If so which parts of the implementation are critical

(i.e., can affect the correctness of an answer “unsat”)?
I Is the issue of producing proofs, or correct answers “unsat”,

related to learning mechanisms, as in pure SAT-solving?
I Actually, is there a learning mechanism on CDSAT?

CADE’2017 version of CDSAT: no clause learning mechanism
By design: simpler to present

+ emphasis that learning is not needed for completeness
Here, we start by adding learning mechanisms to CDSAT.
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Conflict-driven theory combination

The CDSAT system - with learning

Proof production
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1. Conflict-driven theory combination
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Conflict-driven reasoning
2-player game to determine whether a formula is satisfiable.
It involves a trail where a putative model is being specified.
It relies on a notion of conflict between the putative model and the
formula it should satisfy.

Archetype of conflict-driven reasoning: CDCL
a conflict occurs when a clause is falsified

a⇒ b
b ⇒ a
a⇒ b
b ⇒ a
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Conflict-driven reasoning can be used for (other) theories

l0︷ ︸︸ ︷
(−2·x − y < 0),

l1︷ ︸︸ ︷
(x + y < 0),

l2︷ ︸︸ ︷
(x < −1)

unsatisfiable in Linear Rational Arithmetic (LRA).

I Guess a value, e.g., y←0
Then l0 yields lower bound x > 0
Together with l2, range of possible values for x is empty
What to do? just undo y←0 and remember that y 6= 0?

I No! Clash of bounds suggests a better conflict explanation,

by inferring l0 + 2l2, i.e.,
l3︷ ︸︸ ︷

(−y < −2)
It rules out y←0,
but also many values that would fail for the same reasons.

I Now undo the guess but keep l3.
I and so on. . .

(when there is no guess to undo, problem is UNSAT)
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Traditional architecture of SMT-solving

SAT-solver
(CDCL)

Comb.∗

T1 T2

T3

T4T5

* e.g. equality sharing / Nelson-Oppen [NO79]
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In CDSAT
. . . the theory combination is organised directly in the main
conflict-driven loop:

As in MCSAT, trail contains
I Boolean assignments

a← true
I First-order assignments

y ← 3/4

Features of conflict-driven
satisfiability:

I Boolean theory can have the
same status as other theories.

I Theory-specific reasoning often consists of fine-grained
reasoning inferences, e.g., Fourier-Motzkin resolution for LRA:

(t1 < x), (x < t2) `̀̀ t1 < t2

T2

T1

Bool

Bool

T1

T2

mo
del building

proof buildin
g

. . .

. . .
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2. The CDSAT system - with learning
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What is a theory module?
A set of inferences of the form

(t1←c1), . . . , (tk←ck) `̀̀T (l←b)

where
I each ti←ci is a single T -assignment

(a term ti and a T -value ci of matching sorts)
I l←b is a single Boolean assignment

(a term l of sort Bool and a truth value b)

Abbreviations: (l←true) as l and (l←false) as l
I Soundness requirement:

Every model of the premisses is a model of the conclusion:
(t1←c1), . . . , (tk←ck) |= (l←b)

Examples:
(x←

√
2), (y←

√
2) `̀̀NLRA (x · y ' 2) (evaluation inference)

(l1 ∨ · · · ∨ ln), l1 . . . , ln−1 `̀̀Bool ln (unit propagation)
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What is a theory module? (Equality inferences)

All theory modules have the equality inferences:

t1←c1, t2←c2 `̀̀T t1 ' t2 if c1 and c2 are the same value
t1←c1, t2←c2 `̀̀T t1 6' t2 if c1 and c2 are distinct values

`̀̀T t1 ' t1 reflexivity
t1 ' t2 `̀̀T t2 ' t1 symmetry

t1 ' t2, t2 ' t3 `̀̀T t1 ' t3 transitivity
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CDSAT states
Search states: simply trails.
A trail is a stack of justified assignments H `(t←c) and decisions ?(t←c)
coming from different theories
Justification H: a set of assignments that appear earlier on the trail

