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MCSAT introduced in [dMJ13, JBdM13, Jov17],
based on Conflict Resolution [KTV09] and other works on decision
procedures such as

> LPSAT [WW99]

» Separation logic [WIGG05]

> Linear Rational Arithmetic [MKS09, KTV09, Cot10]
» Linear Integer Arithmetic [Jd11]

» Non-Linear Arithmetic [JdM12] (NLSAT)

MCSAT offers:
» a template for decision procedures
» an integration of such procedures with Boolean reasoning

The template is a generalisation of how CDCL works.
It is an instance of conflict-driven reasoning.
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MCSAT tailored to theories with a standard model used for evaluating
constraints (example: arithmetic)
is a key aspect of MCSAT
Solving satisfiability problem
(set of constraints on variables xi, ..., x;)
= finding values for variables xi, ..., X,
(so that constraints evaluate to true)
CDSAT [BGLS19] (for Conflict-Driven Satisfiability) is a more abstract
framework where

» evaluation is not a mandatory ingredient of search

> theory reasoning is abstracted using inference systems

» theory reasoning can be performed in a union of theories

» Boolean theory can be given the same status as other theories.
As an abstract framework, it counts among its instances:

» Equality sharing scheme (Nelson-Oppen combinations)

» CDCL (with restarts, learning, etc)

» MCSAT (original [dMJ13] version)



The model-constructing approach to SMT-solving 2/2

Run = alternation of search phases and conflict analysis phases

» It uses assignments to first-order variables (e.g., x «+ 3/4)
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input.

7/49



The model-constructing approach to SMT-solving 2/2

Run = alternation of search phases and conflict analysis phases

» It uses assignments to first-order variables (e.g., x «+ 3/4)
like CDCL uses Boolean assignments to Boolean variables;

» It may explain conflicts by introducing atoms that are not in the
input.

» As in CDCL, it successively guesses values to assign to variables. ..
... while maintaining the invariant: given the assignments made so
far, none of the constraints evaluates to false

7/49



The model-constructing approach to SMT-solving 2/2
Run = alternation of search phases and conflict analysis phases
» It uses assignments to first-order variables (e.g., x < 3/4)
like CDCL uses Boolean assignments to Boolean variables;
» |t may explain conflicts by introducing atoms that are not in the
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Run
>

= alternation of search phases and conflict analysis phases

It uses assignments to first-order variables (e.g., x + 3/4)
like CDCL uses Boolean assignments to Boolean variables;

It may explain conflicts by introducing atoms that are not in the
input.

As in CDCL, it successively guesses values to assign to variables. ..
... while maintaining the invariant: given the assignments made so
far, none of the constraints evaluates to false

To pick a value for variable y after xq, ..., x, were assigned values
Vi,..., Vs, simply worry about constraints over variables
X1yeoos Xny Y (i.e. constraints that have become unit in y)

If all variables get values while maintaining invariant = SAT

If at any point the invariant cannot be maintained:
There is a conflict.

MCSAT performs a conflict analysis,
backtracks over some of the assignments x;<—vi, ..., X<V,
and tries new ones
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An example in Linear Rational Arithmetic

—_——
(—2y —x <0),

h h

——N— —N—
(v +x <0), (v <-1)

unsatisfiable in Linear Rational Arithmetic (LRA).

h

I

>

>X>
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[
ie, (—x < =2)
It rules out x<0, but also many values
that would fail for the same reasons.
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An example in Linear Rational Arithmetic
/—/lo\— /—//1\“ /—JZ\“
(—2y — x <0), (y +x<0), (y<-1)
unsatisfiable in Linear Rational Arithmetic (LRA).

x » Guess a value, e.g., x<3
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(—2y — x <0), (y +x<0), (y<-1)
unsatisfiable in Linear Rational Arithmetic (LRA).

—— » Guess a value, e.g., x<3

(—x<-2) (x<0) Then Iy yields lower bound y > —% and )
yields upper bound y < —3

h y I
la » Clash of bounds suggests inferring Iy + 21y,
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An example in Linear Rational Arithmetic
/—/lo\— /—//1\“ /—JZ\“
(—2y — x <0), (y +x<0), (y<-1)
unsatisfiable in Linear Rational Arithmetic (LRA).

