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Chapter 1

Multilevel Security Revisited

1.1 Preface for This Conceptual Report

After 9 months of nattering over some high-level concepts, this final still seems like mostly
potatoes rather than meat. This is not a surprise to me. I am attempting to establish a basis
from which broad conclusions might be postulated as to what might be worth refining in
the future some conceptual highly trustworthy multilevel-secure subsystems that could be
developed and seriously evaluated. The assumptions under which they might be used need
to be precisely specified and analyzed to prove soundness under the stated assumptions.

The security community has spent many years on the MLS R&D noted here. It would
be a shame to throw it all away if there are gold suggests still lurking for serious pursuit.
On the other hand, it would be a waste if the future could readily be deemed hopelessa
priori . At the moment, I still remain a conservative optimist. Otherwise, I would not have
undertaken the present study and the resulting document. I hope this effort makes it possible
to draw realistic conclusions about the long-term future – even if it helps only to extend the
trustworthiness of conventional systems and networks.

A fundamental question remains: Is this all a pipe-dream, or is there a realistic fu-
ture for something modest, especially if developed on hardware such as CHERI that
would be significantly more trustworthy than previously existing hardware with corre-
spondingly more trustworthy software. Or, might that desire actually be irrelevant, and
the notion of clean-slate Multilevel Security/Integrity hardware-software systems and
networks is actually a colossal losing battle, which is the typical common wisdom of But-
ler Lampson (“Capabilities are the way of the future, and always will be.”) and many
others. (For for further examples, see Appendix SectionC, including Steve Bellovin’s
outspoken pessimism and Steve Lipner’s recollections.)

I hope we can converge on realistic answers before I run out of this year’s support. I
use the plural “we”, because this draft has already listened thoughtfully to others with
relevant experience, and hopes to have some further critical review (either openly or
anonymously). PGN
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CHAPTER 1. MULTILEVEL SECURITY REVISITED

1.2 Abstract: Goals of This Report

The primary goals of this report for an SRI IRAD study are (1) to document the major pitfalls
associated with multilevel security; (2) establish incisive principles, guidelines, and method-
ology for MLS; and (3) encourage where feasible some future efforts at implementing and
evaluating MLS to be orders of magnitude more realistic and more trustworthy than previous
efforts – based on requirements that are more complete and more precise, a holistic archi-
tectural system perspective, development practices that are more comprehensive, assurance
methodologies that are more easily applied, and whatever else might be necessary.

In particular, we suggest basing future work on the further development of the principle-
based CHERI hardware-software systems and formal analyses in development by SRI and
Cambridge UK. In short, this document tracks an analysis of the past into the what might
have to happen in the future, with a quest for an over-arching clean-slate approach to total-
system multilevel security for reasonable applications that are deemed feasible. For example,
certain highly constrained operational environments might enhance feasibility, along with
systems, subsystems, and networks that can be inherently more trustworthy than what is
available today.

From the outset of my conceiving and organizing this report, several comments are worth
noting here:

• This is a rather personal view, initially recollecting several ground-breaking clean-slate
architectures with which I have been deeply involved over the past 60 years, along
with an analysis of some of the past oversights and mistakes that arose in these and
other would-be MLS system developments. It also extensively includes information
provided by my informal advisors, especially where some of their personal comments
help illustrate the inherent complexities that must be addressed.

• Surprisingly, many past constructive innovations have been widely ignored in practice,
forgotten, or misunderstood. The most egregious example involves buffer overflows,
for which Multics beginning in 1965 supplied effective hardware and software tools
that could prevent stack buffer overflows – with almost no acceptance or even recogni-
tion by the computer-system industry or government procurers of trustworthy systems
who can help set stricter requirements. Multics system programmers could use the fa-
cilities of Multics and languages such as PL/1 (actually, using the compiler Bob Morris
and Doug McIlroy created for their Early PL/1 EPL stark subset that eliminated cer-
tain dangerous PL/1 constructs such as pointers), to develop Multics operating-system
code that would consistently block out-of-bounds references. (Sloppy or malicious
code could still access storage it should not; sloppy code could also clobber a pointer
with garbage: the call that added a segment to the virtual-memory set-memory-access
controls so the only thing in the process’s memory image was data that the process
to which the owner had rights. Furthermore, hcs$initiate returned a pointer only after
checking process identity versus access-control list. The pointer was untyped, which
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CHAPTER 1. MULTILEVEL SECURITY REVISITED

gave access to an entire segment; similarly, access control was on segment granularity.1

• One of the main Multics innovations was the programming discipline. The Triumvirate
approach required approval by by the late Fernando Corbató, the late Charlie Clingen,
and PGN (until 1969 when Bell Labs bailed out altogether) – based on reasonably
careful documentation of all module inputs, outputs, functionality, and exceptions or
intended error messages – before any EPL code could be written.2 Unfortunately, the
imposed discipline did not continue past the informal specification document into de-
tailed early code review. (David Parnas subsequently made enormous contributions by
formalizing the stages of his disciplined development approach (e.g., [65, 64, 66]). It
is unfortunate that his insights did not find practical applications for system architec-
ture until the next decade – for example, in PSOS and KSOS. Rigorous attention to his
work could have significantly improved Multics.)

• Jon Callas reminded me of a meme that was popular after Multics was abandoned by
Bell Labs: the Orange Book took over on how to design computer kernels, and Unix
and C became dominant in the research communities: “Unix and the C programming
language set the state of the art of security research back 50 years.”3 Jon added, “These
days, I follow that meme up with saying that fortunately, we’re now over forty years
into the fifty. It’s far more true with C than with Unix itself these days. Yet, I remember
when I’d argue with Unix people, they did come around. Also, FreeBSD has helped
significantly.” Fortunately, CHERI has created a rebirth of research on memory safety,
which is seriously lacking in C, and emerging in newer languages such as Rust (which
unfortunately is not entirely memory safe, e.g., given its escapes to native code similar
to Java).

• Despite its considerations of numerous previous secure-system developments, this
document is intended as a prospectiveview of the future, with primary attention on
how to identify and overcome past limitations and shortcomings. This is now possible
with enhanced system/network trustworthiness based on hardware such as CHERI.

• A fundamental methodological realization is required: We cannot create a secure sys-
tem, even if the entire team of developers working on the hardware and software is

1Tom Van Vleck (who runs the rather comprehensive historical Multicians.org website) has worked for
people who really want secure computing on an insecure platform, for at least 45 years. “Telling them they
can’t have it is not an option. Telling themwhy they can’t have it didn’t work: they don’t want a lot of details.
Maybe we need to appeal to a higher-level concept such as “the gods do not permit it; Claude Shannon; or
entropy”. Or a movie plot.” THVV

2The dynamic linker from symbolic file names to hardware-identified descriptors for each active segment
seems to have been the only exception initially – it was written in assembly code language – until the pro-
grammer left after several iterations, when it was reprogrammed in EPL by someone else directly from the
multiply-updated documentation. Surprisingly, the new code ran three times faster than the hand-optimized
assembly code.

3This was also said of Windows undercutting all research in operating systems.

6



CHAPTER 1. MULTILEVEL SECURITY REVISITED

committed toZero Defects; that extreme-programming approach is very rare, but al-
most completely precludes tradeoffs between correctness and speed, schedule, cost,
convenience, etc.4

• Ultimately, the meaning oftrustworthinessmust be formals specified in terms of all
the requirements that must be satisfied. The notion of trustworthiness is meaningless
without such well-defined expectations. Whenever we refer to trustworthiness is men-
tioned here, that is assumed.

Tom Van Vleck suggested that the following questions be addressed here:

• What can you get from MLS? The ability to deal with information at multiple secu-
rity levels, and programs at multiple integrity levels, without violating the fundamental
rules – information never leakds to a lower level of security, and programs never de-
pend on anything less trustworthy).

• What are the costs? The costs to do this in the open (e.g., across the Internet – which
includes the Dark Web not playing by your rules) are insurmountable. The costs of
something housed entirely in a controlled environment with appropriate shielding and
compartmentalization could be manageable compared with the costs of losing what is
being protected.

• What you can’t get (e.g,, problems MLS cannot not fix)? such as physical attacks on
hardware such as Rowhammer and other noise injection (e.g., [8]) and physical addi-
tions of analog hardware (e.g.,[100]), or even kidnapping key personnel for ransom.).

4Tom De Marco has written beautifully about the important influence of intending to produce zero-defect
code. “The alternative to defect removal is defect abstinence.” (Controlling Software Projects p. 207) Chapter
22 of Controlling Software Projects is on Zero Defects. De Marco says programmers program but are not
allowed to use a compiler; programmers pass the source code to the test team who compile it; any compilation
error means the program is defective and rejected; programming organization must assign somebody else to
write the program’ if it compiles, the program must then pass tests that the test org creates; programmers are
typically not shown the tests their program has to pass.
Tom Van Vleck amplifies this point: Multics designers, managers, and developers did not have a complete
commitment to Zero Defects. However, they did evolve a process that was better than most others, but not
perfect. Bugs were included in shipped upgrades, but then fixed as soon as identified. Perhaps NASA comes
closer to zero defects, but at the cost only about 3 lines of debugged code per day per programmer. Tom’s
earlier thinking on this topic is athttps://multicians.org/thvv/nasty.html. However, he thinks he should have
gone further in that essay. What would it be like if we started a project with Zero Defects as our plan? How
could we get it right the first time, every time? PGN notes this was akin to the rather over-hyped IBM Clean
Room approach advocated by Harlan Mills [52], where nothing would be accepted unless it had been developed
under stringent conditions and strongly determined to beclean. However, Mills’s approach and numerous other
so-called informal methodologies were all incomplete, and most of them made no use of formal specifications
and formal analyses suggested by Parnas, Edsger Dijkstra, Tony Hoare, Nicolas Wirth, et al.
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CHAPTER 1. MULTILEVEL SECURITY REVISITED

1.3 Introduction

Some forms of Multilevel Secure Systems and Networks have been sought in one context
or another since the late nineteen-forties, originally as a veneer on top of batch-processing
computer hardware. The initial versions of RACF, ACF2, and TopSecret enforced some
discretionary access, but no real sense of MLS. RACF later gave users the impression that
successive jobs could be run securely at system high with complete purging the entire system
memory between jobs. Each run was intended to be a clean stand-alone process, supposedly
completely independent of all previous batch jobs. That knee-jerk approach was a very prim-
itive approach, before the notion of time-sharing came along in MIT’s CTSS (Compatible
Time Sharing System), and other shared systems at Dartmouth, Berkeley, and elsewhere).
Ever Since the early days of primitive time-sharing (e.g., users from one another became
important, although the separation was often inadequate.

Multics was the first of three clean-slate hardware-software architectures to which I was
a major contributor. The GE 636/645 hardware (as a major augmentation of the GE 635) had
been designed (by Ted Glaser at MIT and John Coleur at General Electric and Honeywell
with extraordinary foresight on the part of Ted, to support rigorous separation of users and
their data via true virtual-memory segmentation and paging, dynamic linking of symbolically
named entities (files/segments and then Ken Thompson’s redesign of the I/O system with
Multics input-output streams that anticipated his UNIX pipes), as well as integrity of the
operating system via layered levels in the operating system. All of that OS-inspired hardware
thinking led to at least 3.5 decades of Multics evolution, based on the Multics principles first
established in May 1965.5 Multics was originally documented in five papers at the Fall Joint
Computer Conference in Las Vegas in November 1965 (e.g., [12, 13]). All five papers are on
https://multicians.org.

In the following decade, the Trusted Computer Security Evaluation Criteria (TCSEC)
Orange Book [54] attempted to seek different levels of security, with formally assured mul-
tilevel security being the ultimate goal. The Orange Book C levels pushed IBM (in moving
batch operating systems from C1 to C2 into handling complete deletion as opposed to mark-
ing data items as deleted (from which undelete [undo] was still possible). This was a problem
not just for batch processing, but also for the earliest IBM time-sharing systems. The B lev-
els required MLS software security kernels with ¡explicit labeling of classified information.
The A and B TCSEC levels required an isolated operating system kernel with more structure
and minimization of trusted code and more formal assurance measures as one went from
level to level above B1. The A2 level introduced formal requirements and formal specifi-
cations, and A1 required formal proofs, respectively. However, the Orange Book attempted
to provide the security primarily through thesoftwaresecurity kernel and trusted computing
base, presuming that the hardware could not be compromised.6 The dependence primarily

5Even though the Multics clock ran well past 1 January 2000, the system as a whole was not intended to be
strictly Y2K-compliant, as noted by Steve Lipner.

