
A proof-theoretic perspective on SMT-solving
for intuitionistic propositional logic

Camillo Fiorentini1 and Rajeev Goré2 and Stéphane Graham-Lengrand3

1 Department of Computer Science, University of Milan
2 Research School of Computer Science, Australian National University

3 SRI International

Abstract. Claessen and Rósen have recently presented an automated
theorem prover, intuit, for intuitionistic propositional logic which utilises
a SAT-solver. We present a sequent calculus perspective of the theory
underpinning intuit by showing that it implements a generalisation of
the implication-left rule from the sequent calculus LJT, also known as
G4ip and popularised by Roy Dyckhoff.

1 Introduction

Intuitionistic propositional logic IPL is one of the most important “non-classical”
logics due to its constructive reading of implication. There is a long history of
automated reasoning techniques for deciding validity of IPL-formulae, but most
of them are based on either sequent or tableaux calculi. One of the simplest
procedures for IPL is root-first (a.k.a. backward or goal-directed) proof search
in the LJT (a.k.a. G4ip) sequent calculus [2], as it is guaranteed to terminate
without implementing loop-checking.

Claessen and Rósen [1] have recently presented an automated theorem prover,
intuit, for intuitionistic propositional logic, based on a Satisfiability-Modulo-
Theories (SMT) approach. Their procedure also terminates without requiring
any loop-detection machinery. As of 2015, the intuit prover was the best per-
forming IPL prover, at least when evaluated on about 1200 standard bench-
marks [1], which include for instance the ILTP library [12].

The SMT approach embraced by intuit, organised around the top-level
loop of the DPLL(T) procedure [11], and the proof-theoretic approach based on
root-first proof search, appear as radically different methodologies; the potential
connections between them was left as an open question. In this paper we rec-
oncile the two approaches, formalising an explicit connection. In particular, we
reformulate a variant of intuit using (a suitable generalisation of) one of the
rules of LJT. The procedure builds an explicit proof when the input formula is
valid, and builds an explicit Kripke counter-model when the formula is not valid.

2 Syntax and Kripke Semantics of IPL

In this paper, formulae of IPL, denoted by lowercase Greek letters, are built
from an infinite set of propositional variables V , the “falsum” constant ⊥ and

the connectives ∧, ∨, → with negation defined as ¬α := (α → ⊥). We use
Atm := V ∪ {⊥} for the set of “atoms”, denoted by lowercase Roman letters.

A rooted Kripke model for IPL is a quadruple 〈W,≤, r, ϑ〉 where W is a non-
empty set of “worlds” containing r, and ≤ is a reflexive and transitive binary
relation over W , and the root world r is minimal wrt ≤, and ϑ : W 7→ 2Atm

is a “valuation” mapping each world to a set of propositional variables which
obeys the “persistence” condition: ∀w, v ∈ W, if w ≤ v and p ∈ ϑ(w) then
p ∈ ϑ(v). Given a Kripke model 〈W,≤, r, ϑ〉, the valuation ϑ can be extended
into a “forcing” relation between worlds and formulae as shown below:

w p iff p ∈ ϑ(w)
w α ∧ β iff w α and w β
w α ∨ β iff w α or w β

w α→ β iff ∀v ≥ w, v α implies v β
w ⊥ never holds

A formula α is IPL-valid if, for all Kripke models 〈W,≤, r, ϑ〉, we have r α. The
problem of deciding whether a formula is IPL-valid is known to be PSPACE-
complete [13]. For formula set or multiset Γ , we write w Γ for ∀γ ∈ Γ.w γ.

A model M for classical propositional logic (CPL), or “classical model”, is
just a set of propositional variables (assigned true). By M |= α we mean that α
is true in model M (following the Boolean truth tables). We write M |= Γ iff
∀γ ∈ Γ. M |= γ. We write Γ `ipl δ when the formula

∧
Γ → δ is IPL-valid and

Γ `cpl δ when it is CPL-valid, that is, when M |= γ for all classical models M .

3 The Theorem Prover intuit

The intuit theorem prover is an intuitionistic prover built on top of a SAT-
solver, following a Satisfiability-Modulo-Theories (SMT) approach. Despite the
fact that SMT-solving works primarily in classical logic and with first-order
theories, Claessen and Rosén [1] show this approach to be relevant to the prob-
lem of deciding IPL-validity. They use a variant of the SMT scheme known as
DPLL(T) [11], where DPLL is the well-known procedure for SAT-solving and T
is here the “theory of intuitionistic implications”. The main loop of DPLL(T)
can be seen as a particular case of Counter-Example Guided Abstraction Refine-
ment (CEGAR), as we describe next, for the particular case of IPL. A formula
α whose IPL-validity is to be determined is transformed into a set R of classical
“flat clauses”, a set X of intuitionistic “implication clauses”, and an atomic for-
mula q, such that `ipl α iff R,X `ipl q (the definitions are in Section 3.1). The
sequent R⇒ q constitutes an “abstraction” of the input formula α. A SAT-solver
tries to find a classical counter-model M for it, in that M |= R but M 6|= q. If no
such counter-model exists then α is not only CPL-valid but also IPL-valid. Oth-
erwise the SAT-solver returns such a counter-model M , although the existence
of M does not necessarily mean that R,X 0ipl q, as the implication clauses
X have so far been ignored. Therefore another procedure “checks” model M ,
in that it tries to produce a new abstraction R′ ⇒ q of α that refines R⇒ q
(technically, R ⊆ R′) and defeats model M , meaning that M 6|= R′ while still
ensuring `ipl α iff R′, X `ipl q. If it fails, then indeed α is not IPL-valid. If

2

1 procedure prove(R, X, q)
2 s = newSolver()

3 for ϕ ∈ R do addClause(s, ϕ)
4 for (a→ b)→ c ∈ X do addClause(s, b→ c)
5 return intuitProve(s, X, ∅, q)
6 end
7 procedure intuitProve(s, X, A, q)
8 loop // CEGAR LOOP

9 τ0 ← satProve(s, A, q)
10 if τ0 = Yes(A′) then return Yes(A′)
11 else // τ0 = No(M), with M a putative counter-model

12 if intuitCheck(s, X, M) then return No(M)
13 end

14 end

15 end
16 procedure intuitCheck(s, X, M)

17 for ι = (a→ b)→ c ∈ X such that a 6∈M and b 6∈M and c 6∈M do
18 τ1 ← intuitProve(s, Xι, M ∪ {a}, b) // Xι = X \ {ι}
19 if τ1 = Yes(A1) then
20 addClause(s,

∧
(A1 \ {a})→ c)

21 return False

22 end

23 end
24 return True

25 end

Fig. 1. Main algorithms of intuit [1]

it does produce a refinement, then the procedure loops with R′ instead of R.
Eventually, it either finds a counter-model for α, or exhausts the set of putative
counter-models and conclude that α is IPL-valid.