—— » Guess a value, e.g., x<3
(—x<-2) (x<0) Then Iy yields lower bound y > —% and )

yields upper bound y < —3
la » Clash of bounds suggests inferring Iy + 21y,

Iy
A . ——
ie, (x <0).

» Now undo the guess but keep /.

/
\ 2y Spot that i and /; leave no value for x.

Clash of bounds suggests inferring 5 + Iy,
Is

——
ie, (0<=2).
» No guess to undo. UNSAT.
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Search phase (conflict case)

Free var within ~ Constraints (unit ones in red) Feasible set Var

{x} L.y Cly . x1

{x1, %} C2,C3,...,CP,... e

{Xl,X27X3} CE,CS,,CJ?’, e X3

{Xl,...,X,'} Cll,Cé,, 12,...,Cji,... Xi
Conflict

What to do now?
Backtrack and try new values vj, ..., v/ for xq,..., X,
(i.e. try another I')

How do we avoid picking the same values (i.e. the same I')?
How do we avoid picking a [’ that fails for the same reason I fails?
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Conflict analysis
In case of conflict we have
., X1 V> Vp, i.e., @ model 9N
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P assigned values x; — vy, ..
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Conflict analysis
In case of conflict we have

» assigned values x; — vy,..., X3 — V,, i.e.,, a model M
» a collection of unit constraints in y: 11(7,)/) ARERWA lm(7,y)
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The theory lemmas
WA is 3y(W(X, ) A ANlml(X,¥))

Models satisfying dyA o

Models satisfying =B
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yAis Iy(L(X,y) A Ala(R,y))

Models satisfying dyA o

Models satisfying =B

We characterise this class as those models not satisfying B, for some
quantifier-free B (with fv(B) C {X}) such that

» TE(IyA) =B
> M B

B is an interpolant of JyA at 91.

MCSAT considers the theory lemma A= B

that rules out not only 9t but a set of similar models

(we impose that B be a clause, so A = B is a clause).

If A results from Boolean reasoning,

it performs Boolean conflict analysis on A (Boolean resolutions).
It backtracks to a point where A = B is no longer violated,
e.g., B no longer evaluates (to false).
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Give me a theory 7 with

» a nice way of representing domains of feasible values,
and how they are affected (i.e. reduced) by unit constraints;

» such an explanation mechanism,
producing B as a clause (or =B as a cube) ,
satisfying some suitable conditions for termination;

» optionally, a nice way to propagate a value for a variable whose
domain has become a singleton set;

...and I'll give you an MCSAT calculus for T,
using some adaptation of the 2-watched literals technique
for tracking unit constraints

: Boolean, non-linear arithmetic, EUF, bitvectors (can be mixed)
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In linear arithmetic, Fourier-Motzkin resolution can be used to eliminate
a variable:
e1—y<10 e+y<:0

e +e <30
with <, <2, <3 € {<, <} such that. ..

In non-linear arithmetic,
Yices uses Cylindrincal Algebraic Decomposition (CAD).

At the SMT-comp, Yices has won QF_NRA (single query track) up until
2021 when cvch used a new technique based on cylindrical algebraic
coverings (Abraham et al).

On the other hand in 2021, Yices won NRA (single query track), ahead
of z3. See Section 4 on quantifiers.
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MCSAT (Model-Constructing Satisfiability) [dMJ13, Jov17]
» generalises CDCL to theory reasoning

> uses first-order assignments, e.g., x<+/2

CDSAT (Conflict-Driven Satisfiability) [BGLS19, BGLS20]
» generalises MCSAT: generic combinations of abstract theories
» can also use first-order assignments
» models theory reasoning with modules made of inference rules

MCSAT and CDSAT can explicitly provide, for satisfiable formulae, the
model's assignments of values to variables

CDSAT can also provide proofs of unsat
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Traditional architecture of SMT-solving

SAT-solver —
(CDCL) «

* e.g. equality sharing / Nelson-Oppen [NO79]
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...the theory combination is organised directly in the main
conflict-driven loop:

As in MCSAT, trail contains Bool

» Boolean assignments
a < true

» First-order assignments Ti
y < 3/4

Features of conflict-driven
satisfiability:

» Boolean theory can have the
same status as other theories.