6Hardware security was required or expected during the Orange Book days in the sense that the hardware
provided controls that they worked as expected. See, for example, Olin Sibert’s IEEE Symposium on Security
and Privacy (Oakland) paper [83], which found x86 flaws.
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CHAPTER 1. MULTILEVEL SECURITY REVISITED

on software kernels (and trusted computing bases that might provide overrides) is one of the
primary assumptions this report seeks to overcome, as it is clear today that if the hardware is
untrustworthy, the operating system and mission software cannot be trustworthy.78

Other deficiencies of the Orange Book and the Rainbow series of successive interpreta-
tions are also addressed in my 1990 paper, Rainbows and Arrows: How the Security Criteria
Address Computer Misuse [56], and in an independent paper by Willis Ware [89] five years
later.

A historical retrospective by Steven B. Lipner is also very worthy: See reference 46 in
The Birth and Death of the Orange Book:https://www.stevelipner.org/links/resources/,
http://www.bitsavers.org/pdf/sdc/adept-50/Lipner - The Birth and Death of the Orange
Book 2015.pdf

Over the past 50 years, U.S. government computer security strategy has shifted
focus from government-funded research and system development to evaluation
of commercial products. By tracing the history of the Trusted Computer System
Evaluation Criteria (TCSEC) or Orange Book during this period, this article cov-
ers the role of government agencies, vendors, and policymakers in determining
IT system security requirements and development.

Roger Schell pioneered the Rainbow Series when he was at NCSC, and also spent many
years working on the Gemini GEMSOS MLS security kernel. (More recently, he had been
trying to resurrect it.) GEMSOS had 8 Multics-like rings.

Other approaches to security kernels were developed at the University of Newcastle
(Secure Distributed System [74, 75]), Honeywell (Scomp [21] and LoCK/Secure Ada Tar-
get [78]), Hydra (the MLS kernel of a multiprocessor system developed at Carnegie-Mellon [97,
98]), SDC [25] (KVM/360, with 4 MLS levels and 62 compartments), to cite just a few other
earlier software kernels with some degree of MLS.

Another problem is that many of the advances pioneered by Multics were more or less
lost, including its integrated hardware-software security (including defense against stack
buffer overflows, as noted above– which was effectively understood by Multicians in 1965 –

7The TCSEC did implicitly reference hardware state separation, partly because of Multics penetration ef-
forts (e.g., by Roger Schell, Dan Craigen, Marv Schaefer and others). There was also an implicit reference
to incomplete hardware mediation that necessarily had to be corrected by the software prior to control being
shifted to the hardware for execution: e.g., in the SDC/IBM security study of VM/370 (1980-1981), it was
found that the virtual address in a Channel Control I/O program could potentially (e.g., explicitly) transfer the
actual address rather than virtual address to the numerous I/O device specific controllers to access all physical
addresses. In retrospect, the semantic insights required for sanitizing I/O would forevermore expand the size
and complexity of the VM kernel!
Marv Schaefer noted that Peter omits the implicit reference to a state separation in the hardware between the ref-
erence monitor and the untrusted user populace. That state separation was relied upon even in OS/MVS/MVT
to isolate the access-control mechanisms from user state.

8Steve Lipner was very familiar with the early-1970s Multics penetration test that preceded the development
of AIM and the AFDSC deployment. There are references later in the paper to testing as part of the B2
evaluation in the 1980s, and that was completely separate. Multics was already operational at AFDSC. Paul
Karger should be named here. Note that the Multics penetration test did discover a hardware vulnerability.
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and a very strong hardware special-purpose co-processor (GIOC) to manage the input-output
security problem of having access to absolute addresses rather than paged virtual memory.9

Fortunately, these problems are now being confronted by our SRI-UofCambridge CHERI
security model and matching hardware-software [94], all of which provide a relevant base
platform for some of the approaches to MLS outlined in this report.

A variant security policy is thehigh watermark policy, whereby each object becomes
contaminated by the highest (and possibly compartmented) information the running process
acquires, which then effects everything that is written.10

One other wrinkle: any advanced multilevel security system should be general enough
and trustworthy enough that it can handle multiple policies (e.g., the U.S. Department of
Energy classification system, and variants in other countries). Thus, the focus on the U.S.
intelligence and national security classification system should be considered illustrative of
what might reasonably be accomplished with adequate assurance.

We are all confronted with the fundamental problem that our critical systems (hardware
as well as software) are not sufficiently trustworthy. Incremental improvements have demon-
strated themselves to be seriously inadequate. Flawed hardware upon which flawed software
is built does not allow a long-term strategy for success, especially when deployed in sys-
tems with ultra-critical trustworthiness requirements (e.g., for total-system/network security,
human safety, survivability, real-time performance, interoperability, usability, and other es-
sential attributes).

1.4 An Intuitive Formulation of MLS

Beginning with the Orange Book, the so-called Rainbow Series [54] implicitly assumed the
dependence on the originally convoluted Bell and LaPadula model of MLS [4] and later up-
dated to its much more accessible subsequent Multics interpretation [5]. Rather than work
our way through those formulations, I prefer to give my own somewhat oversimplified ver-
sion to give a relatively understandable intuitive view of the MLS and other principles in-
volved.

Intuitively, MLS seeks to enable information to safely and assuredly coexist at different
security levels and compartments without in any way leaking any information to lower se-
curity levels or collateral compartments: Basically,information should never leak to or in
any way influence anything at a less trusted security level(e.g., with levels such as Top
Secret, Secret, Confidential, and Unclassified) and collateral compartment.11

9This is a problem that has resurfaced in CHERI’s approach to control dozens of hidden undocumented and
proprietary microcontrollers, discussed in Section1.7.4.

10There is a granularity issue: if my process had a SECRET segment open, but never fetched a bit from the
page, is might nevertheless still be tainted.

11MLS has been viewed by B&LP as having two properties –no read-up from a higher level (or incom-
parable compartment and alsono write-down to a lower level (or incomparable compartment). However,
that seems to conflate the formerconfidentialityproperty with the latterintegrity property, and I vastly prefer
my single simplified leakage property, which leaves more room for associated integrity properties (considered
below).
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The mathematical simplicity of the linearized (or actually lattice-based) security levels
is often complicated by restrictivecaveats(such as NOFORN or NUCLEAR, or even the
rather unwieldy CONTROLLED UNCLASSIFIED INFORMATION restrictions), as well
as classified arbitrarily assigned special names for the strictly compartmentalizedcategories
at secret and top-secret levels. (These caveats either break the natural simplicity of the ba-
sic lattice model, or make it unwieldy – e.g., multidimensional in the presence of myriad
categories and caveats that are no longer a strict-sense lattice model.)

Although not explicitly visible in the TCSEC, Ken Biba came up with a sort of orthogo-
nal dual model for Multilevel Integrity (MLI) [7]. In its intuitive sense, multilevel integrity
attempted to enforce hierarchical levels of integrity with the property that any derived com-
putational entity should never depend on any less trusted entities (i.e., with respect to the
integrity levels (e.g., the simplest being merely high vs low integrity), suitably defined.

One of the problems that arose in trying to implement MLS and MLI at the same time
was that certain conflicting requirements arose that had to be resolved. Basically, if pursued
rigorously with integrity levels and confidentiality levels, such an approach tends to break
most existing apps, and requires redesign. Consequently, MLI retained an amorphous role.
However, the Multics system ring-structure integrity levels – in which by design each ring
depended only on inner rings but could not compromise them – predated the Biba report by
10 years, and later became a strong contributor to the trustworthiness (security plus integrity)
of MLS Multics. The Multics ring-structured integrity design layers actually mirror Biba
levels of integrity compatibly.12

Also relevant is a paper by Roger Schell and Dorothy Denning [81] that suggests the
Biba model is really an upside-down Bell and LaPadula. That paper also mentions Multics
rings, the low-water-mark policy, the problem with having both integrity and security policy
at the same time, and covert channels (see Section1.9.13).

For readers not familiar with the history of MLS, Tom VanVleck suggested that we con-
sider what MLS and system security imply to a person well-versed in the state of the art:

• Rigid security rules can be automatically enforced.

• Classification of Information can be achieved by marking the container.

• A clearance process determines to which levels users may be authorized.

• Structured levels and categories can be defined.

• Mandatory Access Control (e.g., MLS) can be built into computer systems.

• Additional Discretionary Access Controls (e.g., Multics access control lists (e.g., [13]
or UniX-like RWX codes) are also possible.

12Note the confusion of the Multics ring structure, which is actually a one-dimensional ordering, rather than
the apparent two-dimensional ring. However, it is graphically appealing, because compromising an inner ring
is forbidden.
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• Users with different clearance levels may coexist within the same computer system or
network environment.

• Security officers require efficient automatic enforcement of the rules, rather than ad-
hoc controls.

• Sensitive information often results from the accumulation of less-secret information,
which necessitates its own rules. But the fewer rules, the better from a management
viewpoint.13

1.5 Software Kernels on Conventional Hardware

The absence of trustworthy hardware (i.e., relying only on existing hardware) and the inher-
ent incompleteness of the requirements for overall system security and multilevel security
have seriously impeded the development of trustworthiness in any realistic sense of multi-
level security. In particular, the absence of assured satisfaction of the MLS properties has
seriously hindered attempts in the past to develop multilevel-secure systems. Furthermore,
almost all of the work based in the Department of Defense Trusted Computer System Eval-
uation Criteria (TCSEC, also encompassing the entire Rainbow Series) implicitly assumed
that the hardware could not be compromised, and made very few references to vulnerabilities
resulting from hardware problems.14

1.5.1 Software Security Kernels in the 1970s and 1980s

A National Academies Air Force Study Group MLS Data Base Management effort in 1982-
1983 led by Marv Schaefer [79] included a chapter by Dorothy Denning and PGN [80] that
sprung from a our two-person research subgroup that postulated the would-be development
of an untrusted DBMS resting on top of an MLS kernel actually being multilevel secure –
despite the untrustworthy nature of the DBMS.

Roger Schell of course wanted to pursue an approach relying on a trusted security kernel
and untrusted everything else, which became the model for SRI’s SeaView. Marv Schaefer
also worked on a trusted DBMS project for AF Rome Labs that pursued the same idea back
in the mid-1970s. Intriguingly, the Denning-PGN research subgroup belief led directly to

13This is both true and difficult, or perhaps impossible to contend with in a structured or automated way.
Steve Lipner

14MLS is a wacky idea anyway. MLS is a very elaborate Rube Goldberg construction with many complex
parts. It is a fine example of the First Law of Military Procurement: The Customer Is Always Right. That is,
The Customer is not required to explain their entire reasons for what they asked for. They may have many layers
of reasoning that they need not explicate. The design organization has to say, “No matter what the customer
asks for, invent something that does that.”
MLS says “an authorized person who reads a classified file that contains a secret cannot write an unclassified
file, except that they can memorize the secret, log out, log in as unclassified, and write whatever they remember.”
This looked like a big hole in MLS to me. But of course, I don’t know how they evaluate risk and how they
ensure that clearances are awarded only to people who would never do that naughty thing. THVV

12
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SRI’s SeaView [47, 46, 44] and formal verification [96, 69] and security model [45]: with an
MLS kernel (originally going to be Roger Schell’s A1 candidate GEMINI kernel) underneath
an Oracle off-the-shelf DBMS, although it was eventually replaced with a compartmented-
mode workstation (Section1.5.3) when GEMSOS was not ready in time.

