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YicesQS is a solver derived from Yices 2, an open-source SMT solver devel-
oped and distributed by SRI International. It extends Yices to supports quan-
tifiers for complete theories, and is unrelated to the support of quantifiers in
Yices for UF. Its core algorithm is a generalization of counterexample-guided
quantifier instantiation (CEGQI) [Dut15] that can be seen as a form of lazy
quantifier elimination. YicesQS submits quantifier-free queries to one of Yices’s
core solvers CDCL(T) or MCSAT [dMJ13]. It is written in OCaml and uses the
OCaml bindings for the Yices C API; it indirectly relies on the libpoly library
for arithmetic. In the 2024 SMT competition, YicesQS entered logics BV, NRA,
NIA, LRA, and LIA (single-query, non-incremental tracks), as in 2023 and 2022.
The exact commits are as follows:
https://github.com/disteph/yicesQS commit 4661444
https://github.com/SRI-CSL/yices2_ocaml_bindings commit 38318a6
https://github.com/SRI-CSL/yices2 commit 5082c90
https://github.com/SRI-CSL/libpoly_ocaml_bindings commit 8e9dc78
https://github.com/SRI-CSL/libpoly. commit 7a4dedc
and the exact command is

main.exe -under 20 -cdclT-mcsat 700 $1

Algorithmic approach. The main algorithm in YicesQS is QSMA [BGLV23].
It does not modify the structure of quantifiers in formulas: it does not prenexify
formulas and, more importantly, it does not skolemize them to avoid introducing
uninterpreted function symbols. This departs from the standard architecture for
quantifier support consisting of keeping a set of universally quantified clauses, to
be grounded and sent to a core SMT-solver for ground clauses. Instead, YicesQS
sees a formula as a 2-player game, in the tradition of Bjørner & Janota’s Playing
with Quantified Satisfaction [BJ15] and earlier work on QBF. YicesQS’s algo-
rithm is designed to answer queries of the following form:

“Given a formula A(z, x) and a model Mz on z, produce either
– SAT(U(z)), with U(z) under-approx. of ∃x A(z, x) satisfied by Mz; or
– UNSAT(O(z)), with O(z) over-approx. of ∃x A(z, x) not satisfied by Mz;

where under-approximations and over-approximations are quantifier-free.”

To answer such queries, YicesQS calls Yices’s feature satisfiability modulo a
model, while the production of under- and over-approximations leverages model
interpolation and model generalization. When the input formula is in the exists-
forall fragment, the algorithm degenerates to the CEGQI one used in Yices’
∃∀ solver [Dut15] using quantifier-free solving and model generalization. Model
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interpolation, a form of which is used within Yices’s MCSAT solver to solve
quantifier-free problems [JD21], also becomes useful with more quantifier al-
ternations than ∃∀. It generalizes to non-Boolean inputs the notion of UNSAT
cores, which has been used in the quantified-problems-as-games approach [BJ15].

Arithmetic (NRA, NIA, LRA, LIA). Solving Modulo a Model: We use
Yices’s MCSAT solver; the MCSAT approach is inspired by CDCL, building a
tentative solution model on a trail where Boolean and theory assignments are
decided, propagated, and backtracked upon. MCSAT can natively take a partial
model as input [JD21]. Model interpolation: We use the model interpolants na-
tively produced by Yices’s MCSAT solver. A lemma that is learnt at decision level
0, defeating the input model, constitutes a model interpolant. Learnt lemmas
arise from theory-specific mechanisms for explaining conflicts, which in the case
of arithmetic is leveraging Cylindrical Algebraic Decomposition (CAD) [JdM12,
Jov17]. Model generalization: We mainly use model-projection (based on CAD
once again). For NRA, the presence of division in benchmarks departs from the
theoretic applicability of YicesQS’s algorithm for complete theories, because of
division-by-zero (which also makes the theory undecidable). Yices’s CAD-based
model-projection in NRA does not support division. When YicesQS needs to
perform model generalization with a formula involving division, it cannot use
CAD model-projection and resorts to generalization-by-substitution, which is
a generic mechanism already used in Yices’s ∃∀ solver [Dut15]. Resorting to
generalization-by-substitution for NRA also means that YicesQS’s algorithm
may not terminate.

Bitvectors (BV). Solving Modulo a Model: In 2024 we use primarily Yices’s
CDCL(T) solver, which itself relies on bitblasting and, ultimately, Yices’s inter-
nal SAT-solver. The partial input model is represented as equalities between
bitvector variables and their values, and given to Yices as assumptions. Model
interpolation: We simply use UNSAT cores produced by Yices’s CDCL(T) solver.
Model generalization: We use invertibility conditions from Niemetz et al. [NPR+18],
including ϵ-terms, in combination with generalization-by-substitution. For the
BV theory, the cegqi solver from [NPR+18] is probably the closest to YicesQS.
Note: instead of the CDCL(T) solver, it is possible to use Yices’s MCSAT solver,
which support quantifier-free bitvectors [GLJD20].