» Theory-specific reasoning often consists of fine-grained reasoning
inferences, e.g., Fourier-Motzkin resolution for LRA:
(tl < X),(X < tz) Ft<t
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What is a theory module?

A set of inferences of the form
(t1<—C1), ceey (tk<—tk) |—7' (/(—b)
where

» each t;<—c; is a single T-assignment
(a term t; and a T-value ¢; of matching sorts)

» /b is a single Boolean assignment
(a term [ of sort Bool and a truth value b)
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What is a theory module?

A set of inferences of the form
(t1<—C1), ceey (tk<—tk) |—7' (/(—b)
where

» each t;<—c; is a single T-assignment
(a term t; and a T-value ¢; of matching sorts)

» /b is a single Boolean assignment
(a term / of sort Bool and a truth value b)
(/+true) as I and (/«false) as /

» Soundness requirement:
Every model of the premisses is a model of the conclusion:
(t1<—C1), BRRE) (tk(—Ck) ): (/<_b)

Examples:
(x=v2), (y+v2) Fnra (x -y ~ 2) (evaluation inference)
(hV VI ko It Feool In (unit propagation)

18/49



What is a theory module? (Equality inferences)

All theory modules have the equality inferences:

ti<c1, b b+t >~ t if ¢; and ¢, are the same value
b1, ta—co bt %t if ¢q and ¢y are distinct values
Fr bt reflexivity

hebbr b~th symmetry
h~b,b~tz3br th~t3 transitivity
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CDSAT states

Search states: simply trails.

A trail is a stack of justified assignments py, (t<—c) and decisions 7(t<c)
coming from different theories

Justification H: a set of assignments that appear earlier on the trail
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Search states: simply trails.

A trail is a stack of justified assignments py, (t<—c) and decisions 7(t<c)
coming from different theories

Justification H: a set of assignments that appear earlier on the trail

Each assignment on the trail has a /evel
(index of highest decision in transitive justification of the assignement)

Example (trail grows from left to right):

o (x = 2), 5 (v = z),2(x+=/2),2(y+blue), 2(x<—red), ;. (x % y)
where H is {(y<blue), (x+red)}
Everything is on the trail, including assertions from the input problem,

with empty justifications
(e.g., g (C<«true) for an input clause C),

Conflict states: (I'; H),
trail I + set H of trail assignments that are in conflict



CDSAT: Search rules

Let 7 be a theory with a specific 7-module.
Decide
' — T,2(t<c)
Deduce
r— T, (t<b) ifJbEy(t<b)and JCT,
and t<bis notin T,

All terms that are ever mentioned in a derivation are taken from a finite
set B called global basis
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CDSAT: Search rules

Let 7 be a theory with a specific 7-module.

Decide
' — T,2(t<c) if ...
Deduce
r— T, (t<b) ifJbEy(t<b)and JCT,
and t<bisnotinT, and ...
Conflict
r — ([ J,(t+b)) if Jby (t<b)and JCT,
and t<bisin
and conflict level is > 0

Fail
[ — unsat if Jb7 (t<b)and JCT,
and t<bisin
and conflict level is 0
Extra side-conditions “..." to ensure termination

(no impact on soundness)
All terms that are ever mentioned in a derivation are taken from a finite
set B called global basis
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CDSAT: Conflict analysis rules

Resolve
(MEw{A}) — (EUH) if y Aisinl and ...

Learn

(I EWH) — [=m g L if Lisa “clausal form” of H and ...

L¢T, L&, and ECISm
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CDSAT: Conflict analysis rules

Resolve
(MEW{A}) —
Learn
(I EWH) —

Undo
(MEY{A}) —

UndoDecide
(LEW{L}) —

(M EUH)

r<m g L

rgm—l

r<m-1,I

ifHFAisinI'and...

if Lis a “clausal form” of H and ...

L¢T, L&, and ECISm

if Ais a first-order decision and . ..

if yLisinT, and ...