Example (trail grows from left to right):

∅`(x ' z), ∅`(y ' z), ?(x←
√
2), ?(y←blue), ?(x←red), H `(x 6= y)

where H is {(y←blue), (x←red)}

Everything is on the trail, including assertions from the input
problem, with empty justifications

(e.g., ∅`(C←true) for an input clause C),

Conflict states: 〈Γ;H〉,
trail Γ + set H of trail assignments that are in conflict

In this paper, new rule for solving/exiting conflicts: Learn
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Example: exiting a conflict without learning a clause
Input problem H0 including: (¬l2∨¬l4∨¬l5)
with l4 = (x≤y) and l5 = (f (x)≤f (y)) in a theory where f is monotonic

Initial trail Γ0 including: ∅`(¬l2∨¬l4∨¬l5)

Search rules extend Γ0 into Γ = Γ0, ?A1, ?l2, ?A3, ?l4, l4`l5
(involving unrelated decisions A1 and A3)

First conflict: 〈Γ; (¬l2∨¬l4∨¬l5), l2, l4, l5〉
Resolving l5: 〈Γ; (¬l2∨¬l4∨¬l5), l2, l4〉
In first conflict, both l4 and l5 depend on the latest decision ?l4.
After applying Resolve, only l4 does. Time to stop conflict analysis.
Rule Learn can exit the conflict with trail
Γ0, ?A1, ?l2, H `l4

where H is {(¬l2∨¬l4∨¬l5), l2}
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Example: exiting a conflict learning a clause
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where H ′ is {(¬l2∨¬l4∨¬l5)}

Then Deduce can derive l4 as before:
Γ0, ?A1, ?l2, H′`(¬l2 ∨ ¬l4), {(¬l2 ∨ ¬l4), l2}`l4
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Example: exiting a conflict learning a clause & restarting
Input problem H0 including: (¬l2∨¬l4∨¬l5)
with l4 = (x≤y) and l5 = (f (x)≤f (y)) in a theory where f is monotonic
Initial trail Γ0 including: ∅`(¬l2∨¬l4∨¬l5)
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In first conflict, both l4 and l5 depend on the latest decision ?l4.
After applying Resolve, only l4 does. Time to stop conflict analysis.
Rule Learn can exit the conflict and learn a clause, and restart:
Γ0, H′`(¬l2 ∨ ¬l4)

where H ′ is {(¬l2∨¬l4∨¬l5)}
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The Learn rule introduced in this paper
〈Γ;E ] H〉 −→ Γ′, E `L if L is a “clausal form of H”, L /∈ Γ, L /∈ Γ

Γ′: a pruning of Γ undoing at least the latest decision involved,
E ⊆ Γ′

“Clausal forms of H” reify H in Boolean logic:

((
∧

(l←true)∈H l) ∧ (
∧

(l←false)∈H ¬l))←false

((
∨

(l←true)∈H ¬l) ∨ (
∨

(l←false)∈H l))←true

This rule
I generalises the CADE’2017 one (sufficient for completeness)
I models clause learning by reifying (Boolean parts of) conflicts
I models clause learning + restarts,

a common practice in SAT/SMT-solving
Which version to apply depends on your search strategy
(particularly for restarts)
All version are OK with respect to termination of CDSAT
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3. Proof production

16/30



Soundness invariants, and rules that may affect them
I For every assignment H `A on the trail, H |= A;
I For every conflict state 〈Γ;E 〉, E |= ⊥.