Oracle’s early DBMS for SeaView shared a single buffer space among all users, which
immediately had to be changed to user-specific working buffers, to avoid the monster inter-
user leakage channels.15

The KSOS [6, 50, 67] MLS kernel underwent analysis from SRI’s MLS analyzer – ini-
tially Richard J. Feiertag and then Neumann did the formal analysis of the KSOS SPECial
specifications using the Feiertag flow analyzer and the Boyer-Moore Theorem Prover to ana-
lyze whether the specs did or did not satisfy the Bell and LaPadula model. At first, something
like 16 of the original 34 kernel-command specifications had problems. Several covert in-
formation channels (both storage channels and timing channels) were discovered, along with
MLS flaws in the specs. Some of these were easily fixed with minor changes to the specifi-
cations. Others required rethinking the kernel design. Most of these flaws were eventually
fixed.

The closest approach to real MLS resulted from the effort Steve Lipner led, the VAX SVS
(Digital Equipment VMM Security Kernel), which Paul Karger and others worked on in the
1980s. It got most of the way through A1 certification before Steve canceled the project for
lack of a sufficient market. (The documentation was all proprietary to DEC, and now in the
archives of Tandem. We have been unable to locate its whereabouts, hoping to get it released
for public use.) See Steve Lipner’s remarks in Appendix C.

UCLA [88] was also involved, although less oriented toward MLS, if I recall correctly.
Also, a few special-purpose kernels such as the RAP [68] (Restricted Access Processor)
Guard and the MITRE guard [85], and special-purpose sanitizers and downgraders were
developed. As it turns out, formally proven A1 kernels were relatively rare at the time, and a
few came along a decade later (albeit with rather limited sets of requirements).

1.5.2 More-Recent Software Security Kernels

CertiKOS [27]is the closest kernel to the hierarchically layered hardware-software PSOS
methodology![20, 72, 73, 84], because its formal proofs use a methodology akin to the SRI
HDM hierarchical proof structure – proving one layer at a time from the bottom up – although
applied only to the software kernel. HDN

The Australian efforts are quite remarkable relating to an evolution with extensive proofs
for L4 [30] and seL4 [37] software kernels. Their recent work is also exploring multilevel
security as well.

See appendix SectionA.2 for an ongoing adaptation of seL4 ported to CHERI hard-
ware to increase the security coverage of seL4. It could eventually also include the recent

15Steve Lipner correctly recalled that the main body of the effort had a lot of push for an approach based
on encrypting or maybe signing data stored in an untrusted DBMS and then using a trusted filter that would
authorize access if the signed labels matched the user’s authorization. Unfortunately, the approach was subject
to various covert channels in addition to the shared-buffer problem.
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MLS work in Australia. This work is being done by Cambridge UK PhD candidate Hesham
Almatary under the aegis of Robert Watson (wearing his hat as head of Capabilities Ltd).
(Hesham was previously part of the L4/seL4 team.)

1.5.3 Compartmented-Mode Workstations

As sort of a half-way measure, given the complexities of MLS, Compartmented-Mode Work-
stations were a compromise. A document by Gary Huber (MITRE), CMW Introduction
https://dl.acm.org/doi/pdf/10.1145/190748.190750 evaluated five products at an inter-
mediate informal TCSEC level with B1+ requirements (somewhat stronger than B1, but still
weaker than B2): DEC Ultirx MLS+, Sun Trusted Solaris, SecureWare MLS+ (A/UX base),
IBM (trusted Xenix, AIX RS6000), and Harris Addamax ACMW (System V). This level had
its own Rainbow series set of evaluation criteria document.

1.6 Principles and Requirements

One of the most important aspects of would-be trustworthy systems involves the definition
of – and adherence to – underlying principles whose observance tends to starkly diminish
vulnerabilities and risks relating to security, reliability, human safety, predictable system be-
havior, real-time guarantees, and so on. Extensive use of formal requirements, formal archi-
tectural specifications, formal foundations for programming languages, and formal analyses
of all of these throughout system design and development also can provide much higher
evidence-based assurance, especially wherever most effective. Indeed, a formal theory is
needed for each required system property, such assystem security/network, system/network
integrity, crash-safety, bounded performance, .... However, formal methods by themselves
are never a panacea.

The sequential development of system principles is outlined further in Section1.7.1as
they emerged from the Multics effort, in Section1.7.3extended for PSOS including signif-
icant dependence on the contemporary work of David Parnas, and then in Section1.7.4as
they were adapted for CHERI.

These principles were also invoked for my DARPA project on predictable high-assurance
composability [57] in the early 2000s, which later was refined to become the basis for my
2017 ad-hoc analysis of the inherent principle-based trustworthiness underlying the entire
development of CHERI [58] since 2010, noted in Section1.7.4.

Revisiting all of these trustworthiness principles, an up-to-date summary is included in
TableD.1 in Appendix C.

Indeed, principle-based development has to be an iterative process – pervasively followed
through out design, development, implementation, bug-fixing, and upgrades. This is also a
huge management challenge, defining the principles, refining and extending their statements
and interpretation, and observing their application. A major challenge of future will be ap-
plying all this to MLS implementations, which themselves must be defined precisely. Are
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these definitions formalizable and consistent? Are there cases where the official legal re-
quirements are unclear or lead to major inefficiency or undefined behavior?

Underlying the existing CHERI security model and hardware ISA specifications are mul-
tiple principles [58], most notably the Principle of Least Privilege and the Principle of In-
tentionality (allocating the most appropriate set of privileges), along with principles relating
to separation (such as separation of user information, separation of state and encapsulated
abstraction, separation of duties, and functional isolation), and pervasively overarching – the
Einstein Principle thatEverything should be made as simple as possible,but no simpler.
All of these principles are highly relevant to the design, development, and operation of MLS
systems and networks – in observance throughout.

Also fundamental to MLS hardware architectures and software developments are specific
requirements that must be met. This is of course necessary for multilevel security, where su-
perficial adherence to the Bell and LaPadula security model is not nearly enough. Hardware
specifications are critical to analyses of ISAs, and software specifications are critical to im-
plementation and analyses of the systems. Sound software engineering is of course also
expected to minimize software errors during development.

A weak alternative to principled construction of hardware and software appears to be
what is euphemistically calledbest practices, which are inherently incomplete and nowhere
near good enough.

Another approach is the MITRE-NIST collection of Common Vulnerabilities and their
enumeration (as CVEs). To illustrate some of the futility of tracking vulnerabilities, there
were 130,000 CVEs in April 2000; four years later, there are over 200,000 CVEs. This is not
converging. Patch and Pray is not a viable approach.

1.6.1 Comments on Government Intervention

The Orange Book and the Rainbow Series represented a remarkable intervention. Getting
from C1 to C2 was a basic step forward for IBM, with their ability to mark as deleted,
but also to undelete. However, emphasis on multilevel security was perhaps premature –
especially the notion of having all of the security in the software kernel. However, in some
eome sense it also raised exercise in better system software that was in some ways more
secure. However, Steve Lipner’s cancelation of a million-dollar MLS project for which there
was apparently no marketplace followed the aftermath of the Multics Dockmaster system.
See Steve Lipner’s comments in the Appendix.

1.7 Principled and Formally Based Clean-Slate Systems

Several clean-slate architectures are particularly relevant here, as examples that began with
strict adherence to established principles and/or the use of formal methods. As noted above,
each of them is rather close to my own professional experience, and deeply influenced by my
November extended-breakfast session with Alber Einstein in one way or another relating to
complexity.
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1.7.1 Multics

The Multics development approach created a highly structured environment, with attention to
principles (which were enforced from the very beginning; they were stated in 1965 (by Ted
Glaser and PGN) in the first chapter of the Multics Programmer’s Guide, discussed more
broadly by PGN in the second ACM conference on Principles of Operating Systems (The
Role of Motherhood in the Pop Art of System Programming) in 1969 [55], and then later
codified from their Multics experience in 1975 by Saltzer and Schroeder [77] – and updated
further in 1989 [76]) as general system-development principles that evolved from teaching
computer science and operating systems at MIT. These principles were also fundamental to
the CHERI hardware-software security model and implementations, which appears to be the
most principle-based system yet developed.

2 The Multics hardware designed by Glaser and Coleur (noted above) was prescient in
that it anticipated needs of the operating system. In the first five years beginning 2 Jan-
uary 1965 (when I was heavily involved), no software was permitted to be written without
a detailed informal spec regarding all of the inputs, outputs, hidden state information, and
exception conditions. The design was highly modular, with strict encapsulation of internal
state. This was a precursor to later work of David Parnas for formal specifications of modu-
lar decompositions. (See [57] for an excellent elaboration of that effort. Rather than listing
all of Parnas’s important contributions here, see the appendix contributed by Virgil Gligor
to my 2004 DARPA report [57] on compositional assurance.) The relevance of those prin-
ciples to the onging CHERI architecture and system development is noted in the following
Section1.7.4on CHERI.

1.7.2 MLS Multics

The retrofit of MLS into Multics began in the early 1970s, with a little pushing from NSA,
and leading to the Access Isolation Mechanism (AIM). The encapsulated modularity result-
ing from the Multics ring structure was a fundamental factor in the ability to retrofit MLS [82]
into the original 1960s Multics hardware-software design and implementation [63], prior to
the MLS retrofit and the 6180 hardware replacing the 645. The retrofit added credibility for
the ring-layered system integrity, where ringn + 1 could not compromise ringn, because
very few changes to the original ring layers were required for the MLS retrofit [82]. The
MLS implementation was entirely in Ring 0, supporting 8 arbitrarily defined linear MLS
levels and 18 categories. MLS Multics (AIM) was also subjected to a detailed security eval-
uation [34, 35]. Although no formal methods were used in the development, the formal bases
for the Bell and LaPadula model were relevant to the evaluation. The performance hit over
the baseline Multics was surprisingly small.16

16One of the curious quirks is noted inhttps://www.multicians.org, involving theextend high primitive,
which in my mind is a terrible compromise. According to THVV, The solution to this problem contained two
elements. First, the forum subsystem was modified to allow read access from levels dominating the sensitivity
label of any forum (if permitted by the ACL, of course). Next, an extended category calledextend high
was created that was a superset of all categories. By using theextend high category at the proprietary level
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Tom Van Vleck had this commentary relating to covert information channels:

In the 1970s, Multics had some timing channels:https://www.multicians.org/
timing-chn.html At that time, we had nothing from NSA about any of this.

In the 1980s, the Orange Book B2 spec mandated covert channel analysis, and
Keith Loepere did one for Multics (published in SIG-OPS?).

Multics MLS added level+category info to files and file system directories, and
every file-system operation checked against user privileges.

Login accepted level and category arguments, validated against registration data.
The file system implemented checks to prevent storage channels, e.g., quota/usage.
there is a manual on this, will send link.

Fromhttps://multicians.org/b2.html:

The Trusted Facilities Manual required for B2 certification is contained in Part
VI Assuring System Security‘ and Appendix BAudit Tables and Include Files
of AK50-03 (Renamed theMultics System Administration Procedures Manual,
May 19 85). Part VI consists of Chapters 18 through 26 of the manual, and
provides guide lines for the system administrator on how to manage Multics as
a secure system. [info from Ed Ranzenbach] (21 MB pdf, 408 pages)

See pages 18-25 ff for info on the Access Isolation Mechanism (i.e., MLS):http:
//www.bitsavers.org/pdf/honeywell/large systems/multics/AK50A-03B sysAdmin
Dec87.pdf

1.7.3 PSOS with MLS

The NSA Research directorate funded the PSOS project from 1973 to 1983 (under R Director
Doug Hogan and Hilda Faust). The first seven years were devoted to the design ofProvably
Securehardware and software, formally specified, and intended to have proofs upward from
the 7 hardware layers and through the software layers. The iconoclastic nature of PSOS

in conjunction with forum’s new capability of being readable from dominant AIM classification levels, an eval-
uator or an evaluation manager could check all meetings with a single interactive session. The supercategory
also provided a way for the product evaluation community to provide separation from all vendor-specific data
for its internal discussions of issues pertaining to all product evaluations.

So, a manager could haveextend high and look at all their company’s products in evaluation. Also
managers could have meetings to discuss general evaluation issues. Managers logged in to this clearance would
be able to write things only atextend high . They could read data with any extended category, subject to
ACLs.