<™. the pruning of trail I', removing all assignments of level > m
H in Boolean logic:

((/\(N_UU‘E)EH l) A (/\(I<—false)€H _'I))<_false
((\/(Ietrue)eH _\/) \ (V(/efalse)eH /))<—true

Clausal forms of H
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An example with arithmetic, arrays, congruence
flai=Vv][j]) =w, w—2~f(u), i~j, u~v

id trail items just. lev.
0 f(ali=v]j])=w {} O
1 w—2 ~ f(u) {} o©
2 f~j {} 0
3 u~v {} O
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Termination:
Theorem: If the global basis B is finite, CDSAT terminates.

How to determine B? It should be sufficiently large to allow each theory
module to explain its conflicts via deductions.

For each theory module 7 involved,
and all finite sets X of terms (think of it as the terms of the input),
we must have a finite set of terms basis7(X), called local basis
(those terms possibly introduced by T during the run)

If the local bases of Ty,..., 7T, satisfy some (collective) properties,
then it is possible to define a finite global basis B for [J;_; Tx.

Soundness:

Theorem: Since each theory module 7 is made of sound inferences,
if the calculus ends with a conflict of level 0,

then the input was unsat.

(you can even get a proof)
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What happens if we never get unsat?

Do we have a model?
This relies on a completeness condition for theory modules:
A T-module is complete if for any T,

» Either There exists a 7T-model of the theory view of I
» Or T can make a (relevant & acceptable) decision

» Or a T-inference can deduce a new assignment (for a term in the
local basis)

In a combination though, the 7,-models have to agree on the sorts’
cardinalities and equalities between shared variables/terms.

We present a version of completeness that takes care of this:
To-completeness, where Ty is a reference theory that can be used to
synchronise cardinalities (for a combination of stably infinite theories,
take 7o to force the interpretation of all sorts to be N).

Theorem: Assume Ty has a complete module, and all other theories have
To-complete modules.

If CDSAT cannot make any further transitions, then the trail describes a
model for the union of the (extended) theories.
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Theory modules given as examples in our papers

> EUF
(ti x~ ui)iilmm (f(tlv ey tn) ¢ f(ulv ey un)) |_EUF 1

» Arrays: similar, except for extensionality

» LRA: evaluation inference, Fourier-Motzkin resolution inference as
in MCSAT, etc
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> EUE (To-complete for all 7o)

(ti x~ ui)iilmm (f(tlv ey tn) ¢ f(ulv ey un)) |_EUF 1

> Arrays: similar, except for extensionality

(To-complete for all Ty such that...)

» LRA: evaluation inference, Fourier-Motzkin resolution inference as

in MCSAT, etc
(To-complete for all 7o imposing | Q| infinite)

Black box procedure for equality-sharing: coarse-grain inferences

/1(—517 ey /,.,(—bn |—7‘ 1
where /1, ..., I, are formulae, and the conjunction of the literals
corresponding to the Boolean assignments h< by, ..., l[,< b, is

T-unsatisfiable (as detected by the black box)
(To-complete for all Ty imposing the cardinality of all known sorts
but Bool to be countably infinite)



3. Proofs in CDSAT
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Theory proofs

To keep track of the soundness invariants,
we need to refer to theory inferences
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To keep track of the soundness invariants,
we need to refer to theory inferences
Each theory module comes with a “proof annotation system”

(tl(—Cl), RN (tk<—tk) |_T (/(—b)
is annotated as
A(tye—c), ..., *(tes—ck) B 7o (1D)

Examples:

% (x4/2), 2 (y+/2) Fnra eval({ag, a}): (x -y =~ 2)
(evaluation inference)

30(/1 VeV /,,), al(E), ey a“_l(E) FBool UP(ao, {31, e a,,}) o,
(unit propagation)



Proof-terms and proof-carrying CDSAT

» A proof-carrying trail is a stack

> of justified assignments 4, ;. (t<—c)
> and decisions 7(t<—c)

» A proof-carrying conflict state is of the form (I'; H; ¢)

