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YicesQS is a solver derived from Yices 2, an open-source SMT solver devel-
oped and distributed by SRI International. It extends Yices to supports quan-
tifiers for complete theories, and is unrelated to the support of quantifiers in
Yices for UF. Its core algorithm is a generalization of counterexample-guided
quantifier instantiation (CEGQI) [Dutl5] that can be seen as a form of lazy
quantifier elimination. YicesQS submits quantifier-free queries to one of Yices’s
core solvers CDCL(T) or MCSAT [dMJ13]. Tt is written in OCaml and uses the
OCaml bindings for the Yices C API; it indirectly relies on the libpoly library
for arithmetic. In the 2024 SMT competition, YicesQS entered logics BV, NRA,
NIA, LRA, and LIA (single-query, non-incremental tracks), as in 2023 and 2022.
The exact commits are as follows:

https://github.com/disteph/yicesQS commit 56ab860
https://github.com/SRI-CSL/yices2_ocaml_bindings commit 4afdbee
https://github.com/SRI-CSL/yices2 commit 98a0d52
https://github.com/SRI-CSL/1libpoly_ocaml_bindings commit 8e9dc78
https://github.com/SRI-CSL/1libpoly. commit 331cdff

and the exact command is
./main.exe -under 20 -cdclT-mcsat 700 $1

Algorithmic approach. The main algorithm in YicesQS is QSMA [BGLV23].

It does not modify the structure of quantifiers in formulas: it does not prenexify
formulas and, more importantly, it does not skolemize them to avoid introducing
uninterpreted function symbols. This departs from the standard architecture for
quantifier support consisting of keeping a set of universally quantified clauses, to
be grounded and sent to a core SMT-solver for ground clauses. Instead, YicesQS
sees a formula as a 2-player game, in the tradition of Bjgrner & Janota’s Playing
with Quantified Satisfaction [BJ15] and earlier work on QBF. YicesQS’s algo-
rithm is designed to answer queries of the following form:

“Given a formula A(Z,7) and a model Mz on Z, produce either
— SAT(U (%)), with U(Z) under-approx. of 3T A(Z,T) satisfied by 9Mz; or
— UNSAT(O(z)), with O(%) over-approx. of 3% A(Z,T) not satisfied by Dz;

where under-approximations and over-approximations are quantifier-free.”

To answer such queries, YicesQS calls Yices’s feature satisfiability modulo a
model, while the production of under- and over-approximations leverages model
interpolation and model generalization. When the input formula is in the exists-
forall fragment, the algorithm degenerates to the CEGQI one used in Yices’
3V solver [Dutl5] using quantifier-free solving and model generalization. Model


https://github.com/disteph/yicesQS
https://github.com/SRI-CSL/yices2_ocaml_bindings
https://github.com/SRI-CSL/yices2
https://github.com/SRI-CSL/libpoly_ocaml_bindings
https://github.com/SRI-CSL/libpoly

interpolation, a form of which is used within Yices’s MCSAT solver to solve
quantifier-free problems [JD21], also becomes useful with more quantifier al-
ternations than 3V. It generalizes to non-Boolean inputs the notion of UNSAT
cores, which has been used in the quantified-problems-as-games approach [BJ15].

Arithmetic (NRA, NIA, LRA, LIA). Solving Modulo a Model: We use
Yices’s MCSAT solver; the MCSAT approach is inspired by CDCL, building a
tentative solution model on a trail where Boolean and theory assignments are
decided, propagated, and backtracked upon. MCSAT can natively take a partial
model as input [JD21]. Model interpolation: We use the model interpolants na-
tively produced by Yices’s MCSAT solver. A lemma that is learnt at decision level
0, defeating the input model, constitutes a model interpolant. Learnt lemmas
arise from theory-specific mechanisms for explaining conflicts, which in the case
of arithmetic is leveraging Cylindrical Algebraic Decomposition (CAD) [JdM12,
Jov17]. Model generalization: We mainly use model-projection (based on CAD
once again). For NRA, the presence of division in benchmarks departs from the
theoretic applicability of YicesQS’s algorithm for complete theories, because of
division-by-zero (which also makes the theory undecidable). Yices’s CAD-based
model-projection in NRA does not support division. When YicesQS needs to
perform model generalization with a formula involving division, it cannot use
CAD model-projection and resorts to generalization-by-substitution, which is
a generic mechanism already used in Yices’s 3V solver [Dut15]. Resorting to
generalization-by-substitution for NRA also means that YicesQS’s algorithm
may not terminate.

Arithmetic (LIA). In 2025, we make two runs in a sequential portfolio;
the second one leverages MCSAT as for the other arithmetic logics. The first
one leverages Yices’s CDCL(T) solver as follows. Solving Modulo a Model: We
represent the partial input model as equalities between integer variables and
their values, and given to Yices as assumptions. Model interpolation: We simply
use UNSAT cores produced by Yices’s CDCL(T) solver. Model generalization:
as for the other arithmetic logics.

Bitvectors (BV). As for LIA, we make two runs in a sequential portfo-
lio, starting with the version relying on CDCL(T) as the quantifier-free solver,
which in this logic relies on bitblasting and, ultimately, Yices’s internal SAT-
solver. The second run uses Yices’s MCSAT as the quantifier-free solver, which
support quantifier-free bitvectors [GLJD20]. In both cases, Model generalization
uses invertibility conditions from Niemetz et al. [NPR 18], including e-terms, in
combination with generalization-by-substitution. For the BV theory, the cegqi
solver from [NPR™18] is probably the closest to YicesQS.

Changes since 2024. There are no changes in YicesQS since the 2024
SMT-competition, except for the use of the CDCL(T) solver for LIA. There are
some changes in the underlying Yices 2 quantifier-free solver that may affect
performance of YicesQS.
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