A key element of the approach is that R `cpl q iff R `ipl q, as the clauses
in R are “flat”. A twist of the approach, compared to the standard DPLL(T)
loop, is that the procedure that checks model M has to solve a new IPL-validity
problem (for a different R, X, q), so that it recursively calls a new DPLL(T) loop.
In other words intuit implements a recursive version of DPLL(T), although a
single SAT-solver is used, incrementally, for all recursive calls.

3.1 intuit in detail

Firstly, the formula α is transformed into a formula
∧
Γ → q, where q is an

atom and Γ is a set of flat clauses ϕ and implication clauses ι, where:

ϕ ::=
∧
A1 →

∨
A2 A1 ∪A2 ⊆ Atm

ι ::= (a→ b)→ c {a, b, c} ⊆ Atm∧
A1 is the conjunction of the atoms in A1∨
A2 is the disjunction of the atoms in A2 if A1 = ∅ then ϕ =

∨
A2

3

1 procedure intuitProve1(s, X, A, q)
2 loop
3 τ0 ← satProve(s, A, q)
4 if τ0 = Yes(A′) then return Yes(A′)
5 else // τ0 = No(M)
6 for ι = (a→ b)→ c ∈ X such that a 6∈M and b 6∈M and c 6∈M do
7 τ1 ← intuitProve1(s, Xι, M ∪ {a}, b) // Xι = X \ {ι}
8 if τ1 = Yes(A1) then
9 addClause(s,

∧
(A1 \ {a})→ c)

10 go to line 2 (outer loop)

11 end

12 end
13 return No(M)

14 end

15 end

16 end

Fig. 2. The function intuitProve1

A flat clause where A1 is empty is simply a disjunction
∨
A2 of atoms, and

simply an atom a when A2 is the singleton {a}. Henceforth, we write R, R1, R′

etc. to denote sets of flat clauses; X, X1, X ′ etc. for sets of implication clauses;
A, A1, A′ etc. for sets of atoms; and Xι, Xι′ for the sets X \{ι} and X \{ι′}, re-
spectively. A clausification procedure is presented in [1], similar to Tseitin’s [15],
where clauses are created by naming subformulae with new propositional atoms.
Technically, it transforms any IPL formula α into a triple clausal(α) = (R,X, q)
whose cumulative size is linear in the size of α and that is equiprovable to α:

Lemma 1. For every α with clausal(α)=(R,X, q), `ipl α iff R,X `ipl q [1].

From now on, we focus on deciding R,X `ipl q. The intuit algorithm [1],
outlined in Fig. 1 with only slight modifications, consists of three procedures.
It exploits a single SAT-solver s that is incremental : clauses can be added to s
but not removed, and problems can be solved with varying atomic assumptions.
So the clauses in s are “global clauses” which must hold at any point of proof-
search. Technically, the SAT-solver has the following API, i.e., it supports the
following operations, where R(s) denotes the set of clauses stored in s:

newSolver(): create a new SAT-solver;
addClause(s, ϕ): add the flat clause ϕ to the SAT-solver s;
satProve(s, A, q): call the SAT-solver s to decide whether R(s), A `cpl q,

where A is a local set of assumptions and q is an atom.

The call satProve(s, A, q) yields one of the following answers:

Yes(A′): thus A′ ⊆ A and R(s), A′ `cpl q;
No(M): thus M is a classical model such that M |= R(s) ∪A and M 6|= q.

4

1 procedure intuitPR(s, X, A, q)
2 τ0 ← satProve(s, A, q)
3 if τ0 = Yes(A′) then return Yes(A′)
4 else // τ0 = No(M)
5 for ι = (a→ b)→ c ∈ X such that a 6∈M and b 6∈M and c 6∈M do
6 τ1 ← intuitPR(s, Xι, M ∪ {a}, b) // Xι = X \ {ι}
7 if τ1 = Yes(A1) then
8 addClause(s,

∧
(A1 \ {a})→ c)

9 return intuitPR(s, X, A, q)

10 end

11 end
12 return No(M)

13 end

14 end

Fig. 3. The procedure intuitPR (recursive variant of intuitProve)

The main function prove(R, X, q) of intuit yields:

Yes(∅) if R,X `ipl q;
No(M) if there is a Kripke model K = 〈W,≤, r, ϑ〉 such that ϑ(r) = M and

r R ∪X and r 1 q; this implies R,X 0ipl q.

As sketched by Claessen and Rósen [1], if prove(R, X, q) returns No(M),
then one can actually build the mentioned model K by tracking the sets M ′

returned by intuitProve.
To reason about intuit, it is convenient to merge the functions intuitProve

and intuitCheck into one recursive function. Firstly, we plug intuitCheck into
intuitProve and obtain the function intuitProve1 in Fig. 2. Then, we remove
the outer loop by replacing the “go to” statement at line 10 with a recursive call;
we get the recursive procedure intuitPR in Fig. 3. We henceforth consider the
intuit algorithm as implemented by the main function prove in Fig. 1, with
function intuitProve at line 5 replaced by function intuitPR in Fig. 3.

4 Adapting the sequent calculus LJT to clausal forms

The sequent calculus LJT is a variant of Gentzen’s sequent calculus LJ for in-
tuitionistic logic [6, 7] that was discovered many times, as outlined by Roy Dy-
ckhoff [2]. Its rules are given in Fig. 4, where Γ ⇒ α denotes a sequent whose
antecedent Γ is a multiset of assumptions, and whose provability in LJT is de-
noted `LJT Γ ⇒ α. The key difference from LJ lies in the left introduction rules
for implication. In order to introduce an implication η → γ on the left, LJT
offers four rules, depending on the form of η, namely: either η = p, with p ∈ V ;
or η = α ∧ β; or η = α ∨ β; or η = α→ β 4.

4 We follow Troelstra and Schwichtenberg [14] where the calculus is called G4ip; the
original (L→→) rule by Dyckhoff [2] has Γ, β → γ ⇒ α→ β as the left premise.