...where j and c respectively range over

Deduction proof terms j == in | jr | lem(H.c)
Conflict proof term cu= cfl(jr,a) | res(j,?Ac)
in annotates an input assignment,
Jr ranges over theory proofs for T, used for Deduce
lem(H.c) annotates justified assignments that Learn places on trail
(clausal forms of H), binding the identifiers of H in ¢
cfl(jr, a) annotates a conflict when it is created by Conflict

res(j,?A.c) annotates a conflict resulting from the Resolve rule,
binding a in ¢
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Provability invariants that proof-terms keep track of

Ais an input JFrjrL EWHEF c: L
L clausal form of H
0Fin:A JEjr:L EF lem(H.c): L
Jbrrjr:L HE j:A E,?°AF c: L

JU{PL} F cfl(jr,a): L EUHF res(j,?A.c): L
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soundness invariants are materialised as:
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L clausal form of H
OF in:A JFjr:L Et lem(H.c):L
Jbrrjr:L HE j:A E,?°AF c: L
JU{LPL} F cfl(r,a): L EUHLFE res(j,?Ac): L

Rules of CDSAT are adapted so as to use those proof-terms, and the
soundness invariants are materialised as:

Theorem
> For every assignment yy, . A on the trail, H Fj:A
» For every conflict state (I'; E; ¢), EF c:L.
The proof system above can be seen as glueing a collection of inference

systems (k7)1
CDSAT is a search procedure for the resulting system
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Different views about proof objects

Proof-carrying CDSAT can be considered exactly as defined above, where
in, j7, lem(H.c), cfl(jr, a), res(j, ?A.c) are terms.
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Different views about proof objects
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Proof-carrying CDSAT can be considered exactly as defined above, where
in, j7, lem(H.c), cfl(jr, a), res(j, ?A.c) are terms.

Another proof format is desired for output?
Just interpret the terms in that format after the run
(proof reconstruction)

Alternatively,
proof-carrying CDSAT can directly manipulate proofs in the format,
if equipped with the operations corresponding to the term constructs.
The proof-terms denote the manipulated proofs,
but are never constructed.



Example: resolution proofs

If input contains no first-order assignments,
resolution trees (or DAGs) form a proof format equipped with the right
operations
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» or theory lemmas corresponding to theory proofs J 7 jr: L

Internal nodes are obtained by applying resolution rule,
corresponding to H | res(j,?A.c): L constructs.
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Example: resolution proofs
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If input contains no first-order assignments,

resolution trees (or DAGs) form a proof format equipped with the right
operations

Leaves of resolution proofs are labeled by

> either literals corresponding to input assignments () - in: A
» or theory lemmas corresponding to theory proofs J 7 jr: L

Internal nodes are obtained by applying resolution rule,
corresponding to H | res(j,?A.c): L constructs.

If input does contains first-order assignments

the resolution format has to be slightly extended,

so that it manipulates guarded clauses of the form
{(ti=c1),...,(the=cn)} = C

where (t14—c1),..., (tn¢c,) are first-order assign. guarding clause C

Details in the paper.



LCF: answers that are correct-by-construction
Other “proof format”:

» A deduction proof j with H I j: L is the pair (H, L), and
» A conflict proof ¢ with HF ¢: L is H.
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LCF: answers that are correct-by-construction
Other “proof format”:

» A deduction proof j with H & j: L is the pair (H, L), and
» A conflict proof ¢ with HF ¢: L is H.

No proof object to check. But the LCF architecture [Mil79, GMW?79] can
be used to ensure the correctness of answers. LCF in a nutshell:

» A type theoren is defined for provable formulae
in a module of the prover called kernel

» The definition of theorem is hidden outside the kernel

» The kernel exports primitives to construct its inhabitants,
e.g. modus_ponens : theorem -> theorem -> theorem
takes as arguments F and G, checks that F is of the form G = R,
and returns R as an inhabitant of theorem.

» Search procedures can be programmed using the primitives.