Introducing theextend high category was a clever way to identify some trusted individuals who could
see, but not write, status info, and to add a small feature to forum to make their lives easier. This seems to be
cop-out, because you should not be able to see anything at a higher level that you can make use of one way or
another. As we say sarcastically in the ACM RISKS Forum, What could possibly go wrong?
Added note:extend high was a local change made only at the Pentagon’s Dockmaster. It was not discussed
with the system designers or the B2 Orange Book designers and implementers, because Honeywell Bull laid
them all off, probably 10 years before the NSA guys started hacking on the forum software. THVV
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(with respect to the Orange Book) was that one of the upper software layers was that the
multilevel-security layer, specified in terms of a strongly typed object-capability layer in
which the capability mechanism and the rest of the hardware supported strongly typed MLS
objects, somewhat different from the realm of the Orange Book, but totally within the notion
which I recently outlined in terms oftotal-system trustworthiness, with the desire for proofs
from the bottom up all the way to user and mission requirements [59]. The 1980 final PSOS
report is online [60], and was previewed in an NCSC paper [18] and revisited in an ACSAC
Classic Papers article [61].

PSOS was a highly principled paper study, based heavily on the principles of David
Parnas. Any work on formal proofs of the hardware and software was decades ahead of the
field. 17

A fundamental theoretical basis for PSOS involved the SRI Hierarchical Development
Methodology (HDM [72, 73, 84], which encouraged a system to be specified in layers in a
non-executable formal language (SPECial), each layer of which had encapsulated modules,
and each layer included an abstract implementation in terms of the visible primitives of
lower layers. Thus, the MLI property of of Multics was explicitly part of the design. The
1980 Final PSOS report contained the formal specifications and abstract implementations
of each layer; layers 0 to 7 would have been in hardware, the rest in operating systems and
software. The bottom layer zero contained only two hardware instructions – one to create a
new capability with specified privileges for accessing a given virtual-addressed Multics-like
segment, and the other to create a restricted version of an existing capability. The rest of the
PSOS hardware and software was specified in higher layers building upward from those two
instructions. MLS was introduced at a software layer in which conceptually formal proofs
could be constructed from the bottom layer up, one layer at a time.

A skeletal structural PSOS abstraction hierarchy is shown in TableD.2. Although this
might look inefficient, a user command executed as a single instruction, invoking capability
instructions as the conceptual layer zero. once the dynamic linking had been completed,
the segment paging had taken place (similar to the Multics dynamic linking of symbolically
addressed segments). The bottom seven layers in the figure were intended to constitute
the PSOS hardware ISA, at the presumed hardware-software boundary for any subsequent
hardware. In addition, some of the properties that might have been formally proved about
the design specifications are summarized in TableD.3.

1.7.4 CHERI

The multiple CHERI projects since 2010 (DARPA I2O and MTO, and additional recent
UK funding) have led to hardware that is much more trustworthy than any predecessors.
CHERI can overcome many of the historical shortcomings noted above. CHERI appears to
be the most principle-based system ever conceived, respecting a more extensive detailed set

17The last three years of the project resulted in the two Goguen-Meseguer papers [23, 24] on a newly formu-
lated multilevel property,noninterference, as well as the first rudiments of what is now SRI’s PVS formal proof
system. These two papers were largely inspired as a formalized outgrowth of the earlier work by Feiertag,
Levitt, and Robinson [20].
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of principles [58], adherence to which has greatly reduced the vulnerabilities so common
in other hardware/software systems. Although several of those principles were fundamental
to the CHERI hardware-software architecture from the beginning (e.g., least privilege and
intentionality), other principles were actually satisfied without their being explicitly required
– because of the disciplined and principled development.

The CHERI websitehttps://www.cl.cam.ac.uk/research/security/ctsrd/cheri/ includes
a variety of released reports. Most important is Version 9 of the CHERI Instruction-set
Architectures; it includes specifications for CHERI-Arm-Morello [92, 1, 3, 2] and various
CHERI-RISC-V specs, plus a CHERI-x86 user-layer ISA Specification [94]. The website
also has numerous published papers, typically considering solutions to problems such as the
buffer-overflow problem originally addressed in Multics, and once again the result of the
total-system architecture in CHERI:

Two aspects of CHERI are particularly relevant to its eventual use for implementations
of multilevel security: CHERI’s trustworthy memory safety and compartmentalization, in
hardware and software.

• CHERI memory safety: We make the usual distinction between spatial memory
safety and temporal memory safety. Violations of spacial memory safety involve
dereferencing out-of-bounds memory addresses, as typified by buffer and bounds over-
flows, made possible particularly by programming languages such as PL/1 and C not
treating pointers improperly. Violations of temporal memory safety involve improper
deallocation of pointers, as well as issues such as use-after-free residues that have
not been completely deleted or disconnected from potential access. Both types of
memory-safety vulnerabilities are anathema to MLS implementations, and can lead to
serious violations of MLS properties. See [1] and the multi-authored paper, CHERI:
Hardware-Enabled C/C++ Memory Protection at Scale, an invited paper for the IEEE
Security and Privacy Journal special issue on memory management, July-August 2024 [93].

As Brett Gutstein notes in his PhD thesis [29], the currently existing CHERI still needs
two major advances: (1) support for modern supposedly memory-safe language inter-
preters (e.g., for Java and Rust) – see Appendix SectionA.8, and (2) providing tempo-
ral safety for user heaps, not just for the stack and the security kernel.

A new paper by Brett is currently in progress on these topics (although he is currently
involved in a major commitment for his startup, and is also working with Capabilities
Limited in Cambridge UK on the DEC large-scale compartmentalization project).

• CHERI compartmentalization: A very useful introduction to this is given by Dapeng
Gao and Robert Watson, Library-based Compartmefalisation on CHERI in a video
on the CHERI website://https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/
gao2023librarycomp Numerous papers have been written on CHERI’s approach to
trustworthy compartmentalization [28, 95, 10].

For the reader’s convenience, Appendix ChapterB of this report includes a summary
of our CHERI team’s history with respect to compartmentalization.
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• Thunderclap: This paper illustrates the vulnerabilities resulting from inadequate pro-
tection against malicious UCB-C sticks [48], and is a predecessor of the ongoing
work on providing CHERI’s approach to protection against microcontrollers with di-
rect memory access (DMA). This problem was recognized and controlled all the way
back in the Multics GIOC, with almost nothing comparable between the 1960s and
now. A paper in flight on the proposed CHERI solution – a capability-based interposer
that deals with committed absolute addresses – is nearing completion. Its general-
ization to protect DMA from otherwise uncontrolled embedded microcontrollers will
guide our approach to permissioning is the as-yet undocumented capability-based in-
terposer to replace the IO-MMUs still being used in other hardware. The interposer
uses selected absolute addresses under highly controlled and eventually verified per-
missions on read-write of main memory from all of the otherwise DMA-permitted
microcontrollers. See Section 3.11.4 of the Version 9 ISA specification document for
the most recent discussion on CHERI DMA, although more recent discussion of some
of the engineering implications is in progress. Furthermore, a new paper has just been
submitted to ASPLOS in July 2024: Enabling CHERI Hardware Security for Hetero-
geneous Hardware Accelerators, with Theo Markettos as the primary author.

• DMA Lessons from Multics Input-Output

When Multics transitioned from the 645 to the 6180, the new system did not use the
GIOC. Instead, it used a standard product I/O controller, the IOM. The IOM had a
hardware feature that supported base and bounds registers for each desired I/O channel.
(Later iterations of the IOM addedpaged-modesupport and other features.)1819

Multics re-implemented the inner levels of the I/O system to use the IOM, and provided
security features that allowed secure I/O usage and user-ring device control. This
software was called the GIM. It had several drawbacks and inefficiencies, and was
not able to support executing Test and Diagnostic programs on the IOM and attached
peripherals and peripheral controllers. Noel Morris proposed an improved design, the
I/O Interfacer (IOI), which interacted with Multics memory management to handle
buffer management, wiring and unwiring, process isolation, etc. This enabled Multics
to move device drivers out of the hardcore into the user ring, with no performance or
security degradation.

– Ideas for a GIM replacement (31 Dec 1973)
https://multicians.org/mtbs/MTB-028.pdf

18The Paged-mode IOM was used by Multics:https://web.mit.edu/multics-history/source/Multics/
mdds/mdd012.compout describes the IOM and IMU successors to the GIOC, and the way IOM page ta-
bles differ from CPU page tables. It also mentions security related features of peripheral controllers (MPCs).

19I’m not sure that the requirement to choose a level before creating input is user-acceptable although it’s
what we in effect did in SVS (and Multics for that matter). A user-accessible and audited facility for down-
grading after creation is a practical necessity.
I believe that CMW model allowed for multilevel documents with individual more or less trusted levels per
paragraph? Better usability although, as I said, the CMW model was not actually secure. Steve Lipner
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– I/O Interfacer Design Specifications (27 Mar 1974)
https://multicians.org/mtbs/MTB-056.pdf

– I/O Interfacer Access to Disk (4 Feb 1975)
https://multicians.org/mtbs/MTB-158.pdf

– I/O Interfacer Specification Changes (25 Mar 1975)
https://multicians.org/mtbs/MTB-178.pdf

Later versions of Multics hardware replaced the IOM with an Integrated Multiplexer
Unit (IMU), which contained a Maintenance Channel Adapter (MCA) and Integrated
Peripheral Controllers (IPCs). IOI was updated to use them.

• CHERI Speculative Execution Contracts, attempting to provide explicit agreements on
what can or cannot be speculatively executed, even if exploitation requires side chan-
nels to acquire the speculated information or to invoke an executable. (Note that no
collaboration is generally required in a side channel – it just merely exists and is effec-
tively transmitting or otherwise available. On the other hand, covert channels typically
may require willful collaboration between the sender and the receiver.) Speculative
execution in an MLS environment is considered further in Section1.9.12.

• Formal proofs of the CHERI-Arm-Morello instruction-set architecture [62], showing
that the basic capability-based security properties (least privilege, nonbypassability,
and monotonicity relating to non-increasing virtual memory size and permissions, as
in the PSOS capabilities).

1.8 Extended Requirements for MLS

Elements of all of the hardware-software contributions noted into the previous subsections
will be critical to any future efforts regarding multilevel security and integrity, where the
requirements for total-system security must be considerably more stringent than implied by
the software security kernels of the Orange Book. This must include all sorts of information
leakage channels (including collusion-required covert storage channels and covert timing
channels, and side channels (which require no collusion), plus review of all shared resources
– for which “every case is a potential channel”), speculative execution (Section1.9.12),
DMA information extraction channels, and of course the primary MLS property of no leak-
ing from higher to lower security levels (whether covert or not). Also in scope are covert
integrity channels such as malicious or adverse actions via direct memory access (DMA),
Rowhammer, and inserting Trojan horses in hardware as the result of stray analog circuitry
(e.g., [100]), noted above in Section1.7.4. The requirements for multilevel security thus
considerably transcend the Orange Book A1 requirements, and must address both hardware
and software. Leakage channels are a particularly annoying risk, and considered in Sec-
tion 1.9.13.
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All of these concerns are potentially critical for MLS in general, although certain vulner-
abilities and information channels may be less of a threat for systems that exist wholly within
a tightly controlled physical enclave. This is an issue that is considered more thoroughly in
Sections1.15and1.16.

1.9 Capability Architecture Issues for MLS

The CHERI team’s experiences with the constructive benefits of the various principle-based
CHERI capability architectures (Morello and RISC-V variants, and even the CHERI-x86
preliminary user instruction-set architecture specification [94]), strongly suggest that our
CHERI capability-based hardware would be a very strong natural foundation on which to
develop MLS systems and networks, from bottom to top. (This supposition is also amplified
after considering the advantages and limitations of some of the earlier capability systems in
general.) This belief in the value of a highly principled capability-based hardware/software
such as CHERI is explored in the following subsections of this section, discussing some
advantages and some missing pieces that would still need to be developed.

1.9.1 Tagged Capabilities

For illustrative purposes, we consider several alternatives that are explicitly relevant to adapt-
ing the existing CHERI architecture to MLS requirements. This set of possibilities also pro-
vides some potential measure of backward compatibility with the existing CHERI capability
representations, adapted for the potential MLS entities.