5

Ax
Γ, p⇒ p

L⊥
Γ,⊥ ⇒ δ

Γ, α, β ⇒ δ
L∧

Γ, α ∧ β ⇒ δ

Γ ⇒ α Γ ⇒ β
R∧

Γ ⇒ α ∧ β

Γ, α⇒ δ Γ, β ⇒ δ
L∨

Γ, α ∨ β ⇒ δ

Γ ⇒ αk
R∨k

Γ ⇒ α1 ∨ α2

Γ, α⇒ β
R→

Γ ⇒ α→ β

Γ, p, β ⇒ δ
L0→

Γ, p, p→ β ⇒ δ

Γ, α→ (β → γ)⇒ δ
L∧→

Γ, (α ∧ β)→ γ ⇒ δ

Γ, α→ γ, β → γ ⇒ δ
L∨→

Γ, (α ∨ β)→ γ ⇒ δ

Γ, β → γ, α⇒ β Γ, γ ⇒ δ
L→→

Γ, (α→ β)→ γ ⇒ δ
p ∈ V, k ∈ {1, 2}

Fig. 4. The calculus LJT (a.k.a. G4ip)

4.1 Root-first proof search, invertibility and recursivity

The purpose of replacing Gentzen’s left-introduction of implication by those four
rules is to ensure that root-first proof search terminates. When given a sequent
to prove, root-first proof search matches it against the conclusion of one of the
rules, and recursively tries to prove each of its premises. In every rule of LJT, the
multiset Γi, αi corresponding to the ith premise Γi ⇒ αi is strictly smaller than
the multiset Γ, α corresponding to the conclusion Γ ⇒ α, according to the well-
founded multiset ordering based on formula size.5 Hence, the recursions of root-
first proof search terminate. Note that keeping several copies of an assumption
is never useful for proof search, so from now on, the antecedents of sequents will
be considered sets. If, following the application of a rule, the recursive call that
attempts to prove any one of its premises fails, then proof search attempts to
apply another rule or another instance of the rule. Conceptually, a backtrack
point was set when the original rule was applied. However, no such backtrack is
needed if the rule is invertible, in the sense that, whenever the rule’s conclusion
is provable (in LJT), so is each of its premises. In that case indeed, if any one
of the premises is not provable, then neither is the conclusion, so there is no
point in trying out another rule. In LJT, all rules are invertible except R∨k
and (L→→), and therefore backtrack points need to be set only when applying
those two rules. However (L→→) is right-invertible in that, if the conclusion is
provable (in LJT), then so is the right premise (while the left premise may or
may not be provable). This means that (L→→) can be seen as a one-premise
invertible rule, guarded by a side-condition:

Γ, γ ⇒ δ
(Γ, β → γ, α⇒ β)

Γ, (α→ β)→ γ ⇒ δ
.

When applying this rule, root-first proof search makes a first recursive call that
checks that the side-condition holds and, if successful, makes a second one on the

5 This is the number of connectives, each conjunction counting for two [2].

6

premise. Because of invertibility, that second call is tail-recursive, as no backtrack
point is needed: the output of proof search is the output of the recursive call.
The next sections describe how these two recursive calls, for a generalisation of
rule (L→→) satisfying the same invertibility properties, corrrespond to the two
recursive calls of intuitPR in Fig. 3 (lines 6 and 9). The (right-)invertibility
of that generalised rule means that the recursive call on the (right) premise is
tail-recursive and proof-search can thus be implemented by a while loop: namely
the DPLL(T) loop of intuit. To see this we specialise LJT to clausal forms.

4.2 LJT specialised to clausal forms

We now consider sequents in clausal form, namely sequents of the form R,X ⇒ q.
The only LJT rule manipulating X is then (L→→), which becomes:

R, b→ c,Xι, a⇒ b R,Xι, c⇒ q

R,X ⇒ q

ι = (a→ b)→ c in X

Xι = X \ {ι}

All other rules concern R and q, or do not apply because the sequent to prove
is already in clausal form. Hence, these rules can be replaced by the use of a
SAT-solver, remembering that R `cpl q iff R `ipl q.

To prove the left premiss of (L→→), atom a is added as an assumption, and
will be taken into account by the SAT-solver. As a is not present in the right
premise, it must be removed from the assumptions if the same SAT-solver is
used for the right premise. Hence, it is useful to refine the notion of sequent in
clausal form into sequents of the form R,X,A⇒ q, where R is the set of clauses
present in the SAT solver, which can only grow bigger, and A is a set of atomic
assumptions that can vary from one call to the next, relying on the SAT-solver’s
API presented in Section 3.1. On such sequents, rule (L→→) becomes:

R, b→ c,Xι, A, a⇒ b R,Xι, A, c⇒ q

R,X,A⇒ q

ι = (a→ b)→ c in X

Xι = X \ {ι}

We can start relating root-first proof search to intuit by relating the application
of the above rule to a call to function intuitPR(s,X,A,q), described in Fig. 3,
considering R = R(s).

Indeed the left premise of the above rule is very similar to the first recursive
call intuitPR(s, Xι, M ∪ {a}, b) on line 6 of Fig. 3, except that b→ c is added
to R in the premise, and model M may differ from A: According to its definition
on line 4 of Fig. 3, M must satisfy (and therefore contain) all atoms in A, but
other atoms could be assigned true in M that are not in A. Note however that
R(s) does contain b → c if (a → b) → c is in X: it has been added to s at the
beginning of the computation of function prove from Fig. 1.

Likewise, the right premise of the above rule is very similar to the second
recursive call intuitPR(s, X, A, q) on line 9 of Fig. 3, except that the right
premise contains the atomic formula c and the recursive call keeps the implication
(a→ b)→ c.

Furthermore, the use of the SAT-solver in procedure intuitPR has side-
effects: letR0 denote R(s) at the time when intuitPR is called,R1 denote R(s) at

7

the time of the first recursive call (line 6), and R2 denote R(s) at the time of the
second recursive call (line 9). We have R0 ⊆ R1 ⊆ R1∪{

∧
(A1 \{a})→ c} ⊆ R2,

for a subset A1 of M ∪ {a} such that R1, Xι, A1 `ipl b. This incremental use
of the SAT-solver is not reflected in root-first proof search using rule (L→→).
Hence, rule (L→→) has to be generalised to account for these differences.

4.3 A generalised version of (L→→)

The first generalisation consists in allowing the addition, in the left premise of
(L→→), of extra atomic assumptions that were not assumptions in the conclu-
sion. By allowing this, the rule can model either the extra atoms that are in M
but not in A for the first recursive call of intuitPR (line 6 of Fig. 3), or the
atoms A1 that are returned by the call if successful. This ambiguity is systemic
to the description of root-first proof search as presented in Section 4.1, which
makes a double usage of sequent calculus rules. Consider a sequent calculus rule.

– Firstly, if the conclusion describes the arguments of a proof search, then the
premises describe the arguments of the recursive calls; the rule describes the
descent into the recursions.

– Secondly, if the recursive calls succeed, then a proof of each premise has been
completed, either explicitly or implicitly, and a proof of the conclusion can
be constructed; the rule describes the ascent back from the recursions.

It is useful to enhance proof search by considering, for each rule, a variant used
for the first purpose and a variant used for the second purpose. Typically for
the first purpose, it is convenient to integrate the weakening rule of the sequent
calculus (say in LJ) to the axiom rule, and use context-sharing rules, as in
Fig. 4. For the second purpose, it is useful to push all weakenings down towards
the proof-tree root, using context-splitting rules. This strengthens the proved
sequents by pruning the input sequent of all assumptions that were not used
in the proof. This was described for instance in [8, 9], which also connects the
said pruning to the notion of conflict analysis used in SAT and SMT-solving.
This is relevant for the connection between LJT and intuit, as a call to function
intuitPR(s, X, A, q), if succesful, precisely performs this pruning by outputing
a subset A′ of A that is sufficient for provability. In that spirit, we present the
generalisation of (L→→) in a context-splitting style, emphasising what happens
upon the completion of the recursive calls.