» Bugs in these procedures cannot jeopardise the property that any
inhabitant of theorem is provable, if kernel is trusted

No proof object needs to be built in memory
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CDSAT is well-suited to the LCF approach 1/2

34/49

Given a type assign for multiple assignments

and single

_assign for singleton assignments,

a trusted kernel defines

type deduction = assign*single_assign

type conflict = assign

and exports
type ded
type con
in :
coerc

lem
cfl

res

uction
flict
single_assign -> deduction
’k theory_handler
-> ’k theory_proof -> deduction
conflict -> assign -> deduction
’k theory_handler

-> ’k theory_proof -> conflict
deduction -> conflict -> conflict



CDSAT is well-suited to the LCF approach 2/2

If the empty assignment is constructed in type conflict,

input problem is guaranteed to be unsat, provided the kernel primitives
and the implementation of theory proofs are trusted

(code for the search plan does not have to be certified)
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CDSAT is well-suited to the LCF approach 2/2

35/49

If the empty assignment is constructed in type conflict,

input problem is guaranteed to be unsat, provided the kernel primitives
and the implementation of theory proofs are trusted

(code for the search plan does not have to be certified)

Answer is correct-by-construction, no proof object in memory.



4. Quantified satisfiability
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Quantifiers

Due to the connection between MCSAT and quantifier elimination, we
recently explored how MCSAT features could be used to extend Yices to

support quantifiers.
quantifier elimination: For any formula A, there exists a quantifier-free

formula B such that [A] = [B]
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Quantifiers
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Due to the connection between MCSAT and quantifier elimination, we
recently explored how MCSAT features could be used to extend Yices to
support quantifiers.

quantifier elimination: For any formula A, there exists a quantifier-free
formula B such that [A] = [B]

In practice though, if the size of B is way bigger than the size of A,
it may be unfeasible to compute B or decide whether it is satisfiable.

We have a better approach that we applied to NRA (non-linear
arithmetic) and BV (bitvectors), on top of Yices/MCSAT.



Approximations

Idea: if the only reason to produce B from A is to decide whether A is satisfiable, it
may not be necessary to compute B exactly.
Approximations may suffice.

Def:
> An over-approximation of A is a quantifier-free formula O with [A] C [O]. If O
is unsat., then A is unsat.
» An under-approximation of A is a quantifier-free formula U with [U] C [A]. If
U is sat., then A is sat.

@ 4] [0]
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Basic idea of lazy quantifier elimination

@ 4] [0]

Start with U = false and O = true, and iteratively refine U and O until either U is sat
or O is unsat.
Worst case: you may end up computing a quantifier-free formula B such that

[Al = [BI.

In practice, you hope the algorithm will stop earlier than that.

Question: how do we refine the approximations iteratively?
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One quantifier at a time

Quantifier elimination:

Given Jy F(X,y) with quantifier-free F(X,y), produce quantifier-free B(X) with
(3y F(X,y)) & B(X) provable.

Model generalization:

If additionally given 9 satisfying 3y F(X,y), produce quantifier-free U(X) satisfied
by 9, with U(X) = (3y F(X,y)) provable.

Model interpolation:

If additionally given 9 not satisfying 3y F(X,y), produce quantifier-free O(X) not
satisfied by 9, with (3y F(X,y)) = O(X) provable.

y

X1 X1
In blue: F(x1,x2,y); its grey shadow: Jy F(X,y);
in red: the under-approximation U(x1, x2) / the over-approximation O(xi, x2).
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A satisfiability algorithm for a slightly more general
question
“Given a formula A(Z,¥) and a model M- on Z, produce either
> SAT(U(Z)), with U(Z) under-approx. of 3X A(Z,X) satisfied by MM—; or
> UNSAT(O(Z))with O(Z) over-approx. of 3X A(Z, %) not satisfied by M

(i.e. Z’s values are imposed, X are existentially quantified: values are up to us).
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A satisfiability algorithm for a slightly more general
question
“Given a formula A(Z,¥) and a model M- on Z, produce either
> SAT(U(Z)), with U(Z) under-approx. of 3X A(Z,X) satisfied by MM—; or
> UNSAT(O(Z))with O(Z) over-approx. of 3X A(Z, %) not satisfied by M

(i.e. Z’s values are imposed, X are existentially quantified: values are up to us).

This generalizes the standard satisfiability question:
“Given a formula A(X), produce either

> SAT, if 3X A(X) is satisfied by the empty model
(does not assign any value to any variable); or
> UNSAT, if not.”

