YicesQS 2025,
an extension of Yices for quantified satisfiability

Stéphane Graham-Lengrand

SRI International, USA

YicesQS is a solver derived from Yices 2, an open-source SMT solver devel-
oped and distributed by SRI International. It extends Yices to supports quan-
tifiers for complete theories, and is unrelated to the support of quantifiers in
Yices for UF. Its core algorithm is a generalization of counterexample-guided
quantifier instantiation (CEGQI) [Dutl5] that can be seen as a form of lazy
quantifier elimination. YicesQS submits quantifier-free queries to one of Yices’s
core solvers CDCL(T) or MCSAT [dMJ13]. Tt is written in OCaml and uses the
OCaml bindings for the Yices C API; it indirectly relies on the libpoly library
for arithmetic. In the 2024 SMT competition, YicesQS entered logics BV, NRA,
NIA, LRA, and LIA (single-query, non-incremental tracks), as in 2023 and 2022.
The exact commits are as follows:

https://github.com/disteph/yicesQS commit 56ab860
https://github.com/SRI-CSL/yices2_ocaml_bindings commit 4afdbee
https://github.com/SRI-CSL/yices2 commit 98a0d52
https://github.com/SRI-CSL/1libpoly_ocaml_bindings commit 8e9dc78
https://github.com/SRI-CSL/1libpoly. commit 331cdff

and the exact command is
./main.exe -under 20 -cdclT-mcsat 700 $1

Algorithmic approach. The main algorithm in YicesQS is QSMA [BGLV23].

It does not modify the structure of quantifiers in formulas: it does not prenexify
formulas and, more importantly, it does not skolemize them to avoid introducing
uninterpreted function symbols. This departs from the standard architecture for
quantifier support consisting of keeping a set of universally quantified clauses, to
be grounded and sent to a core SMT-solver for ground clauses. Instead, YicesQS
sees a formula as a 2-player game, in the tradition of Bjgrner & Janota’s Playing
with Quantified Satisfaction [BJ15] and earlier work on QBF. YicesQS’s algo-
rithm is designed to answer queries of the following form:

“Given a formula A(Z,7) and a model Mz on Z, produce either
— SAT(U (%)), with U(Z) under-approx. of 3T A(Z,T) satisfied by 9Mz; or
— UNSAT(O(z)), with O(%) over-approx. of 3% A(Z,T) not satisfied by Dz;

where under-approximations and over-approximations are quantifier-free.”

To answer such queries, YicesQS calls Yices’s feature satisfiability modulo a
model, while the production of under- and over-approximations leverages model
interpolation and model generalization. When the input formula is in the exists-
forall fragment, the algorithm degenerates to the CEGQI one used in Yices’
3V solver [Dutl5] using quantifier-free solving and model generalization. Model

https://github.com/disteph/yicesQS
https://github.com/SRI-CSL/yices2_ocaml_bindings
https://github.com/SRI-CSL/yices2
https://github.com/SRI-CSL/libpoly_ocaml_bindings
https://github.com/SRI-CSL/libpoly

interpolation, a form of which is used within Yices’s MCSAT solver to solve
quantifier-free problems [JD21], also becomes useful with more quantifier al-
ternations than 3V. It generalizes to non-Boolean inputs the notion of UNSAT
cores, which has been used in the quantified-problems-as-games approach [BJ15].

Arithmetic (NRA, NIA, LRA, LIA). Solving Modulo a Model: We use
Yices’s MCSAT solver; the MCSAT approach is inspired by CDCL, building a
tentative solution model on a trail where Boolean and theory assignments are
decided, propagated, and backtracked upon. MCSAT can natively take a partial
model as input [JD21]. Model interpolation: We use the model interpolants na-
tively produced by Yices’s MCSAT solver. A lemma that is learnt at decision level
0, defeating the input model, constitutes a model interpolant. Learnt lemmas
arise from theory-specific mechanisms for explaining conflicts, which in the case
of arithmetic is leveraging Cylindrical Algebraic Decomposition (CAD) [JdM12,
Jov17]. Model generalization: We mainly use model-projection (based on CAD
once again). For NRA, the presence of division in benchmarks departs from the
theoretic applicability of YicesQS’s algorithm for complete theories, because of
division-by-zero (which also makes the theory undecidable). Yices’s CAD-based
model-projection in NRA does not support division. When YicesQS needs to
perform model generalization with a formula involving division, it cannot use
CAD model-projection and resorts to generalization-by-substitution, which is
a generic mechanism already used in Yices’s 3V solver [Dut15]. Resorting to
generalization-by-substitution for NRA also means that YicesQS’s algorithm
may not terminate.

Arithmetic (LIA). In 2025, we make two runs in a sequential portfolio;
the second one leverages MCSAT as for the other arithmetic logics. The first
one leverages Yices’s CDCL(T) solver as follows. Solving Modulo a Model: We
represent the partial input model as equalities between integer variables and
their values, and given to Yices as assumptions. Model interpolation: We simply
use UNSAT cores produced by Yices’s CDCL(T) solver. Model generalization:
as for the other arithmetic logics.