The addition of extra atomic assumptions in the left premise of (L →→)
makes the premise easier to prove than with the original rule (when seen as a
one-premise rule with a side-condition, the rule applies more often). The price to
pay for this is that the new assumption that is learnt and that helps proving the
right premise, has to be weakened from c to the flat clause ϕ =

∧
(A1 \{a})→ c,

which in intuitPR is added to the SAT-solver on line 8 in Fig. 3. Note that
clause ϕ is a consequence of the original problem. Weakening this newly available
assumption in turn means that it no longer subsumes the original implication
clause ι, which has to stay in the right premise. The resulting rule is rule (ljt)
in Fig. 5.

8

R `cpl q
(cpl)

R,X ⇒ q

R1, X1 `ipl ϕ ϕ,R2, X2 ⇒ q
(cutipl)

R1, R2, X1, X2 ⇒ q

R1, b→ c, X, A1 ⇒ b R2,
∧

(A1 \ {a})→ c, X, (a→ b)→ c⇒ q
(ljt)

R1, R2, X, (a→ b)→ c⇒ q

Fig. 5. The calculus LJTSAT

When emulating SAT or SMT-solving, the sequent calculus has to deal with
the effectful aspect of these solvers, which learn clauses that are consequences of
the input problem, such as clause ϕ above.6 This effect was described in terms of
memoisation of root-first proof search in [8, 9], and in terms of cuts in [4, 9]. Here
again we use cuts to model the phenomenon: the added clauses can be deleted
at the end of the proof search computation by applying rule (cutipl) of Fig. 5.

5 The Calculus LJTSAT

We introduce the calculus LJTSAT (LJT with SAT-solver) for sequents of the form
R,X ⇒ q, whose provability in LJTSAT is denoted `LJTSAT

R,X ⇒ q. It consists
of the three rules of Fig. 5. Rule (cpl) has the premise judgment R `cpl q and
the sequent R,X ⇒ q as conclusion, with X any set of implicational clauses. The
rule can be applied if R `cpl q holds, as checked by a SAT-solver (hence LJTSAT).
The rule (cutipl) is a cut rule having the judgment R1, X1 `ipl ϕ as left premise.
In the proof-search procedure, whenever we apply (cutipl), the left-premise is a
judgment of the kind R0, X0 `ipl ϕ, where the cut formula ϕ is a clause already
stored in the SAT-solver, and we can take for granted that the assertion holds
(we do not have to invoke an external prover to check it). The rule (ljt) is a
sort of context-splitting generalisation of (L→→) needed to capture the intuit

procedure. We point out that the sets R1 and R2 may overlap, thus the common
part R1 ∩R2 is kept in both the premises. The formula

∧
(A1 \ {a})→ c in the

right premise is needed to guarantee the soundness of the rule, since A1 is any set
of atoms. To get completeness, we have to keep the main formula (a→ b)→ c in
the right premise; as a side-effect, the termination of proof-search is now trickier
to prove. If the sets R1 and R2 coincide and A1 = {a} (thus

∧
(A1 \ {a})→ c is

the atom c), we get the instance

R, b→ c, X, a⇒ b R, c, X, (a→ b)→ c⇒ q
(ljt)

R, X, (a→ b)→ c⇒ q

The formula (a → b) → c in the right premise is now redundant since it is
implied by the occurrence of c, thus we recover Dyckhoff’s rule (L→→).

To prove the soundness of LJTSAT, we show that an LJTSAT-derivation can
be translated into the calculus LJT. In derivations, a double line marks the
application of more than one rule. Firstly, we prove the soundness of rule (cpl).

6 These effectful additions account for the distinction between R0, R1 and R2 above.

9

Lemma 2 (Soundness of rule (cpl)). If R `cpl q then `LJT R⇒ q.

Proof. We proceed via contraposition, so suppose 6`LJT R⇒ q. By completeness,
there is a Kripke model 〈W,≤, r, ϑ〉 containing a world w ∈W such that w

∧
R

and w 6 q. Now consider any flat clause ϕ =
∧
A1 →

∨
A2 ∈ R. The valuation

ϑ(w) either has A2 ∩ ϑ(w) 6= ∅ or A2 ∩ ϑ(w) = ∅. If A2 ∩ ϑ(w) 6= ∅ then ϕ is
classically true at w. If A2 ∩ ϑ(w) = ∅ then reflexivity demands A1 * ϑ(w), as
otherwise w 6 ϕ, contradicting our assumption. Again, ϕ is classically true at
w. That is, w by itself is a classical model that also makes

∧
R true and q false,

so R 0cpl q. By contraposition, if R `cpl q then `LJT R ⇒ q. Notice that this
proof only works because R contains flat clauses. ut

A syntactic way of proving Lemma 2 is to consider the proof returned by
a (proof-producing) SAT-solver, justifying the unsatisfiability of R, q (where q
is the negation of q) with a resolution proof concluding the empty clause ⊥
from the flat clauses R, and q. Indeed, the resolution rule is perfectly valid in
intuitionistic logic if a clause a1 ∨ · · · ∨an ∨ b1 ∨ · · · ∨ bm is read as the flat clause
a1∧· · ·∧an → b1∨· · ·∨bm, as pointed out by Claessen and Rósen [1]. Removing
q → ⊥ from the leaves of the resolution tree leaves q at its root, yielding an
intuitionistic proof of R `ipl q. Completeness of LJT [2] concludes `LJT R⇒ q.

We prove the main lemma for the soundness of LJTSAT.

Lemma 3. If `LJTSAT
R,X ⇒ q then `LJT R,X ⇒ q.

Proof. Let D be an LJTSAT-derivation of R,X ⇒ q; we prove the lemma by
induction on the depth of D. If the root rule of D is (cpl), the assertion follows
by Lemma 2. Let us assume that D is

R1, X1 `ipl ϕ
D2

ϕ, R2, X2 ⇒ q
(cutipl)

R1, R2, X1, X2 ⇒ q

By the completeness of LJT [2], there exists an LJT-derivation E1 of R1, X1 ⇒ ϕ.
By the induction hypothesis, there exists an LJT-derivation E2 of ϕ,R2, X2 ⇒ q.
Since (cut) is admissible in LJT [2], from E1 and E2 we get an LJT-derivation of
R1, R2, X1, X2 ⇒ q. Otherwise, D has the form

D1

R1, b→ c, Xι, A1 ⇒ b

D2

R2, ϕ, X ⇒ q
(ljt)

R1, R2, X ⇒ q

ι = (a→ b)→ c

Xι = X \ {ι}
ϕ =

∧
(A1 \ {a})→ c

Obtaining E1 (resp. E2) from E1 (resp. D2) by the induction hypothesis, we get
the following LJT-derivation of R,X ⇒ q. We use here the fact that in LJT,
weakenings are admissible (so we can assume a ∈ A1), and so are cuts.