Next step: keep track of invariant via proof-theoretical information
Let T be a theory with a specific T -module.
Deduce

Γ −→ Γ, J `(t←b) if J `̀̀T (t←b) and J ⊆ Γ,
and t←b is not in Γ

Conflict
Γ −→ 〈Γ; J , (t←b)〉 if J `̀̀T (t←b) and J ⊆ Γ,

and t←b is in Γ
Resolve
〈Γ;E ] {A}〉 −→ 〈Γ;E∪H〉 if H `A is in Γ

Learn
〈Γ;E ] H〉 −→ Γ′, E `L if L is a “clausal form” of H

L /∈ Γ, L /∈ Γ, and E ⊆ Γ′
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Theory proofs

To keep track of the soundness invariants,
we need to refer to theory inferences

Each theory module comes with a “proof annotation system”

(t1←c1), . . . , (tk←ck) `̀̀T (l←b)

is annotated as

a1(t1←c1), . . . , ak (tk←ck) `̀̀T jT : (l←b)

Examples:
a1(x←

√
2), a2(y←

√
2) `̀̀NLRA eval({a1, a2}) : (x · y ' 2)

(evaluation inference)
a0(l1 ∨ · · · ∨ ln), a1(l1), . . . , ak−1(ln−1) `̀̀Bool UP(a0, {a1, . . . , an}) : ln

(unit propagation)
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Proof-terms and proof-carrying CDSAT
I A proof-carrying trail is a stack

I of justified assignments H `j : (t←c)
I and decisions ?(t←c)

I A proof-carrying conflict state is of the form 〈Γ; H ; c〉

. . . where j and c respectively range over

Deduction proof terms j ::= in jT lem(H.c)
Conflict proof term c ::= cfl(jT , a) res(j , aA.c)

in annotates an input assignment,
jT ranges over theory proofs for T , used for Deduce
lem(H.c) annotates justified assignments that Learn places on trail

(clausal forms of H), binding the identifiers of H in c
cfl(jT , a) annotates a conflict when it is created by Conflict
res(j , aA.c) annotates a conflict resulting from the Resolve rule,

binding a in c
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Provability invariants that proof-terms keep track of

A is an input

∅ `̀̀ in :A

J `̀̀T jT : L

J `̀̀ jT : L

E ] H `̀̀ c :⊥
L clausal form of H

E `̀̀ lem(H.c) : L

J `̀̀T jT : L

J ∪ {aL} `̀̀ cfl(jT , a) :⊥

H `̀̀ j :A E , aA `̀̀ c :⊥

E ∪ H `̀̀ res(j , aA.c) :⊥

Rules of CDSAT are adapted so as to use those proof-terms, and
the soundness invariants are materialised as:
Theorem

I For every assignment H `j :A on the trail, H `̀̀ j :A
I For every conflict state 〈Γ; E ; c〉, E `̀̀ c :⊥.

The proof system above can be seen as glueing a collection of
inference systems (`̀̀T )T
CDSAT is a search procedure for the resulting system
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Satisfiability Modulo Assignments (SMA)

An SMT-problem with input clauses C1, . . . ,Cn is treated by
running CDSAT on the initial trail ∅`in :C1, . . . , ∅`in :Cn

But the CDSAT system can accept inputs with first-order
assignments, e.g: ∅`in : (x←3/4), ∅`in : (x≤y), ∅`in : (y≤0)
Such problems are called SMA problems.

If there are no first-order inputs and the problem is unsat,
then the final proof-term will not mention
any deduction proof-term H `̀̀ j : L nor any conflict proof H `̀̀ c :⊥
such that H contains a first-order assignment

Easy optimisation in that case:
the construction of any such proof-term during the run can be omitted
Theory modules do not have to provide theory proofs H `̀̀T jT : L
if H contains a first-order assign. (typically: evaluation inferences)
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Different views about proof objects

Proof-carrying CDSAT can be considered exactly as defined above,
where in, jT , lem(H.c), cfl(jT , a), res(j , aA.c) are terms.

Another proof format is desired for output?
Just interpret the terms in that format after the run

(proof reconstruction)

Alternatively,
proof-carrying CDSAT can directly manipulate proofs in the format,
if equipped with the operations corresponding to the term constructs.
The proof-terms denote the manipulated proofs,

but are never constructed.
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Example: resolution proofs

If input contains no first-order assignments,
resolution trees (or DAGs) form a proof format equipped with the
right operations

Leaves of resolution proofs are labeled by
I either literals corresponding to input assignments ∅ `̀̀ in :A
I or theory lemmas corresponding to theory proofs J `̀̀T jT : L

Internal nodes are obtained by applying resolution rule,
corresponding to H `̀̀ res(j , aA.c) :⊥ constructs.