Bitvectors (BV). As for LIA, we make two runs in a sequential portfo-
lio, starting with the version relying on CDCL(T) as the quantifier-free solver,
which in this logic relies on bitblasting and, ultimately, Yices’s internal SAT-
solver. The second run uses Yices’s MCSAT as the quantifier-free solver, which
support quantifier-free bitvectors [GLJD20]. In both cases, Model generalization
uses invertibility conditions from Niemetz et al. [NPR 18], including e-terms, in
combination with generalization-by-substitution. For the BV theory, the cegqi
solver from [NPR™18] is probably the closest to YicesQS.

Changes since 2024. There are no changes in YicesQS since the 2024
SMT-competition, except for the use of the CDCL(T) solver for LIA. There are
some changes in the underlying Yices 2 quantifier-free solver that may affect
performance of YicesQS.

References

BGLV23.

BJ15.

dMJ13.

Dut15.

GLJD20.

JD21.

JdM12.

Jov1T7.

NPR™18.

M. P. Bonacina, S. Graham-Lengrand, and C. Vauthier. QSMA: A new
algorithm for quantified satisfiability modulo theory and assignment. In
B. Pientka and C. Tinelli, editors, Proc. of the 29th Int. Conf. on Automated
Deduction (CADE’23), volume 14132 of LNAI Springer-Verlag, 2023. 1
N. Bjgrner and M. Janota. Playing with quantified satisfaction. In
M. Davis, A. Fehnker, A. Mclver, and A. Voronkov, editors, Proc. of
the the 20th Int. Conf. on Logic for Programming, Artificial Intelligence,
and Reasoning (LPAR’15), volume 9450 of LNCS. Springer-Verlag, 2015.
https://doi.org/10.1007/978-3-662-48899-7 1,2
L. M. de Moura and D. Jovanovic. A model-constructing satisfiability cal-
culus. In R. Giacobazzi, J. Berdine, and I. Mastroeni, editors, Proc. of the
14th Int. Conf. on Verification, Model Checking, and Abstract Interpreta-
tion (VMCAI’13), volume 7737 of LNCS, pages 1-12. Springer-Verlag, 2013.
https://doi.org/10.1007/978-3-642-35873-9 1 1
B. Dutertre. Solving exists/forall problems with yices. In 13th International
Workshop on Satisfiability Modulo Theories (SMT 2015), 2015. https://
yices.csl.sri.com/papers/smt2015.pdf. 1,2
S. Graham-Lengrand, D. Jovanovi¢, and B. Dutertre. Solving bitvectors with
MCSAT: explanations from bits and pieces. In N. Peltier and V. Sofronie-
Stokkermans, editors, Proceedings of the 10th International Joint Conference
on Automated Reasoning (IJCAR’20), volume 12166(1) of Lecture Notes in
Computer Science, pages 103—121. Springer-Verlag, 2020. 2
D. Jovanovic and B. Dutertre. Interpolation and model checking for non-
linear arithmetic. In A. Silva and K. R. M. Leino, editors, Computer Aided
Verification - 33rd International Conference, CAV 2021, Virtual Event, July
20-28, 2021, Proceedings, Part II, volume 12760 of Lecture Notes in Com-
puter Science, pages 266-288. Springer, 2021. https://doi.org/10.1007/978-
3-030-81688-9_ 13 2
D. Jovanovi¢ and L. de Moura. Solving non-linear arithmetic. In B. Gram-
lich, D. Miller, and U. Sattler, editors, Proc. of the 6th Int. Joint Conf. on
Automated Reasoning (IJCAR’12), volume 7364 of LNCS, pages 339-354.
Springer-Verlag, 2012. 2
D. Jovanovi¢. Solving nonlinear integer arithmetic with MCSAT.
In A. Bouajjani and D. Monniaux, editors, Proc. of the 18th Int.
Conf. on Verification, Model Checking, and Abstract Interpretation (VM-
CAI’17), volume 10145 of LNCS, pages 330-346. Springer-Verlag, 2017.
https: //doi.org/10.1007/978-3-319-52234-0_18 2
A. Niemetz, M. Preiner, A. Reynolds, C. W. Barrett, and C. Tinelli. Solving
quantified bit-vectors using invertibility conditions. In H. Chockler and
G. Weissenbacher, editors, Proc. of the 30th Int. Conf. on Computer Aided
Verification (CAV’18), volume 10982 of LNCS, pages 236-255. Springer-
Verlag, 2018. https://doi.org/10.1007/978-3-319-96142-2_ 16 2

https://doi.org/10.1007/978-3-662-48899-7
https://doi.org/10.1007/978-3-642-35873-9_1
https://yices.csl.sri.com/papers/smt2015.pdf
https://yices.csl.sri.com/papers/smt2015.pdf
https://doi.org/10.1007/978-3-030-81688-9_13
https://doi.org/10.1007/978-3-030-81688-9_13
https://doi.org/10.1007/978-3-319-52234-0_18
https://doi.org/10.1007/978-3-319-96142-2_16

	YicesQS 2025, an extension of Yices for quantified satisfiability