E1
R1, b→ c, Xι, A1 ⇒ b

Ax
R1, Xι, c, A1 \ {a} ⇒ c

L→→
R1, X, A1 \ {a} ⇒ c

L∧, R→
R1, X ⇒ ϕ

E2
R2, ϕ, X ⇒ q

(cut)
R1, R2, X ⇒ q

ut

10

1 procedure LJTSatMain(R0, X0, q0)
2 // s, R0, X0 are global parameters

3 s ← newSolver()

4 for ϕ ∈ R0 do addClause(s, ϕ)
5 for (a→ b)→ c ∈ X0 do addClause(s, b→ c)
6 τ ← LJTSat(R0, X0, ∅, q0, [])
7 if τ = K then return K
8 else // τ = (D, R, ∅), with R = {ϕ1, . . . , ϕn}
9 return the LJTSAT-derivation

10 R0, X0 `ipl ϕ1 . . . R0, X0 `ipl ϕn
D

R0, R,X0 ⇒ q0
(cut∗ipl)

R0, X0 ⇒ q0
11 end

12 end

Fig. 6. The procedure LJTSatMain

By Lemma 3 and the soundness of LJT, we conclude:

Theorem 1 (Soundness of LJTSAT). `LJTSAT
R,X ⇒ q implies R,X `ipl q.

6 Proof-search using LJTSAT

We present the proof-search procedure based on the calculus LJTSAT, imple-
mented by the main function LJTSatMain (Fig. 6), which exploits the aux-
iliary recursive function LJTSat (Fig. 7). They correspond to the functions
prove and intuitPR respectively, enhanced with explicit proof/counter-model-
construction. The worlds of the counter-models to be constructed are sequences
of implication clauses, with [] denoting the empty sequence and w::ι denoting
the extension of sequence w with clause ι. Function LJTSat takes as its last
argument the root world of the counter-model to be constructed, if the input
is not IPL-valid. Initially, LJTSatMain calls LJTSat with the empty sequence as
root world, as shown in Fig. 6, where (cut∗ipl) also denotes a chain of n successive
applications of (cutipl).

A Kripke model K = 〈W,≤, r, ϑ〉 is a counter-model for a sequent
σ = R,X ⇒ q, written K 6|= σ, if r R ∪ X and r 1 q. In our incarnation
of intuit, the counter-model is obtained by gluing Kripke models, as explained
next.

Let Θ be a family (Ki)i∈I of Kripke models and M a classical model such
that, for every i ∈ I, the root ri of Ki obeys ri M . We write Mod(r,Θ,M)
for the model K = 〈W,≤, r, ϑ〉 obtained by gluing all the models in Θ over r,
where r is a new world such that ϑ(r) = M . More specifically, if Θ = (〈Wi,≤i
, ri, ϑi〉)i∈I , where the sets Wi are pairwise disjoint and none of them contains

11

1 procedure LJTSat(R, X, A, q, r)
2 τ0 ← satProve(s, A, q)
3 if τ0 = Yes(A′) then
4 return (D, R(s), A′) where D is

5
R(s), A′ `cpl q

(cpl)
R(s), X,A′ ⇒ q

6 else // τ0 = No(M)
7 Θ ← ∅ // Empty family of Kripke models

8 for ι = (a→ b)→ c ∈ X such that a 6∈M and b 6∈M and c 6∈M do
9 τ1 ← LJTSat(R∪{b→ c}, Xι, M ∪{a}, b, r::ι) // where Xι=X\{ι}

10 if τ1 = K1 then Θ ← Θ] (ι 7→ K1) // adding K1 with index ι
11 else // τ1 = (D1, R1, A1)
12 ϕ̃ ←

∧
(A1 \ {a})→ c

13 addClause(s, ϕ̃)
14 τ2 ← LJTSat(R ∪ {ϕ̃}, X, A, q, r)
15 if τ2 = K2 then return K2

16 else // τ2 = (D2, R2, A2)
17 return (D, R1 ∪R2, A2) where D is

18

D1

R,R1, b→ c,Xι, A1 ⇒ b

D2

R,R2, ϕ̃,X,A2 ⇒ q
(ljt)

R, R1, R2, X, A2 ⇒ q
19 end

20 end

21 end
22 return Mod(r,Θ,M)

23 end

24 end

Fig. 7. The procedure LJTSat

r, then Mod(r,Θ,M) is the model K = 〈W,≤, r, ϑ〉 such that

W = {r}]
n⊎
i=1

Wi ≤0 = { (r, r1), · · · , (r, rn) }∪
n⋃
i=1

≤i ϑ =

n⋃
i=1

ϑi ∪{(r,M)}

and ≤ is the reflexive-transitive closure of ≤0 (] denotes disjoint union).
If Θ = ∅, then K = 〈{r}, {(r, r)}, r, ϑ〉 only contains the reflexive world r

with ϑ(r) = M . Given a set X and a classical model M , we write XM for
{((a→ b)→ c) ∈ X | a 6∈M, b 6∈M, c 6∈M}.

Lemma 4. Let σ = R,X ⇒ q be a sequent, r be a world, M be a classical model
and Θ be a family (Kι)ι∈XM

of Kripke models indexed by XM such that:

(i) (a→ b)→ c ∈ X implies b→ c ∈ R;
(ii) M |= R and M 6|= q;

(iii) For every ι ∈ XM , we have Kι 6|= R,Xι,M, a⇒ b.

Then, Mod(r,Θ,M) 6|= σ.

12

Proof. Let K be Mod(r,Θ,M) = 〈W,≤, r, ϑ〉, whence r M . We have to show
that, at r, all the formulae in R ∪X are forced and q is not forced. By (ii), we
immediately get r 1 q. We prove the cases for R and X.

Proof that r R: Suppose ϕ ∈ R and assume ϕ =
∧
A1 →

∨
A2 with A1 6= ∅.

Let w ∈ W be any world such that r ≤ w and w
∧
A1; we prove w

∨
A2.

If w = r, we have r
∧
A1, which implies A1 ⊆ M . Since M |= ϕ, we get

M |=
∨
A2, which implies r

∨
A2. If w 6= r, w must be in some Wι for some

Kι = 〈Wι,≤ι, rι, ϑι〉 in Θ, with ι ∈ XM . Thus rι ≤ w in K. By (iii), rι R in Kι
and ϕ ∈ R, so rι ϕ in Kι. Hence rι ϕ in K, and the persistence of gives
w ϕ in K. Since w

∧
A1, we obtain w

∨
A2. The case A1 = ∅ (namely,

ϕ =
∨
A2) is similar.