Note that the existing CHERI capability single-bit integrity tag bit (see the Version 9
specification document, Section 2.2.) ensures hardware capability unforgeability: it protects
against all accidental or intentionally misguided capability modifications, which result in
zeroing the integrity tag bit and thus disabling the capability (including in the following
cases for handling MLS):

1. To the existing one-bit integrity tag, add a two-bit MLS level (e.g., 00 for Unclassified
up to 11 for TopSecret) to represent the four possible security levels (with a relatively
small but observable performance hit), again with the capability integrity rule that any
attempt to modify a capability must reset its integrity tag bit to zero, disabling the
capability. (Resetting tag and MLS bits to zero also could prevent using the altered
capability as a signaling covert channel, although that might seem to be overkill.)

2. With item 1, rely on the strength of the CHERI compartmentalization mechanism (with
additional formal proofs of its trustworthiness) to manage MLS-associated categories.
(We already have future plans to formally verify the security of the compartmental-
ization mechanism. Without such formal analysis, MLS using this item would be
unwise.)
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3. Instead of item 2, alternatively extend the existing CHERI object-capability mecha-
nism to recognize MLS objects as a full-fledged strongly typed capability object class
(as was done in the PSOS design).

4. Perhaps better yet, items 2 and 3 could be done in combination, as a presumed redun-
dancy mechanism, or if the formal analysis shows some unsuspected vulnerabilities
with either item. This is is an example of composabilty vulnernability that can arise as
an emergent property discussed in my 2004 DARPA project on trustworthy composi-
tion [57].

5. For completeness, another possibility would be to add many more bits to the first item
to represent a large number of orthogonal categories associated with explicitly Secret
and Top Secret). This is most likely very impractical, and therefore a potentially bad
idea. However, it would make the capability self-defining with respect to the category.
(This item is mentioned here for completeness, but also to discourage it – unless it can
be made effective.)

6. However, perhaps trustworthy MLS could be achieved with no changes whatsoever to
the existing CHERI capabilities, relying on the CHERI hardware spec with software
MLS kernels based on the existing CHERI fine-grained least-privilege access controls
and CHERI compartmentalization, if that could be enough for certain application en-
vironments (but with stronger requirements to compensate for things like speculative
execution, microcontroller DMA, and unwanted channels). This alternative is perhaps
fatuous and unrealistic, but it at least deserves to be considered.

Each of these alternatives has its own issues with backward compatibility relating to the
existing hardware capability mechanism.//

Hardware attacks such as tampering and Rowhammer (and other noise injections such
as in Dan Boneh’s breaking an RSA implementation [8], being able to do a mathematical
difference between the correct RSA encoding and the faulted one to reduce cryptology in
finding the key to a linear search) would otherwise have required techniques beyond the
realm of formal analysis. It must be assumed for the moment that the hardware is physically
isolated from such attacks, as the simplest way to combat these hardware attacks.

1.9.2 Capability Revocation

Addressing temporal memory safety includes the ability to delete information but also to pre-
vent all forms of use-after-free, and require total revocation of access. Numerous approaches
to capability revocation have been tried in past capability architectures, with varying suc-
cess. These earlier architectures are mostly quite different from CHERI, and each has its
own quirks relating to capability revocation.20

20For example, PSOS stored the master capability for segments and MLS objects in file directories similar
to Multics.
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One of the earliest structural approaches for revocation of capabilities was documented in
detail in David Redell’s doctoral thesis [71]). His scheme involved an indirection through a
master capability whose removal would automatically and instantly invalidate all subtended
capabilities derived from the master. (There’s an old adage – many problems can be solved
by adding a level of indirection.)

Revocation in any CHERI-based MLS implementation may be nontrivial, because it is
somewhat tricky already for CHERI today (e.g., [99]). However, although the Redell scheme
does have performance implications, it might just work only for capabilities that have a nat-
ural probability of needing fast revocation – for example, single-shot input-output as in al-
legedly USB-C charger-only sticks or other capabilities that have an intentionally short life,
as opposed to capabilities for certain dedicated absolute addresses for long-term DMA that
are not likely to ever be need revocation. The existing CHERI scheme (for lazy garbage
collection) could still work as well for the rest of the less easily revocable capabilities, de-
pending on which of the tagging schemes in the previous section are adopted.

1.9.3 Capability Types, Sealed Caps, and Sentries

Capabilities are used in CHERI for stack pointers and function pointers, with LLVM com-
piler options for converting some or all C/C++ pointers into capability calls. They also
help protect against return-oriented programming and jump-oriented programming (ROP and
JOP, respectively) [94], Section 2.4.2.

Section 2.4.3 of that document introduces other types for definable object classes. Pre-
sumably, one class could be defined for MLS segments and another for complex MLS ob-
jects,21 although the definition would have to be very comprehensive and formally verified
for its correctness (but not completeness).

Section 2.4.4 of the CHERI ISA document suggests using a type explicitly for protect-
ing absolute (non-virtual, physical) addresses in memory, which is particularly useful for
dedicated input-output memory locations – and tied to controlling DMA from embedded mi-
crocontrollers. MLS input-output is likely to be a rather complex problem, as it will escalate
the DMA problems along with the exclusive use of certain dedicated absolute addresses, and
have to be thoroughly integrated with attempts at MLS networking. All of that will need
thorough formal analysis.

CHERI’S linear physical capabilities could be of considerable help here (guaranteed to
be unique references to physical memory), as they might support MLS enclaves. However,
this could incur potential problems with page tables, as it seems likely that the memory in
question would not show up in page tables if the user memory access is not virtual. (Again,
see Section 2.4.4 of the Version 9 CHERI ISA spec document for further background that
will be highly relevant to MLS I/O.)

Much more needed here (e.g., on sentries), particularly as it would emerge as peculiar to
MLS.

21PSOS also had user-defined types for object classes, one of which was explicitly intended for MLS seg-
ments and complex objects.
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1.9.4 CHERI Isolation, Compartmentalization, and Sharing

Section 2.4.5 of the CHERI Spec Document [94] considers isolation applied to communica-
tion and structural compartmentalization, respectively:

• “Efficient controlled communication can persist across domain transitions through the
appropriate delegation of capabilities to shared memory, as well as the delegation of
sealed capabilities allowing selected domain switching.”

• “Software compartmentalization is one of the few known techniques able to mitigate
future unknown classes of software vulnerability and exploitation, as its protective
properties do not depend on the specific vulnerability or exploit class being used by an
attacker.” A brief history of the evolution of CHERI compartmentalization since 2010
is included in the appendix, ChapterB.

1.9.5 CHERI Compartmentalization’s Role in MLS

To a first approximation, it would appear that CHERI’s baseline (single-level) trustworthy
strong compartmentalization (formal proofs are currently anticipated) should play a major
role in MLS enclaves and multilevel separation of security levels and MLS compartments.
The same is true of CHERI’s trustworthy internal communications, although considerably
more attention to covert and side channels will be required in both cases.

1.9.6 Stack Discipline

Single-level stacks require no cross-connections at that structural layer. Absence of buffer
overflows can be guaranteed by provable hardware/software and side-channel evaluation,
which would be a major step forward there.

1.9.7 Handling Interrupts and Hardware Exceptions

Safe interrupt and exception handling would be fundamental, as would atomic transactions to
prevent intermediate states and incomplete transactions, as well as race-conditions. Integrity
is needed despite any nested/recursive calls.

Trampolines (sometimes referred to as indirect jump vectors) are memory locations hold-
ing addresses pointing to interrupt service routines, I/O routines, etc. Execution jumps into
the trampoline and then immediately jumps out, or bounces, hence the term ‘trampoline’.
CHERI trampolines would have to respect the MLS properties, in particular, overall mono-
tonicity across jumps and returns – despite whatever privileges the jump acquires.

1.9.8 MLS File Systems and Operating Systems

One of the rudiments of an MLS operating system would be an MLS File System. This
presents an opportunity to create a clean-slate file system, transcending all the past short-
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comings and taking the best of all with respect to security, reliability, recovery from losses
and file corruptions, and most important, adhering to the MLS requirements. Using tagged
capabilities with embedded level/compartment information to access each file, perhaps with
dynamic allocation of file names (like Multics). This could look externally like one virtual
file system per level/collateral compartment, irrespective of how it was implemented, with
various alternatives. Other options need to be explored as well.22

1.9.9 MLS System Input-Output and Networks

Due largely to Ken Thompson’s arrival at Bell Labs around 1967, the Multics input-output
system eventually evolved along the model of the Multics file system [13], with dynamic
linking of symbolic stream names mimicking the symbolic file names. For CHERI-based
MLS, a trustworthy MLS linker would be needed, with clear labeling of each I/O entity. MLS
input would need to have a defined level at entry. MLS output would always be at the level
at which it was created or combined with other-level information permitted only according
to the MLS information-flow rules. Multilevel documents as required with clear markings of
every paragraph of course would have to be treated as contaminated at the highest taint level.

Although many MLS systems would have no MLS networks and would be treated as
system-high single-level networks, the appeal of truly MLS systems in certain highly con-
strained environments might necessitate the use of truly multilevel networks. However, that
will remain a pipe dream until we have truly MLS systems that are sufficiently trustwor-
thy for their maximally evaluated environments.. Nevertheless, pure MLS networks might
have considerable interest for intercommunications. Today’s hodgepodge of incompatible
classified telephone networks is a real mess, and could be effectively replaced by integrated
trustworthy networks for carefully constrained multilevel communications. At the moment,
most of this wishlist remains a pipedream.

The simplest operating system might be a stripped-down real-time system (with or with-
out a file system and minimal networking). See Appendix SectionA.4.

1.9.10 Recovering Properly from Hardware Failures

This may be tricky regarding any residues from partially complete speculative executions,
but in any event needs to return to a stable recent hardware-software system state.

Jim Gray’s Tandem nonstop system [26] was one use of redundancy for reliability and
survivability? SRI’s SIFT (Software-Implemented Fault Tolerance) real-time avionics hardware-
software system with seven-fold redundancy and two-out-of-three voting on all tasks was an
extreme example of self-diagnosing self-reconfiguring fault-tolerant system [51] and its for-
mal analysis [53, 9]. (This was the project that investigated Byzantine Agreement [40, 41]
and led to the original theorem that 3k+1 clocks were required to manage up to k clocks

22I notice Red Hat has an option for an MLS file system; it would be worth exploring. PGN
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that were arbitrarily untrustworthy, and proofs – the first proof was incorrect, but the later
Lincoln-Rushby prooof was correct.

Recovering MLS networks after hardware/software outages must also be considered, al-
though encrypting classified traffic will be essential to minimizing leakage.

1.9.11 Complex MLS Objects and Transactions

The MLS capability types for MLS segments and MLS complex objects, respectively, should
provide a provably sound basis for use in MLS systems with transactional integrity.

The early computer-science literature is filled with old but relevant possible building
blocks: Jim Gray’s work on the Tandem Non-Stop system [87], Les Lamport’s theories
of multiplexing, Dijkstra’s THE system hierarchical approach to locking mechanisms to
avoid deadlocks [15], co-operating process [14] would all be relevant. Parnas’s approach
for completely encapsulated abstractions, strong typing, atomic transactions that can with-
stand interrupts, transactionalundo , compartmentalization, and the SeaView approach to
MLS database management system without requiring an MLS operating system or an MLS
DBMS noted in Section1.5.