If you have an algorithm to solve the more general problem,
apply it on the empty model 9 and A(X) (Z is empty) and inspect the result:

> UNSAT(O): return UNSAT
> SAT(U): return SAT

41/49



The (recursive) satisfiability algorithm is a 2-player game
“Given a formula A(Z,¥) and a model M- on Z, produce either

> SAT(U(Z)), with U(Z) under-approx. of 3X A(Z,X) satisfied by MM—; or
> UNSAT(O(Z)),with O(Z) over-approx. of 3X A(Z, X) not satisfied by M~ "
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> If not, apply model interpolation on 91— and A(Z, %) to get O(Z);
return UNSAT(O(7Z)).
» Otherwise, apply model generalization on 9 and A(?, 7) to get U(7);
return SAT(U(Z)).
(1) If A(Z,X) is not g-f, rewrite it as F(Z, X) A —-3Y Arec(Z,%,Y).
where F(Z,X)is g-f
(2) Set L(Z,X):= F(Z,X) as an over- appro>< of A(Z,X) to be refined
(3) Ask whether 91— extends to a model 9 of L(Z,X).

> If not, apply model interpolation on M~ and L(Z, %) to get O(Z);
return UNSAT(O(Z)).
» Otherwise, recursively call solve on 9 and A.c(Z, X, Y),

and inspect the result:

» UNSAT(Orec(Z, X))
apply model generalization on 9 and F(Z, X)) A =Orec(Z, X) to get
g) return SAT(U(7Z)).
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The (recursive) satisfiability algorithm is a 2-player game
“Given a formula A(Z,X) and a model M~ on Z, produce either

> SAT(U(Z)), with U(Z) under-approx. of 3X A(Z,X) satisfied by MM—; or
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Algorithm solve:
(0) If A(Z,X) is o-f, ask whether 92— extends to a model M of A(Z,X).

> If not, apply model interpolation on 91— and A(Z, %) to get O(Z);
return UNSAT(O(7Z)).

» Otherwise, apply model generalization on 9 and A(?, 7) to get U(7);
return SAT(U(Z)).

(1) If A(Z,X) is not g-f, rewrite it as F(Z, X) A —-3Y Arec(Z,%,Y).

where F(Z,X)is g-f
(2) Set L(Z,X):= F(Z,X) as an over- appro>< of A(Z,X) to be refined
(3) Ask whether 91— extends to a model 9 of L(Z,X).

> If not, apply model interpolation on M~ and L(Z, %) to get O(Z);
return UNSAT(O(Z)).

» Otherwise, recursively call solve on 9 and A.c(Z, X, Y),
and inspect the result:
» UNSAT(Orec(Z, X))
apply model generalization on 9 and F(Z, X)) A =Orec(Z, X) to get
g) return SAT(U(7Z)).
> SAT(U,EC(? X))
Set L(Z, 7) L(Z,X) A -Uec(Z,X) and go back to (3).
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How to answer the 3 kinds of queries

Model extension: Does model 9t on X extend to a model of a g-f formula L(77 7)7
Model generalization Model interpolation
y y

X1 X1
It depends on the theory 7. At SRI, we have implemented those procedures for:
the Booleans, the theory of bitvectors, real arithmetic (linear and non-linear).
In those theories, we can apply procedure solve to lazily eliminate quantifiers in the
view of determining satisfiability of any formula.

» Model generalization techniques already widely used in the field.
» Model extension not too difficult to achieve using regular SMT constraints.

» Model interpolation based on MCSAT.
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Implementation and related works

SRI's Yices SMT-solver https://yices.csl.sri.com/ for quantifier-free formulas
offers an API that includes check-with-model, model-interpolant, and
generalize-model
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SRI's Yices SMT-solver https://yices.csl.sri.com/ for quantifier-free formulas
offers an API that includes check-with-model, model-interpolant, and
generalize-model

The solving algorithm is implemented in an OCaml solver called YicesQS (for
Quantified Satisfaction): https://github.com/disteph/yicesQS

using the new yices2_ocaml_bindings
https://github.com/SRI-CSL/yices2_ocaml_bindings

that can be used to query Yices via its C APl from OCaml programs

See also related works:

» Bjgrner and Janota’s algorithm for “playing with quantified satisfaction”,
inspired by QBF [BJ15] and used in z3. A two-player game (one wanting to
satisfy A, the other one —A). Based on model projection and unsat cores, but
no model interpolation used.