Proof that r X: First note that by (i), r b→ c for every (a→ b)→ c ∈ X.
Choose any ι = (a → b) → c ∈ X and let w be any world such that r ≤ w and
w a→ b; we prove w c.

If c ∈ M , then r c by construction, hence w c. If b ∈ M then r b by
construction, and we already have r b → c, so we get r c, hence w c. If
a ∈ M then r a and r b → c and w a → b, giving w c. The previous
three cases are independent, thus w c if a ∈M or b ∈M or c ∈M .

So suppose a 6∈ M and b 6∈ M and c 6∈ M . By (iii), Θ contains a model
Kι = 〈Wι,≤ι, rι, ϑι〉 such that Kι 6|= R,Xι,M, a ⇒ b. Thus rι 1 a → b in Kι,
hence rι 1 a → b in K. By reverse persistence r 1 a → b (in K), which implies
w 6= r. There is also a model Kι′ = 〈W ′,≤′, r′, ϑ′〉 of Θ such that w ∈W ′, hence
r ≤ r′ ≤ w (in K). We need to cover the two cases ι = ι′ and ι 6= ι′:

1. If ι′ = ι, by (iii) rι a in Kι, thus w a (in K). Since r b → c, we have
w b→ c. Then w a→ b gives w c.

2. If ι′ 6= ι then ι ∈ Xι′ , hence r′ ι in Kι′ , whence it follows that w ι (in
K). Our initial assumption that w a→ b gives w c. ut

In Fig. 6 we define the proof-search function LJTSatMain such that
LJTSatMain(R0, X0, q0) returns either an LJTSAT-derivation of σ0 = R0, X0 ⇒ q0
or a counter-model K for σ0. Worlds of K are sequences of implication clauses,
ordered by the prefix order on sequences, and the empty sequence [] is its root
world. We set:

H0 = { b→ c | (a→ b)→ c ∈ X0 } V0 = { p ∈ V | p occurs in σ0 }
M/V0

(R) = { M ⊆ V0 | M |= R } for any set R of flat clauses

The call LJTSatMain(R0, X0, q0) defines a SAT-solver s and initializes it by
storing all the clauses in R0∪H0; we consider s, R0 and X0 as global parameters.
It exploits the auxiliary recursive procedure LJTSat defined in Fig. 7. A call
LJTSat(R, X, A, q, r) performed during the computation of the main call
LJTSatMain(R0, X0, q0) has the following specification.

Input Assumptions (IA):
– R ⊆ R(s) and X ⊆ X0;
– for every ϕ ∈ R(s), we have R0, X0 `ipl ϕ;
– r is a sequence of implication clauses.

13

Output Properties (OP):
LJTSat(R, X, A, q, r) yields a triple (D, R′, A′) or else a model K with:
– R′ ⊆ R(s) and A′ ⊆ A;
– for every ϕ ∈ R(s), we have R0, X0 `ipl ϕ;
– D is an LJTSAT-derivation of R,R′, X,A′ ⇒ q;
– K has root r and worlds are ordered by the prefix order on sequences;
– K 6|= R,H0, X,A⇒ q.

In (IA), R(s) refers to the clauses in the SAT-solver s at the beginning of the
computation of LJTSat(R,X,A,q,r); in (OP), R(s) is the set of clauses in s at the
end of the computation. Note that (OP) implies that the call LJTSat(R,X,A,q)
terminates. To prove the correctness of LJTSat, we have to show that, if the
assumptions (IA) are matched, then (OP) holds. We need the following property
about derivability in IPL.

Lemma 5. R,X,A `ipl b implies R,X, (a→ b)→ c `ipl
∧

(A \ {a})→ c.

Proof. Let A′ = A \ {a}. If R,X,A `ipl b, then R,X,A′ `ipl a → b, which
implies R,X, (a→ b)→ c, A′ `ipl c, hence R,X, (a→ b)→ c `ipl

∧
A′ → c.

ut

To prove correctness, put the following order relation on pairs (R,X) such
that R is any set of flat clauses and X ⊆ X0:

(R′, X ′) ≺ (R,X) iff (X ′ ⊂ X) or
(
X ′ = X and M/V0

(R′) ⊂ M/V0
(R)

)
Since the sets X and M/V0

(R) are finite, the relation ≺ is well-founded, hence
we can prove correctness of LJTSat (Lemma 6) by induction on ≺.

Lemma 6. If a call LJTSat(R, X, A, q, r) satisfies (IA) then (OP) holds.

Proof. We use the main induction hypothesis (MIH) below and show that the
invariant (Inv) holds at any point of the computation described in Fig. 7:

(MIH): if (R′, X ′) ≺ (R,X), then the lemma holds for LJTSat(R′,X ′,A′,q′,r′);
(Inv): for every ϕ ∈ R(s), we have R0, X0 `ipl ϕ.

At the start of the computation (Inv) holds by (IA). Let τ0 be the value computed
at line 2. If τ0 = Yes(A′), then the triple (D,R(s), A′) is returned at line 4, with
D defined at line 5; by definition of satProve, it holds that R(s), A′ `cpl q and
A′ ⊆ A, hence (OP) holds. Otherwise, since R ∪H0 ⊆ R(s), we have:

(P0) τ0 = No(M) and M |= R ∪H0 ∪A and M 6|= q.

Without loss of generality, we can assume M ⊆ V0, namely M ∈ M/V0
(R). If,

for every (a→ b)→ c ∈ X, the loop condition at line 8 does not hold, then the
loop at lines 8–21 is skipped and the model Mod(r, ∅,M) is returned at line 22,
which is a counter-model for R,H0, A⇒ q by Lemma 4; thus (OP) holds. Let us
assume that the loop at lines 8–21 is entered. We prove that at every iteration of
the loop the following properties hold, where τ1 and τ2 are the values computed
at lines 9 and 14 respectively, and ϕ̃ =

∧
(A1 \ {a})→ c is defined at line 12:

14

(P1) τ1 = (D1, R1, A1) or τ1 = K1 where:
– R1 ⊆ R(s) and A1 ⊆ M ∪ {a};
– D1 is an LJTSAT-derivation of R,R1, b→ c,Xι, A1 ⇒ b;
– K1 has root r::ι and worlds are ordered by the prefix order on sequences;
– K1 6|= R,H0, Xι,M, a⇒ b.

(P2) τ2 = (D2, R2, A2) or τ2 = K2 where:
– R2 ⊆ R(s) and A2 ⊆ A;
– D2 is an LJTSAT-derivation of R,R2, ϕ̃,X,A2 ⇒ q;
– K2 has root r and worlds are ordered by the prefix order on sequences;
– K2 6|= R, ϕ̃,H0, X,A⇒ q.