1.9.12 Speculative Execution

The surge of speculative execution began with Meltdown [43] and Spectre [38], both in
2018. It has blossomed extensively since then. The background section of our paper on
speculative execution hardware-software specification contracts, Architectural Contracts for
Safe Speculation, Franz Fuchs and Jonathan Woodruff et al., was presented at the 41st IEEE
International Conference on Computer Design (ICCD), 6-8 November 2023, Washington
DC, USA. That paper enumerates several classes and examples of each from the literature.
It develops contracts that establish criteria that must be satisfied by safe speculation for the
variety of speculative-execution classes:

We propose architectural contracts that specify the allowable limits of specu-
lative execution to enable both software safety guarantees and hardware ver-
ification. Transient-execution attacks have presented a major threat in recent
years, driving deployment of software mitigations and research into hardware
solutions. Recent work on hardware/software contracts for secure speculation
recognizes the need for cooperation between hardware guarantees and software
analysis, and demonstrates that speculative execution models can enable formal
analysis of programs with respect to transient-execution vulnerabilities. There-
fore, we have extended these limited models into comprehensive architecture-
level contracts that can be verified at a microarchitecture level. We define a set of
speculation contracts for translation (TSC) and branching (BSC), and for mem-
ory ordering (MOSC). We also develop a set of directed-random test routines
that reproduce all known contract violations in a prototype out-of-order pro-
cessor, most of which represent known transient-execution vulnerabilities. We
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also extend the RiscyOO processor to enforce each contract and evaluate perfor-
mance, demonstrating the practicality of the chosen contracts with an overhead
between -1.2% and +1.8% for this prototype. These general-purpose contracts
set the stage for specification of speculative execution for complete instruction-
set architectures, and particularly for new security-focused ISA extensions.

Together with formal analysis, these architectural contracts go a long way toward identifying
leakage channels in speculative execution in any MLS system or network. (A further paper
is currently in submission to ASPLOS 2025.)

1.9.13 Covert Information and Integrity Channels

We make a distinction here between information channels (e.g.,covert leakage channels
and side channelson one hand, andcovert integrity channelson the other hand – the latter
of which involve surreptitiously altering system behavior by means other than conventional
hardware instructions or operating system commands. Examples of covert integrity channels
include Rowhammer attacks [36] on physical memory, DMA attacks causing state changes
from microcontrollers or external sources such as USB-C sticks [48], , and analog circuitry
inserted into processors [100]). Integrity channels are considered further in Section1.8.
If not specified, the termchannelgenerally refers here to information leakage channels,
while integrity channelsare always denoted as such. Note that DMA misuse and speculative
execution may be exploited as either information channels or integrity channels.

As noted in Section1.5.1, formal analysis was used to detect covert channels and side
channels in supposedly MLS kernels (e.g., in the KSOS MLS kernel). That approach needs
to be dramatically extended for any future MLS hardware and software kernel designs and
their implementations.

See also Proctor and Neumann, Architectural Implications of Covert Channels [70].
More publications on detecting and preventing DMA attacks (Markettos et al.) are in

development, considerably beyond what is in Section 3.11.4 of the Version 9 CHERI ISA
document. The basic approach involves a trustworthy capability-based interposer between
the more-or-less invisible assorted microcontrollers and the main memory, providing neces-
sary strict controls on the DMA.

Detecting and possibly recovering from Rowhammer attacks and other noise injection is
likely to remain out of scope for the time being – but nevertheless highly relevant unless the
physical facilities can be adequately controlled.

1.9.14 Structural Uses of Cryptography

The use of cryptography to achieve process and MLS level system and network separa-
tion/isolation was considered occasionally in the 1970s and 1980s (and explored seriously
for a while in PSOS, but discarded at that time – the cryptography was not ready then, and the
would-be solutions seemed like overkill in the clean-slate hierarchical architecture). How-
ever, we will reconsider it here as many things have changed technologically. Cryptography
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is likely to be useful in hardware fixed-time protection of keys and data protection, but per-
haps less effective in ensuring MLSper sein hardware and software. Nevertheless, it is
worth investigating here.

Hardware security modules (HSMs) are hardened tamper-resistant hardware devices that
secure cryptographic processes by generating, protecting, and managing keys used for en-
crypting and decrypting data and creating digital signatures and certificates. An approach
called Cryptographic Communities of Interest created MLS networks in which each separate
level or compartment hand its own cryptographic keys. This could be relevant for computing
environments as well as MLS networks, with keys associated with different security levels
and compartments.

Cryptographic Communities of Interest are typically defined by certificates sharing a
common trust relationship, perhaps associated with a particular set of keys. In one particular
implementation, a part of this relationship is the ability for the public and private keys within
that group to negotiate unique session keys. Various other approaches are also possible, such
as allocating fixed keys to different security levels and compartments, e.g., per user when
not shared, or per object when shared. This needs to be explored in considerable detail, and
evaluated carefully.

THVV wondered whether there would be some way to support MLS with crypto.
SECRET things would be encrypted with a SECRET key that only authorized
people could have. SECRET NOFORN would be double-encrypted, have to
have both. Could do the high-water mark rule: a process’s output is encrypted
by all its active keys.

One problem with this is the process machinery, the ring 0 stack and so on.
It would be a challenge to divide processes into data that the supervisor could
understand and operate on, and encrypted data that the supervisor can move
around but not decrypt. Probably some process machinery would have to be
split into two parts: the MLS data and the process management data; and then
there would be side channel issues.23

Another problem with this crypto scheme is that encryption decays over time.
That is, data that was encrypted 10 years ago might be breakable now, or in 10
more years. I discussed this with Whit Diffie years ago: how about a different
kind of encryption that gets stronger with age: harder to break as a function
of time? The longer a message has been encrypted, the more work it takes to
decrypt. We would have to re-encrypt messages every so often or they would
just appear to be random bits.

Whit didn’t see a way to do it, and he is way smarter than me – but he didn’t
immediately see a way to show it was impossible.

23Note that a lot of work is going intoConfidential Computingthat enables processors to operate on data
that’s encrypted in storage (both primary and secondary) and on network, and only decrypted in an enclave.
This feature is used for attestation (I can tell where data came from) and confidentiality. Not sure about the
assurance of the mechanisms or how it would be modified to accommodate MLS. Probably very complicated,
but worth exploring. Steve Lipner
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I could see a lot of uses for encryption like this. Secrets of the Nixon adminis-
tration. Treasure hunts. Might help with side channels.

Maybe adiabatic computing can show if this kind of crypto is impossible. I could
ask Charlie Bennett. End-THVV

PGN: This will be a very interesting exploration, and my guess is it could be effective. It is
clearly worth revisiting.

1.9.15 Backup and System Recovery

Protecting backup files and system images of sensitive MLS information and code strongly
suggests using encryption with limited admin access to cryptographic keys. Formal analysis
could determine whether successful recovery cannot be compromised (integrity and security
of the process, resistance to denials of service, etc.)24

1.9.16 Other Formal Analysis Approaches

The KSOS Feiertag flow analyzer noted above as the front-end for the Boyer-Moore theorem
prover was a very primitive approach at the time. It could be dramatically improved today.
However, the KSOS analysis to determine whether the kernel had any adverse information
flows is still a relevant concept applied to MLS HW/SW specifications. Theorem provers.
model checking, and SMF solvers modulo theories, and proof checkers would all be in scope.

The CHERI proofs that the specifications we delivered to ARM for the construction
of several hundred experimental Morello boards is a fine example of the ability to prove
properties about hardware specifications. At a deeper level, the University of Texas at Austin
developments of the ACL theorem prover (an outgrowth of the Boyer-Moore prover) has
been used to model Intel and other x86 hardware. It has recently been able to boot Linux
within the prover.

1.10 Preliminary MLS Architectural Thoughts

Intuitively, it appears that the sexisting CHERI hardware-software architecture, capability-
based least-privilege memory protection, compartmentalization, segmentation, paging, and
stack discipline can all contribute significantly to the isolation and security required for the
hardware underlying MLS systems and subsystems. Fundamentally, CHERI’s principled
system architecture, formal specifications, and formal analysis all add to the necessary high
assurance. However, there are many potential issues to be resolved, carefully documented,
and evaluated. The devil is not just in the details, it is also in the soundness and complete-
ness of the documentation and evaluation of those details. Thus, the notion of ubiquitous

24Steve Lipner’s comment about Confidential Computing is also applicable here.
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MLS systems and networks remains unlikely – although under certain constrained environ-
ments, it could be realistic and useful. Much detailed work would remain to analyze such
implementations.

This report focuses primarily on what a strong sense of past history plus understanding
of CHERI’s capability-based architecture can contribute to high-assurance MLS systems and
networks. We believe that conventional hardware could partially satisfy some but nowhere
near as many of the stated requirements. We also believe that software MLS kernels of the
past are all vulnerable to many types of hardware attacks, although they be adequate when
completely within trustworthy enclaves. However, the broad coverage seemingly provided
by CHERI-based hardware seems superior to other conceivable solutions.

[Robert, I don’t want this report to be totally CHERI centric, especially if there are ideas
from other developments that might be worth considering. For that reason, Section1.14
mentions Trusted Xenix in partitioning admin privileges (for example). Is there other sem-
inal work in compartmentalization worth mentioning here? What else? NRL’s work on
MLS? Draper? Greg Morrisett’s Safe Dialect of C [31] or his PittSFIeld Software Fault Iso-
lation [49] and Josh Kroll and Drew Dean’s BakerSFIeld during one summer at SRI [39]?
I just noticed the Asbestos OS that Robert Morris and Frans Kaashoek were involved in at
MIT in 2005 [17]. SFI may be of less interest when compared with CHERI, but still may
have some merit. PGN]

1.11 Total-System Trustworthiness for MLS

The notion of total-system trustworthiness [59] is in some sense an outgrowth of the PSOS
Hierarchical Design Methodology (HDM), where the intent was to be able to specify hard-
ware and software, from the most rudimentary hardware instructions, upward to the operating
system and software building blocks and potentially even higher in certain application uses.
Given a set of trustworthiness requirements for a total system such as an avionics control
system or a military mission, that goal would need to be extended to all of the emergent
properties of the entire system complex, networks, and any thing else on which the desired
properties might depend. This could make particular sense with real-time systems with re-
quirements for guaranteed performance. That approach may seem unrealistic to most people
– even if they are well-versed in formal specification and formal analysis. However it is an
open-ended goal that could certainly find at least a vast array of vulnerabilities in the lower
ends, and even inconsistencies or conflicts in the mission requirements and subtended sys-
tem requirements. Thus, even partial analyses could be very valuable, and the effort would
be ongoing and open-ended to the extent that the payoff is deemed feasible and effective.
If nothing else, it would find flaws or weaknesses in the design and potentially in the im-
plementation from the bottom up. It would also provide a forcing function for total-system
mission requirements and specifications.

CHERI’s ability to analyze control flow (see Section 2.3.10 of the CHERI spec Version
9) would be particularly important in analyzing MLS control flow and information flow, to
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ensure there are no violations of the basic MLS requirements.

1.12 MLS Design, Implementation, and Methodology

Formally based methodologies seem to have significant advantages when it comes to high-
assurance systems. This seems even more relevant in the presence of formal requirements,
formal specifications of hardware/software/security models, formal analyses (e.g., proving
that requirements are demonstrably self-consistent and sound, proving that the specifications
satisfy the requirements, and better yet, proving that implementations are consistent with the
specifications).

The CHERI development has been steeped in formal methods – from models of security,
specifications of all hardware, and formal analysis of the CHERI Morello specifications –
including as a basis for something like formally based performance analysis. (See Chapter
12.7 of the CHERI ISA Version 9 spec document.) That kind of highly principled R&D
would have to be pervasively continued in any MLS design and implementation.

1.12.1 Formal MLS Models

Formal representations of the Bell and LaPadula formulation of MLS and the Goguen-
Meseguer non-interference properties are thus highly desirable. Goguen-Meseguernon-
interferenceis even stronger than Bell and LaPadula with respect to covert integrity channels,
and dictates that any operations at a particular security level must not be contaminated with
or in any way depend on higher-level information (or perhaps less trusted functionality(?)
depending on the formulation – picking up a piece of the Biba model). Using both B&LP
and G-M in the presence of particularly critical security requirements might be desirable.

However, formal methods still have some risks, such as incomplete or incorrect formu-
lations of requirements and functional specifications, flaws and errors in the analytic tools,
and misinterpretation of the results of the analyses. Also, the expertise required to use them
wisely can be daunting. In general, they should not be viewed as a panacea.

The KSOS experience is a good example of determining whether a security kernel is
consistent with a model such as Bell and LaPadula or Goguen-Meseguer. The KSOS analysis
also detected some covert storage channels and side channels. Such an analysis could in
principle be applied to object code and possibly to MLS hardware flow analysis. Proof
checkers can also add assurance that the proofs are sound. However, some of the other issues
(such microcontroller DMA, speculative execution, and analog Trojan horses) may require
more refined techniques.