Changes since 2023. We implemented a look-ahead optimisation related
to section 5 of our QSMA paper [BGLV23]. As another optimisation that we
implemented, the top-level call to QSMA does not need to produce an under- or
over-approximation, only the recursive calls do, while the top-level call only needs
to conclude sat or unsat. For BV, rather than using MCSAT as in the previous
years, we now primarily use CDCL(T) (i.e. bitblasting), which produces presum-
ably poorer interpolants but is faster. The MCSAT-based approach does solve
benchmarks that the CDCL(T)-based approach does not, so after 700 seconds
we restart the solving with MCSAT in order to solve some extra benchmarks. For
arithmetic, YicesQS 2024 benefits from recent optimisations in the underlying
MCSAT solver (e.g., extended propagation mechanism and decision heuristics).

2



References

BGLV23. M. P. Bonacina, S. Graham-Lengrand, and C. Vauthier. QSMA: A new
algorithm for quantified satisfiability modulo theory and assignment. In
B. Pientka and C. Tinelli, editors, Proc. of the 29th Int. Conf. on Automated
Deduction (CADE’23), volume 14132 of LNAI. Springer-Verlag, 2023. 1, 2

BJ15. N. Bjørner and M. Janota. Playing with quantified satisfaction. In
M. Davis, A. Fehnker, A. McIver, and A. Voronkov, editors, Proc. of
the the 20th Int. Conf. on Logic for Programming, Artificial Intelligence,
and Reasoning (LPAR’15), volume 9450 of LNCS. Springer-Verlag, 2015.
https://doi.org/10.1007/978-3-662-48899-7 1, 2

dMJ13. L. M. de Moura and D. Jovanovic. A model-constructing satisfiability cal-
culus. In R. Giacobazzi, J. Berdine, and I. Mastroeni, editors, Proc. of the
14th Int. Conf. on Verification, Model Checking, and Abstract Interpreta-
tion (VMCAI’13), volume 7737 of LNCS, pages 1–12. Springer-Verlag, 2013.
https://doi.org/10.1007/978-3-642-35873-9_1 1

Dut15. B. Dutertre. Solving exists/forall problems with yices. In 13th International
Workshop on Satisfiability Modulo Theories (SMT 2015), 2015. https://
yices.csl.sri.com/papers/smt2015.pdf. 1, 2

GLJD20. S. Graham-Lengrand, D. Jovanović, and B. Dutertre. Solving bitvectors with
MCSAT: explanations from bits and pieces. In N. Peltier and V. Sofronie-
Stokkermans, editors, Proceedings of the 10th International Joint Conference
on Automated Reasoning (IJCAR’20), volume 12166(1) of Lecture Notes in
Computer Science, pages 103–121. Springer-Verlag, 2020. 2

JD21. D. Jovanovic and B. Dutertre. Interpolation and model checking for non-
linear arithmetic. In A. Silva and K. R. M. Leino, editors, Computer Aided
Verification - 33rd International Conference, CAV 2021, Virtual Event, July
20-23, 2021, Proceedings, Part II, volume 12760 of Lecture Notes in Com-
puter Science, pages 266–288. Springer, 2021. https://doi.org/10.1007/978-
3-030-81688-9_13 2

JdM12. D. Jovanović and L. de Moura. Solving non-linear arithmetic. In B. Gram-
lich, D. Miller, and U. Sattler, editors, Proc. of the 6th Int. Joint Conf. on
Automated Reasoning (IJCAR’12), volume 7364 of LNCS, pages 339–354.
Springer-Verlag, 2012. 2

Jov17. D. Jovanović. Solving nonlinear integer arithmetic with MCSAT.
In A. Bouajjani and D. Monniaux, editors, Proc. of the 18th Int.
Conf. on Verification, Model Checking, and Abstract Interpretation (VM-
CAI’17), volume 10145 of LNCS, pages 330–346. Springer-Verlag, 2017.
https://doi.org/10.1007/978-3-319-52234-0_18 2

NPR+18. A. Niemetz, M. Preiner, A. Reynolds, C. W. Barrett, and C. Tinelli. Solving
quantified bit-vectors using invertibility conditions. In H. Chockler and
G. Weissenbacher, editors, Proc. of the 30th Int. Conf. on Computer Aided
Verification (CAV’18), volume 10982 of LNCS, pages 236–255. Springer-
Verlag, 2018. https://doi.org/10.1007/978-3-319-96142-2_16 2

3

https://doi.org/10.1007/978-3-662-48899-7
https://doi.org/10.1007/978-3-642-35873-9_1
https://yices.csl.sri.com/papers/smt2015.pdf
https://yices.csl.sri.com/papers/smt2015.pdf
https://doi.org/10.1007/978-3-030-81688-9_13
https://doi.org/10.1007/978-3-030-81688-9_13
https://doi.org/10.1007/978-3-319-52234-0_18
https://doi.org/10.1007/978-3-319-96142-2_16

	YicesQS 2024, an extension of Yices for quantified satisfiability