Let us consider the first iteration of the loop and let ι = (a→ b)→ c ∈ X be the
selected clause (hence, a 6∈ M , b 6∈ M and c 6∈ M). The call to LJTSat at line 9
satisfies (IA). Since Xι ⊂ X, we have (R ∪ {b → c}, Xι) ≺ (R,X). By (MIH)
τ1 satisfies (OP); this proves (P1). Note that (OP) guarantees that (Inv) holds
after the computation of τ1. At line 13, ϕ̃ is added to s; we check that (Inv) is
preserved, namelyR0, X0 `ipl ϕ̃. By (P1) and Soundness of LJTSAT (Theorem 1),
R,R1, b→ c,Xι, A1 `ipl b and, by Lemma 5, we get R,R1, b→ c,X `ipl ϕ̃,
hence R,R1, b→ c,X0 `ipl ϕ̃. Since R ∪ R1 ∪ {b → c} ⊆ R(s), from (Inv) it
follows that R0, X0 `ipl ϕ̃. The call to LJTSat at line 14 matches (IA). To
apply (MIH), we have to check that:

(P3) (R ∪ {ϕ̃}, X) ≺ (R,X).

Clearly, M/V0
(R∪{ϕ̃}) ⊆ M/V0

(R); to conclude the proof of (P3), we show that
the inclusion is strict. Note that M ∈ M/V0

(R) (see (P0) and the subsequent
remark). For a contradiction, assume M |= ϕ̃. Since A1 ⊆ M ∪ {a}, we get
A1 \ {a} ⊆ M . By definition of ϕ̃, it follows that M |= c, namely c ∈ M , a
contradiction. Thus,M 6|= ϕ̃, which impliesM 6∈ M/V0

(R∪{ϕ̃}); this proves (P3).
We can apply (MIH) to the recursive call at line 14 and we get (P2) and the
preservation of (Inv). Let us consider the iteration k+ 1 of the loop (k ≥ 1). We
can repeat the above reasoning to prove that (P1) and (P2) hold at iteration
k+1; the invariant property (Inv) is crucial to guarantee that the recursive calls
at lines 9 and 14 satisfy (IA). We conclude that (P1) and (P2) hold at every
iteration of the loop.

Let us assume that, at some iteration of the loop, τ1 is not a model, namely
τ1 = (D1, R1, A1). If τ2 is a model K2, then K2 is returned at line 15 and (OP)
follows from (P2). Otherwise, τ2 = (D2, R2, A2) and (D, R1∪R2, A2) is returned
at line 17, where D is the LJTSAT-derivation displayed at line 18; accordingly
(OP) holds. Finally, let us assume that, at every iteration, τ1 is a model. Since
X is finite, the loop eventually ends and the model Mod(r,Θ,M) is returned
at line 22. At that point, Θ has been completed into a family (Kι)ι∈XM

such
that for every ι in XM , Kι has root r::ι and its worlds are ordered by the prefix
order on sequences, by (P1). Mod(r,Θ,M) has root r and also uses the prefix
order on sequences. So in order to prove (OP), we only have to check that
Mod(r,Θ,M) is a counter-model for R,H0, X,A ⇒ q. Let R′ = R ∪ H0 ∪M
and σ′ = R′, X ⇒ q; by (P0) and (P1), it follows that σ′, M and Θ satisfy the
assumptions of Lemma 4. Since A ⊆M , Mod(r,Θ,M) 6|= σ′ and (OP) holds. ut

15

By Lemma 6, we get:

Theorem 2 (Correctness of LJTSatMain). LJTSatMain(R0, X0, q0) returns
either an LJTSAT-derivation of σ0 = R0, X0 ⇒ q0 or a counter-model for σ0.

Proof. Consider the call LJTSat(R0,X0,∅,q0,[]) at line 6. When LJTSat is called,
R(s) = R0 ∪H0. Let b→ c ∈ H0; since X0 contains a formula of the kind (a→
b)→ c and (a→ b)→ c `ipl b→ c, it follows that R0, X0 `ipl b→ c. Thus, the
call to LJTSat satisfies (IA); by Lemma 6, the returned value τ satisfies (OP). If
τ is a counter-model K, then K is returned at line 7; since K 6|= R0, H0, X0 ⇒ q,
we get K 6|= σ0. Otherwise τ = (D, R, ∅), where D is an LJTSAT-derivation D of
R0, R,X0 ⇒ q0 and R0, X0 `ipl ϕ, for every ϕ ∈ R. Accordingly, the returned
derivation, displayed at line 10, is an LJTSAT-derivation of σ0. ut

As a consequence, we get:

Theorem 3 (LJTSAT completeness). R,X `ipl q implies `LJTSAT
R,X ⇒ q.

Let us consider the call LJTSatMain(R0,X0,q0); we show that we can build
an LJT-derivation Dϕ of R0, X0 ⇒ ϕ, for every clause ϕ stored in the SAT-
solver s during the computation. Let ϕ = b → c be a clause introduced at the
beginning of LJTSatMain (line 5 in Fig. 6). Then, (a→ b)→ c ∈ X0 and, setting
X ′ = X0 \ {(a→ b)→ c}, Dϕ is:

R0, X
′, b, b→ c, a⇒ b R0, X

′, c, b⇒ c
L→→

R0, X0, b⇒ c
R→

R0, X0 ⇒ b→ c

Let us consider the clause ϕ̃ added in the loop of LJTSat when the clause ι =
(a → b) → c is considered (line 13 in Fig. 7). By Point (P1) in the proof of
Lemma 6, there exists an LJTSAT-derivation D1 of R,R1, b → c,Xι, A1 ⇒ b.
Note that R ∪ R1 ∪ {b → c} has the form R0 ∪ {ϕ1, . . . , ϕn}, where the clauses
ϕ1, . . . , ϕn are in s and Xι ⊆ X0. Let D′1 be the LJTSAT-derivation:

R0, X0 `ipl ϕ1 . . . R0, X0 `ipl ϕn
D1

R0, ϕ1, . . . , ϕn, Xι, A1 ⇒ b
(cut∗ipl)R0, X0, A1 ⇒ b

By construction, for every judgment R0, X0 `ipl ϕ′ occurring in D′1, the clause
ϕ′ is in s, thus we can assume that the LJT-derivation Dϕ′ has already been
defined. We can turn D′1 into an LJT-derivation E1 of R0, X0, A1 ⇒ b.