1.12.2 Identification and Analysis of Undesirable Channels

Formal methods can be used effectively to smoke out covert storage channels and side chan-
nels, but may be less well suited to identifying timing channels. Here are three items relating
to covert-channel analysis in Multics (courtesy of THVV):
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• Keith Loepere, MTB-696 Covert Channel Analysis, 7 Dec 1984:https://multicians.
org/mtbs/mtb696.html

• Keith Loepere, Resolving covert channels within a B2 class secure system (i.e., unver-
ified MLS), ACM SIGOPS Operating Systems Review, Volume 19 Issue 3, July 1985
https://portal.acm.org/citation.cfm?doid=850776.850778

For a secure computer system in the B2, B3 and A1 classes (as defined
by the DoD Trusted Computer System Evaluation Criteria), the problem of
confining a process such that it may not transmit information in violation
of the *-property is an analyzable and solvable problem. This paper ex-
amines the problem of covert channels and attempts to analyze and resolve
them relative to satisfying the B2 security requirements. A novel solution
developed for the Multics computer system for a class of covert channels is
presented.

• Keith Loepere, The Covert Channel Limiter Revisited, ACM SIGOPS Operating Sys-
tems Review, Volume 23 Issue 2, April 1989https://doi.org/10.1145/858344.858347

In a previous article, [Keith] introduced the idea of a mechanism (the covert
channel limiter) that would watch for the potential uses of covert channels
and affect the responsible process (or process group) only when such po-
tential uses exceeded the allowable bandwidth for covert channels. Recent
work involving the design of the Opus operating system (target class B3)
has refined and extended this idea. This paper extends the informal basis
for the covert channel limiter and extends its possible utility.

Warning: Loepere’s MTB analysis report said that a channel with capacity less than 1
bit/sec could be ignored. This sounds arbitrary, and perhaps wrong-headed: situations clearly
exist in which one-bit per second could be devastating, and indeed one bitonly onceseems
sufficient in some terminating cases such as triggering an array of cell-phone explosions.25

1.13 The User Perspective

This section picks up some thoughts relevant to the use of MLS environments.
Security is usually somewhat of an inconvenience, unless it can be made largely invisible

– e.g., biometric access controls (when they work seamlessly, single sign-on (which generally
has too many associated risks), self-defining objects, intuitively helpful user interfaces, ...

Multilevel security is inherently more inconvenient than single-level security, unless it
can be made largely invisible – e.g., multilevel secure network communications that transmit

25One of the Steves noted, “If my memory is correct, this was the Orange Book threshold. I believe that
more powerful computers bring greater covert-channel bandwidths.
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and receive only at the level at which you are currently logged in, at the same time multi-
plexing with other users at the same and other levels. Similarly, file security can exhibit the
same useful behavior. MLS tends to become a burden if you are constantly switching levels,
unless you are already logged in separately at each working level but working only at one
level at a time – and if you are used to doing that regularly.26

The properties of no-read up to a higher level and no write-down to a lower level are intu-
itively clear. However, there seem to be cases in which MLS is inconvenient – unless the user
is used to it. Nevertheless, one exception involves handling authorized downgrading requires
special permissions to violate MLS, applicable only under appropriate circumstances.

1.14 The Admin Perspective

With respect to administrators having too many privileges, Trusted Xenix [22] is particularly
worth mentioning here. It separated all-powerful admininstrator privileges into separate cat-
egories to address the excessive privileges typically accorded system and network admins,
which reduced the number of insider-misuse problems. Trusted It is particularly relevant to
MLS systems and networks. Xenix is a harbinger of the added complexity involved in the
management and operation of MLS systems and networks, a topic that Jose Bricio-Neto (Joe
Bricio) inherited in an extensive DARPA’s Advanced Capability Org (ACO): how to organize
and simplify management of MLS – even if there were no reasonable MLS implementations
to which the lessons of that project could be to applied.27 The simple solution is that all of
the system and network admins would be cleared to system-high. However, the lessons of
defending against insider misuse suggest that is not a realistic solution, with far too many
opportunities for rogue behavior; consequently, the techniques of Trusted Xenix seem par-
ticularly applicable to MLS.

Tom Van Vleck reflected on the Multics experience.
Can we break the idea ofAdmindown into functional atoms, and describe the logical

operations they must perform? Different sites may then aggregate the atoms into roles.
Anticipating the Xenix strategy noted above, Multics sites implemented several roles,

such as:

- SysAdmin
- Registration and accounting officer
- Hardware field engineer
- Site Security Officer

26VAX SVS anticipated a VM-per-access class (level-category combination that was needed on the system),
with users able to switch between active sessions on their VMs with a small number of keystrokes. We dog-
fooded SVS in our development environment for about a year and a half (I used it some) and the experience
seemed acceptable. The big UX problem arose in cases where users were constantly required to downgrade
information and confirm their actions as a side effect of the conservatism of the Bell-LaPadula model. You
mention that in your last paragraph. SBL

27This IRAD report is something I had hoped Jose Bricio-Neto was interested in but was unable to support.
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- Network and communications admin
- System Operator, and maybe *assistant* and *junior* variants.

(Note: The practice ofclear all admins to systemhigh may be a way to (over-)simplify
certain functions, but is not required by the architecture.)

A small single-level secure site might have one person that did all the roles. The defini-
tion and responsibilities of each role are derived from the site mission statement and require-
ments. This might be broken down into:

Model Who does what, and what the process is
Policy Constraints and goals to make the model work
Procedure Step-by-step execution of the policies
Tool Automation of particular steps

So, the model for a site at the Pentagon would acknowledge data classification and per-
sonnel authorization, and require that the SSO approve certain kinds of steps.

It would be most excellent to be able to use CHERI compartmentalization to assure that
Policies are enforced; the Multics ”rings of protection” facility was like a heavy and unwieldy
sledgehammer.

Tom Van Vleck also noted a relevant publication, Leslie Gotch and Shawn Rovansek,
Implementation and Usage of Mandatory Access Controls in an Operational Environment,
Proceedings of the 13th National Security Systems Conferencedescribes actually using MLS
Multics (AIM) on The Pentagon’s Dockmaster configuration. [We will explore that paper
further here. PGN]

The entire proceedings that year have several relevant items (including one by PGN)
https://csrc.nist.gov/files/pubs/conference/1990/10/01/proceedings-13th-national-computer-security-
confer/final/docs/1990-13th-ncsc-proceedings-vol-2.pdf, as do the other years as well) have
numerous papers related to MLS. In addition, the list of authors/referees/etc. of this series of
conferences is an illustrative catalog of the security community at the time.//

Marv Schaefer commented on his recollections in this context.

My memory of Multics hardware models has now blurred completely. In 1972
when I was briefly employed by CII (Compagnie Internationale pour lInforma-
tique) in les-Clayes-sous-Bois, CII had two processors I was aware of, both
serviced and maintained by Honeywell staff. At that time, CII was part of
Honeywell-BULL, though it was still manufacturing its own line of computers,
especially the MITRA-15. I did not regularly communicate with the Honeywell
employees, but I did run a few programs in both implementations of Multics
during that year from a model-33 teletype. The Honeywell folks were somewhat
surprised that a U.S. [expert/expat?] knew about or had used Multics, since it
was their impression that PL/I users in the US only touched it on S/360s. The
Multics users I knew best were researchers from the neighboring IRIA centers
in Louveciennes and Grenoble.
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When I later returned to SDC, I noted that the only Honeywell computers we
had could not run Multics!

Tom Van Vleck responded:

I guess you were using the Paris 645. Seehttps://multicians.org/bellec.html
andhttps://multicians.org/drv-bull.html

If you look onhttps://multicians.org/site-timeline.html〈https://multicians.org/
drv-bull.html, you will see it is the 7th Multics installed. (It also says inhttps://
multicians.org/features.html#tag22 that one CPU destined for Paris was dropped
in shipment at Logan airport and had to be replaced.

Marv responded:

At least one of them could have been the 645. I remember there having been two
separate installations at CII les-Clayes-sous-Bois, in different buildings. The
Honeywell reps were all Americans (based on their accents) but both machines
were installed and isolated in separate machine rooms. Half a century of my
erstwhile sharp memory has dulled terribly, and most of my period at CII was
pen-and-pencil rather than online. I had done some compiler analysis on their
IRIS80 computers, only to discover that theiroptimizingFORTRAN-H compiler
from a vendor was not legitimate.

1.15 Potential MLS Subsystems and Systems

Appendix A gives some snapshopts of a variety of possible MLS systems, subsystems, and
network components that could be considered for design, specifying, implementing, formally
modeling and analyzing.

It would seem to be premature to flesh out each of these possible approaches before
the national security community and the development community have agreed that signif-
icant commitment needs has both (1) a sufficient need for realistic MLS, and (2) that any
selected choice for future development would have sufficient feasibility of attaining the de-
sired trustworthiness – particularly considering the fundamental doubts within the historical
MLS community expressed in Appendix C and elsewhere. Whereas some of our friends
in that community have also considered that there is a lack of marketplace to support the
development of any MLS-based industry components, others suggest simply that adequate
trustworthiness is generally impossible to achieve. As a result, i am left with a feeling that
any genuine efforts at carrying out future developments and analysis are not likely in the
near future. However, I also suspect that the need for a few of the choices in Appendix A
may become great enough within the national security community for particular application
spaces somewhen in the next 10 years that government support may outweigh the overall
trustworthiness issues when constrainedwithin the physical constraints of those spaces.
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1.16 Feasibility Assessment and Residual Risks

compartmentalization would be of considerable help in assuring MLS memory management.
Direct memory access from both embedded microcontrollers and USB ports is likely to be
controllable. (A paper on that subject is still in flight.) However, residual risks are likely to
remain from the only partial treatment of speculative execution. Rowhammer (as just one
example of noise injection) and other physical attacks on hardware are going to need spe-
cial attention unless physical access can be effectively controlled in any particular working
environment.

A few special cases will need to be considered.

• Some uncovered speculative-execution cases are likely to remain, as are undiagnosed
DMA accesses from undocumented microcontrollers. See the subsections of Section
11.5 of the Version 9 CHERI ISA document.

• An unusual corner case involves a potential vulnerability outlined in Section 10.2 of
the Version 9 ISA spec document: creating a capability for a non-accessible virtual
memory location for which an absolute address can sometimes be reached after altering
the TLB (Transaction Look-aside Buffer).

See Chapter 10 (CHERI in High-Assurance Systems) in the Version 9 CHERI ISA Spec
document for more relevant details, most of which are highly relevant to any application
attempting to implement multilevel security separation.

1.17 Conclusions

This document attempts to bring the lessons from the previous second half-entury into re-
alistic directions for the future, The intent is to make a real dent in addressing the deeper chal-
lenges of MLS on reflection from the past, and to present some constructive system/subsystem
approaches for the future. However, recognizing that perfection is impossible, together with
the fallibility of people (users, admins, and would-be attackers), potenitial implementations
need to be confined to applications where adequate control of all risks will be essential,
and any potential violations will be completely understood and accceptable because of the
limited nature of the applications.

True multilevel security for computer systems and networks is clearly among the most
complicated of all total-system trustworthiness requirements, along with human safety and
guaranteed real-time behavior in life-critical systems, all of which require analysis of total-
system trustworthiness. To an initial approximation, full-bodied MLS systems and networks
remain a pipe dream, and cannot be used in unconstrained environments.

I have enumerated a large set of obstacles and illustrated some past problems. The need
for some sort of high-assurance mandatory access controls with trustworthy compartmental-
ization seems fairly obvious, particularly in systems with national security sensitivity. How-
ever, it has been seriously hampered by the lack of trustworthy conventional systems that
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could be used as a place from which to build trustworthy MLS. Without meaningfully trust-
worthy hardware, there cannot be much in the way of genuinely MLS-like systems, even if
totally constrained to operate only in physically protected enclaves with no electromagnetic,
acoustic, or other emanations. Several thoughts come to mind, which need to be further
explored:

• Recognizing that the Orange Book requirements are inherently incomplete. Adding re-
quirements and constraints to the existing MLS models. Creating more-realistic alter-
native models to MLS. Resolving confusions about security (e.g., MLS) and integrity
(e.g., Biba [7], and Clark-Wilson [11]). Hybrid holistic models tailored to special-
purpose systems such as those illustrated in Appendix A are also needed.