If input does contains first-order assignments (SMA problems)
the resolution format has to be slightly extended,
so that it manipulates guarded clauses of the form

{(t1←c1), . . . , (tn←cn)} ⇒ C
where (t1←c1), . . . , (tn←cn) are first-order assign. guarding clause C
Details in the paper.
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LCF: answers that are correct-by-construction
Other “proof format”:

I A deduction proof j with H `̀̀ j : L is the pair 〈H, L〉, and
I A conflict proof c with H `̀̀ c :⊥ is H.

No proof-checking. But the LCF architecture [Mil79, GMW79] can
be used to ensure the correctness of answers. LCF in a nutshell:

I A type theorem is defined for provable formulae
in a module of the prover called kernel

I The definition of theorem is hidden outside the kernel
I The kernel exports primitives to construct its inhabitants,

e.g. modus_ponens : theorem -> theorem -> theorem
takes as arguments F and G , checks that F is of the form
G ⇒ R, and returns R as an inhabitant of theorem.

I Search procedures can be programmed using the primitives.
I Bugs in these procedures cannot jeopardise the property that

any inhabitant of theorem is provable, if kernel is trusted
No proof object needs to be built in memory
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CDSAT is well-suited to the LCF approach 1/2
Given a type assign for multiple assignments
and single_assign for singleton assignments,
a trusted kernel defines

type deduction = assign*single_assign
type conflict = assign

and exports

type deduction
type conflict
in : single_assign -> deduction
coerc : ’k theory_handler

-> ’k theory_proof -> deduction
lem : conflict -> assign -> deduction
cfl : ’k theory_handler

-> ’k theory_proof -> conflict
res : deduction -> conflict -> conflict
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CDSAT is well-suited to the LCF approach 2/2

If the empty assignment is constructed in type conflict,
input problem is guaranteed to be unsat, provided the kernel
primitives and the implementation of theory proofs are trusted
(code for the search plan does not have to be certified)

Answer is correct-by-construction, no proof object in memory.
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Conclusion
I Proof-producing CDSAT clarifies at what point CDSAT needs

to record proof information to justify answers “unsat”, and how.

I Proof-producing CDSAT only requires a small proof system,
which glues together a collection of inferences systems in a
modular way.

I Clause learning is still not needed for completeness of CDSAT
/ its proof system
. . . but is critical for efficiency of search,
and compresses proofs by sharing subproofs.

I Nothing exotic:
I Proof terms map to resolution proofs + theory lemmas

if this is preferred format.
If inputs contain first-order assignments,
this format has to be generalised with guarded clauses

I Proof-terms can be convenient for translations to proof
assistants (c.f. SMTCoq [AFG+11])

I CDSAT is suited to the LCF principles, which are standard
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Ongoing and future work

I Proof-of-concept implementation is available at
https://github.com/disteph/cdsat
Currently working on more performance-driven
implementation.

I Issue of cost: Penalty of building proof-terms?
Penalty of having a code developed in the
correct-by-construction approach?

I Use proof-terms for interpolation?
(See Tanja Schindler’s talk on interpolation in a related context!

16:30 at VMCAI)
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Adapting the rules

Deduce
Γ −→ Γ, J `jT : (t←b) if J `̀̀T jT : (t←b), J ⊆ Γ,

and t←b is not in Γ
Conflict

Γ −→ 〈Γ; J , (t←b) ; cfl(jk , a)〉 if J `̀̀T jT : (t←b), J ⊆ Γ,
and t←b is in Γ with id a

Resolve
〈Γ; E ] {A} ; c〉 −→ 〈Γ; E∪H ; res(j , aA.c)〉

if H `j :A is in Γ with id a

Learn
〈Γ; E ] H ; c〉 −→ Γ′, E `lem(H.c) : L if L is a “clausal form” of H

L /∈ Γ, L /∈ Γ, and E ⊆ Γ′
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