> Monniaux’s work on quantifier elimination [Mon08, Mon10]. It uses a ground
SMT-solver as a black box (for purely existential problems), and also performs
some QE-elimination steps (e.g., FM resolutions) independently from the
SMT-solver.

» The ANR Decert work on Linear Integer arithmetic, which extends
Fourier-Motzkin with simplex-based techniques [BCCT12]
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https://github.com/SRI-CSL/yices2_ocaml_bindings

kype answer =
| Unsat of Term.t
| sat of Term.t
let sat_answer x game reason =
let open Game in
let model = match x with
| “over -> Context.get_model game.context_over ~keep_subst:true
| “under -> Context.get_model game.context_under ~keep_subst:true

in
let true_of_model = Term.(reason &&& game.ground) in

let gen_model =
Model.generalize_model model true_of_model game.newvars "YICES_GEN_DEFAULT

in
Term. (andN gen_model)

let rec solve game model =
match Context.check_with_model game.context_over model.model model.support with

" STATUS_UNSAT —>
let interpolant = Context.get_model_interpolant game.context_over in
Unsat Term. (notl interpolant)

STATIIS _SAT —>
et newnodel = Context.get_model game.context_over ~keep_subst:true in
16t fee under_solve = function
| [1 -> None
| under_i::tail ->
Context.push game.context_under;
Context.assert_formula game.context_under under_i;
match Context.check_with_model game.context_under model.model model.support with
| STATUS_UNSAT -> Context.pop game.context_under; under_solve tail
| “STATUS_SAT >
let term = sat_answer “under game under_i in
Context.pop game.context_under;
Some term
in
begin
match under_solve !(game.under) with
Some term -> Sat term
| None —>
let rec aux reasons = function
10—
let reason = Term.andN reasons in
if not(List.is_empty reasons) then game.under := reason::!(game.under);
Sat(sat_answer over game reason)
u,_)::0pponents when not (Model.get_bool_value newmodel u)
—> aux (Term.notl u::reasons) opponents
(u,opponent) : :opponents —>
let recurs = solve opponent { support = opponent.rigid; model
match recurs with
| Unsat reason -> aux (reason::reasons) opponents
| sat reason —>
let learnt = Term.(u ==> notl reason) in
Context.assert_formula game.context_over learnt;
Context.assert_formula game.context_under learnt;
game.over := learnt::!(game.over);
solve game model

= newmodel} in

(* Not necessary; useful? %)

in
aux [1 game.foralls

end




Termination of algorithm solve

Even if you can perform model extension/interpolation/generalization for theory T, it
is not always the case that this makes algorithm solve terminate: the incremental
refinement of the over- and under-approximations may not converge in finite time.
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Termination of algorithm solve

Even if you can perform model extension/interpolation/generalization for theory T, it
is not always the case that this makes algorithm solve terminate: the incremental
refinement of the over- and under-approximations may not converge in finite time.

Fortunately, this is the case for the Booleans and the bitvectors
(number of models is finite; incrementally refining approximations ).

Much less obviously, this is for (linear and non-linear) real arithmetic:
approximations will converge, and quantifiers can be eliminated.

Linear arithmetic: Fourier-Motzkin,

Non-linear arithmetic: cylindrical algebraic decomposition (CAD)

All of these theories are decidable (-ish).
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Related work and future work

Investigate related approaches:

» The ANR Decert work on Linear Integer arithmetic, which extends
Fourier-Motzkin with simplex-based techniques [BCCT12]

» Monniaux's work on quantifier elimination [Mon08, Mon10]. It uses
a ground SMT-solver as a black box (for purely existential
problems), and also performs some QE-elimination steps (e.g., FM
resolutions) independently from the SMT-solver.

» Dutertre's work on solving “EF problems” (3V) in Yices, also relying
on a ground SMT-solver considered as a black box.

How would the Bjgrner-Janota approach work in a combination of
theories?

Just as our CDSAT system generalises MCSAT to a combination of
theories, what would be the equivalent for the Bjgrner-Janota approach?
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Questions?
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