If a 6∈ A1, then ϕ̃ =
∧
A1 → c and Dϕ̃ is the LJT-derivation

E1
R0, X0, A1 ⇒ b

Ax
b, b→ c, a⇒ b

Ax
b, c⇒ c

L→→
b, (a→ b)→ c⇒ c

(cut)
R0, X0, A1 ⇒ c

L∧, R→
R0, X0 ⇒

∧
A1 → c

16

If A1 = ∅ (hence ϕ̃ = c) the bottom applications of L∧ and R→ are crossed out.
Let a ∈ A1 and A′1 = A1 \ {a}. Thus, ϕ̃ =

∧
A′ → c and Dϕ̃ is the derivation

E1
R0, X0, A

′
1, a⇒ b

R→
R0, X0, A

′
1 ⇒ a→ b

Ax
b, b→ c, a⇒ b

L0→
a→ b, b→ c, a⇒ b

Ax
a→ b, c⇒ c

L→→
a→ b, (a→ b)→ c⇒ c

(cut)
R0, X0, A

′
1 ⇒ c

L∧, R→
R0, X0 ⇒

∧
A′1 → c

If A′ = ∅ (hence ϕ̃ = c) the bottom applications of L∧ and R→ are skipped.
By the above discussion, we can enhance the procedures LJTSatMain and

LJTSat so that, whenever a flat clause ϕ is added to the SAT-solver, an LJT-
derivation Dϕ of R0, X0 ⇒ ϕ is stored. Let us assume that LJTSatMain(R0,
X0, q0) returns an LJTSAT-derivation D of σ0 = R0, X0 ⇒ q0 Proceeding as in
the proof of Lemma 3, we can exploit the derivations Dϕ to translate D into an
LJT-derivation of σ0.

7 Discussion, Further Work and Conclusions

The construction of Kripke countermodels from failed proof search in (a variant
of) LJT was already explored by Dyckhoff and Pinto [3]. In this paper we have
merged proof search and countermodel construction into one procedure based on
LJT while benefitting at the same time from the insights from intuit regarding
incremental SAT-solvers.

The rule (L→→) from Fig. 4 can be interpreted semantically as follows by
reading it from conclusion to premises. The antecedent of the conclusion requires
the current world w to make (a → b) → c true, to make all members of Γ true
and to make δ false. If w c then we have the right premise. Else w 1 c and
therefore, w 1 a→ b. But that means that there exists a v ≥ w such that v Γ
and v a and v 1 b, implying that v b→ c, which is the left premise.

We have shown that our simpler recursive version of intuit can be reconciled
with this semantic view if we generalise the rule (L→→) into the rule (ljt). By
doing so, we can utilise an incremental SAT-solver to implement the right premise
of the rule (ljt) by “restarting” the SAT-solver with additional flat clauses learned
during the process of finding the derivation of the left premise of (ljt).

There are many sequent and natural deduction calculi that contain rules
which have this “here” or “at some successor” flavour. For example, the LSJ
calculus of Ferrari et al [5] and the traditional tableau calculus for linear tem-
poral logic PLTL [16]. Can we extend our insights to such calculi to obtain
incremental SAT-based decision procedures for these calculi too [10]?

Another direction for future work is the extent to which this approach relies
on the clausification of the input formula. Indeed, LJT is able to natively treat
any IPL formula. Technically, could the calculus LJTSAT be extended to any
sequent, not necessarily in clausal form? If so how would the interaction with
the SAT solver be organised?

17

Acknowledgment This project has received funding from the European Union’s Hori-

zon 2020 research and innovation programme under the Marie Sk lodowska-Curie grant

agreement No 689176.

References

1. Koen Claessen and Dan Rosén. SAT modulo intuitionistic implications. In LPAR,
volume 9450 of Lecture Notes in Computer Science, pages 622–637. Springer, 2015.

2. Roy Dyckhoff. Contraction-free sequent calculi for intuitionistic logic. J. Symb.
Log., 57(3):795–807, 1992.

3. Roy Dyckhoff and L Pinto. Implementation of a loop-free method for construc-
tion of counter-models for intuitionistic propositional logic, 1996. University of St
Andrews Report CS/96/8.

4. Mahfuza Farooque, Stéphane Graham-Lengrand, and Assia Mahboubi. A bisimula-
tion between DPLL(T) and a proof-search strategy for the focused sequent calculus.
In Alberto Momigliano, Brigitte Pientka, and Randy Pollack, editors, Proceedings
of the 2013 International Workshop on Logical Frameworks and Meta-Languages:
Theory and Practice (LFMTP 2013). ACM Press, September 2013.

5. Mauro Ferrari, Camillo Fiorentini, and Guido Fiorino. Contraction-free linear
depth sequent calculi for intuitionistic propositional logic with the subformula
property and minimal depth counter-models. J. Autom. Reasoning, 51(2):129–149,
2013.

6. Gerhard Gentzen. Untersuchungen über das logische schließen. i. Mathematische
Zeitschrift, 39:176–210, 1934.

7. Gerhard Gentzen. Investigations into logical deduction i. In M. Szabo, editor, The
collected papers of Gerhard Gentzen. North-Holland, Amsterdam, 1969.

8. Stéphane Graham-Lengrand. Psyche: a proof-search engine based on sequent cal-
culus with an LCF-style architecture. In Didier Galmiche and Dominique Larchey-
Wendling, editors, Automated Reasoning with Analytic Tableaux and Related Meth-
ods - 22th International Conference, TABLEAUX 2013, Nancy, France, September
16-19, 2013. Proceedings, volume 8123 of Lecture Notes in Computer Science, pages
149–156. Springer, 2013.

9. Stéphane Graham-Lengrand. Polarities & Focussing: a journey from Realisability
to Automated Reasoning. Habilitation thesis, Université Paris-Sud, 2014.

10. Jianwen Li, Shufang Zhu, Geguang Pu, Lijun Zhang, and Moshe Y. Vardi. Sat-
based explicit ltl reasoning and its application to satisfiability checking. Formal
Methods in System Design, https://doi.org/10.1007/s10703-018-00326-5, 2019.

11. Robert Nieuwenhuis, Alberto Oliveras, and Cesare Tinelli. Solving SAT and SAT
modulo theories: from an abstract Davis-Putnam-Logemann-Loveland procedure
to DPLL(T). Journal of the ACM, 53(6):937–977, 2006.

12. Thomas Raths, Jens Otten, and Christoph Kreitz. The ILTP problem library for
intuitionistic logic. Journal of Automated Reasoning, 38(1):261–271, Apr 2007.

13. Richard Statman. Intuitionistic propositional logic is polynomial-space complete.
Theoretical Computer Science, 9:67–72, 07 1979.

14. A.S. Troelstra and H. Schwichtenberg. Basic Proof Theory, volume 43 of Cambridge
Tracts in Theoretical Computer Science. Camb. Univ. Press, 2ed edition, 2000.

15. G. S. Tseitin. On the Complexity of Derivation in Propositional Calculus, pages
466–483. Springer Berlin Heidelberg, Berlin, Heidelberg, 1983.

16. Pierre Wolper. Temporal logic can be more expressive. Information and Control,
56(1/2):72–99, 1983.

18