• Developing total-system/network architectures with alternative security-integrity mod-
els applicable to starkly constrained operational environments, including guards, down-
graders, and other requisite functional components – perhaps based on CHERI-like
hardware-software specifically to increase hardware assurance and ultimately system
assurance. See my CACM Inside Risks column on the challenges of total-system trust-
worthiness [59].

• Significantly refining the understanding of what trustworthy hardware such as CHERI
might or might not be able to provide, e.g., including with respect to memory manage-
ment and compartmentalization, side channels, and physical hardware attacks such as
Rowhammer.

• Reflecting on marketing considerations resulting from lack of general-purpose inter-
est in MLS. The needs for MLS are primarily for intelligence and national security
– nominally a much smaller niche marketplace. For example, what might be done
with some sort of mandatory access controls for healthcare. as a completely differ-
ent target application area? (See Steve Lipner’s 1982 paper on potential civilian uses
of MLS: Non-Discretionary Controls for Commercial Applications [42], which sug-
gested some alternative applications.) See also Steve Lipner’s contributions to this
report in Appendix SectionC.2.
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A wide variety of released reports and published papers on CHERI can be found on the
Cambridge CHERI website:
https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/ Other urls are included in some
of the cited bibliography items, as appropriate. In addition, a full set of the NCSC conference
proceedings is available online, although for many years it was available only to registrants.
(I have a relatively full set in my office.)

I am very grateful to members of my informal advisory group of friends and colleagues.
Tom Van Vleck and Marvin Schaefer contributed from the outset. Jon Callas has a history
as one of the few people left who can channel the incisiveness of Paul Karger (e.g., [33]),
as well as add his own background. Also highly relevant is a review by Steve Lipner, who
was close to Paul Karger [32]. Steve has added considerable information about the DEC
development efforta that he lead. Steve Bellovin did a late review for me, and his comments
are also included in Appendix C.

My sometime co-author Brett Gutstein read the draft as of 22 May 2024, and had some
pithy comments relating to the critical importance of CHERI memory safety and compart-
mentalization, subjects of his 2022 Cambridge PhD thesis. I expect more feedback from
him and to him on a paper he is writing. As you can see, they have all contributed to this
document. Their added insights have been very important in helping illuminate many of
the complexities that MLS introduces additional to the otherwise ever-present issues of en-
gineering complex systems with stringent requirements, and thus I am delighted to include
their pithy comments.

I had hopes of getting comments from Jerry Saltzer and Rich Feiertag. Jerry declined
after having totally detached from that era in retirement. We unable to contact Rich, which
I deeply regret. Together with Michael Schroeder, Steve Lipner, Paul Karger, Roger Schell,
and Tom Van Vleck, they were all involved not only in the MLS Multics retrofit (e.g.,
see [34]), but also the early days of the Orange Book. Marv later became the Chief Scientist
of NSA’s NCSC when the Pentagon was running the Multi0cs MLS Dockmaster, following
after Bob Morris. In addition, I had a cameo role toward the end of the Multics MLS retrofit
process in my early years at SRI.

In addition, Robert Watson is the person who has the outstanding breadth and depth
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of all of the total-system issues throughout the CheRI development since we (SRI and the
University of Cambridge) started working together in 2010. Robert contributed to this IRAD
study early in 2024, largely by getting me to tone down my real-world expectations for MLS,
although part of his reasoning is beyond the scope of this document – in that any efforts with
DARPA or NSA relating to MLS would most likely take away some of our joint efforts to
fund engineering work that is still needed for bringing CHERI more extensively into the real
world.

40



Bibliography

[1] G. Barnes, R. Grisenthwaite, R. N. M. Watson, S. W. Moore, P. Sewell, and
J. Woodruff. The Arm Morello Evaluation Platform – Validating CHERI-Based Se-
curity in a High-Performance System.IEEE Micro, 43(3):50–57, May-June 2023.

[2] Thomas Bauereiss, Brian Campbell, Thomas Sewell, Alasdair Armstrong, Lawrence
Esswood, Ian Stark, Graeme Barnes, Robert N. M. Watson, and Peter Sewell. Verified
security for the Morello capability-enhanced prototype Arm architecture. Technical
Report UCAM-CL-TR-959, University of Cambridge, Computer Laboratory, Septem-
ber 2021.

[3] Thomas Bauereiss, Brian Campbell, Thomas Sewell, Alasdair Armstrong, Lawrence
Esswood, Ian Stark, Graeme Barnes, Robert N. M. Watson, and Peter Sewell. Verified
Security for the Morello Capability-enhanced Prototype Arm Architecture. In31st
European Symposium on Programming (ESOP 2022), May 2022.

[4] D.E. Bell and L.J. La Padula. Secure computer systems : Volume I – mathemati-
cal foundations; volume II – a mathematical model; volume III – a refinement of the
mathematical model. Technical Report MTR-2547 (three volumes), The Mitre Cor-
poration, Bedford, Massachusetts, March–December 1973.

[5] D.E. Bell and L.J. La Padula. Secure computer system: Unified exposition and Multics
interpretation. Technical Report ESD-TR-75-306, The Mitre Corporation, Bedford,
Massachusetts, March 1976.

[6] T.A. Berson and G.L. Barksdale Jr. KSOS: Development methodology for a secure
operating system. InNational Computer Conference, pages 365–371. AFIPS Confer-
ence Proceedings, 1979. Vol. 48.

[7] K.J. Biba. Integrity considerations for secure computer systems. Technical Report
MTR 3153, The Mitre Corporation, Bedford, Massachusetts, June 1975. Also avail-
able from USAF Electronic Systems Division, Bedford, Massachusetts, as ESD-TR-
76-372, April 1977.

[8] D. Boneh, R.A. DeMillo, and R.J. Lipton. On the importance of checking crypto-
graphic protocols for faults.Journal of Cryptology, 14(2):101–119, 1997.

41



BIBLIOGRAPHY

[9] R.W. Butler, D.L. Palumbo, and S.C. Johnson. Application of a clock synchronization
validation methodology to the SIFT computer system. InDigest of Papers, FTCS 15,
pages 194–199, Ann Arbor, Michigan, June 1985. IEEE Computer Society.

[10] David Chisnall, Brooks Davis, Khilan Gudka, David Brazdil, Alexandre Joannou,
Jonathan Woodruff, A. Theodore Markettos, J. Edward Maste, Robert Norton, Stacey
Son, Michael Roe, Simon W. Moore, Peter G. Neumann, Ben Laurie, and Robert
N. M. Watson. CHERI-JNI: Sinking the Java Security Model into the C. InProceed-
ings of the 22nd ACM International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS 2017), April 2017.

[11] D.D. Clark and D.R. Wilson. A comparison of commercial and military computer
security policies. InProceedings of the 1987 Symposium on Security and Privacy,
pages 184–194, Oakland, California, April 1987. IEEE Computer Society.

[12] F. J. Corbat́o and V. A. Vyssotsky. Introduction and overview of the Multics system.
In AFIPS ’65 (Fall, part I): Proceedings of the November 30–December 1, 1965, Fall
Joint Computer Conference, part I, pages 185–196, New York, NY, USA, 1965. ACM.

[13] R. C. Daley and P. G. Neumann. A general-purpose file system for secondary storage.
In AFIPS Conference Proceedings, Fall Joint Computer Conference, pages 213–229.
Spartan Books, November 1965.

[14] E.W. Dijkstra. Co-operating sequential processes. InProgramming Languages, F.
Genuys (editor), pages 43–112. Academic Press, 1968.

[15] E.W. Dijkstra. The structure of the THE multiprogramming system.Communications
of the ACM, 11(5), May 1968.

[16] A.L. Donaldson. A multi-level secure local area network. InProceedings of the Sev-
enth DoD/NBS Computer Security Initiative Conference, pages 341–350, Gaithers-
burg, Maryland, September 1984.

[17] Petros Efstathopoulos, Maxwell Krohn, Steve VanDeBogart, Cliff Frey, David Ziegler,
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Appendix A

Illustrative Architectures for Exploration

A.1 Formal Analysis of CHERI-RISC-V

Robert Watson wrote early this year: One option for a hardware-software baseline would be
CHERIoT, for which there is already a serious hardware formal verification effort afoot at
Oxford (out of Tom Melham’s group). To date, their focus has been on verifying CHERI-
RISC-V extensions to the baseline Ibex core - and they’ve found some quite interesting
bugs, which have been resolved by Microsoft. I believe they plan to turn their attention to
the RISC-V ISA next (although I haven’t confirmed that). The CHERIoT OS also has a very
small domain-switch routine (perhaps 100-200 instructions) that should be reasonably easily
subjected to formal verification. RNMW

That approach has some significant simplicities as a microkernel in which the architec-
ture may be less amenable to adverse channels, especially in that formal analysis is already
underway.

Indeed, CHERIoT would make a very nice baseline for an open-source MLS hardware-
software system or subsystem, or network component, especially in that some hardware
alterations to CHERI are likely to be needed. PGN

A.2 MLS CHERI-seL4 Separation Kernel

Robert Watson writes: We could look at the ongoing seL4 adaptation to Morello (Hashem
Almatary, CapLtd), which is gradually growing support for added CHERI C memory protec-
tion, and being performed by CapLtd. While we don’t intend to engage with formal verifica-
tion at this point, the design is rigorously engineered and verification methodology is clearly
accessible for it. Another limitation is that the current contract supporting that work doesn’t
include extending it for CHERI compartmentalization, but that would make for a great R&D
project. A further limitation is that the Morello hardware, while designed to implement
CHERI, is probably subject to quite a few microarchitectural side channels, given both its
high-performance design and specific vintage baseline core (the Neoverse N1). Given ex-
isting use of seL4 in high-assurance environments (and presumably in network guards, etc),
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the transition narrative here is quite strong. RNMWatson
Considering the years and manpower spent developing L4 and seL4 and the formal

proofs, this would seem to be a huge effort. However, the availability of the fully worked
development and the analytic results suggest that a new clean-slate development could be
orders of magnitude less expensive and time-consuming.

PGN Note: I keynoted the very first seL4 Summit in November 2018, managed by Jason
Li for DARPA. I discussed the possibility of putting the formally proven seL4 security ker-
nel on top of CHERI hardware, to provide a much more trustworthy basis for the software
kernel. Hashem Almatary is now doing that under a U.S. contract to U.of Cambridge and/or
Capabilities Limited. Hesham was present at that Summit meeting, and I did get a chance
to discuss the feasibility and potential benefits of an seL4-on-CHERI with him. I am very
pleased that his current effort is ongoing. PGN

A.3 A Clean-Slate MLS Hypervisor Separation Kernel

CHERI hardware (with or without the capability format changes noted in
Section1.9.1) could be an ideal hardware platform for an MLS a new separation kernel

to ensure no violations of Bell and LaPadula, or some less stringent security policy and some
sort of integrity policy such as the carefully designed hierarchical prevention of compromis-
ing inner layers. It would require extensive formal analysis to demonstrate that the policy
was sound, and consistent with that policy correctly specified in hardware and software. This
would have a significant advantage of avoiding the long history of problems associated with
seL4 and the strong desire of the seL4 team not to have to redo any of the proofs (all of which
evolved from the earlier L4 work, with considerable effort over numerous years). The mem-
ory management and compartmentalization would be taken care of by the CHERI hardware
rather than the software hypervisor. Also, redoing the proofs would not be a from-scratch
effort, as many of the required low-level kernel properties would already be covered by the
existing Morello proofs. However, all of the difficulties of past efforts would have to be
overcome.

A.4 MLS CheriFreeRTOS and CompartOS

Both of these real-time operating systems run on one of our Bluespec-System Verilog CHERI-
RISC-V cores (although they may eventually also wind up on an emerging CHERI-RISC-V
hardware base from Codasip). The CHERI-RISC-V cores have seen less validation, and
there are no in-progress proof efforts, but the cores could well be more amenable to hard-
ware modification / extension if that were required. The CheriFreeRTOS supervisor is con-
siderably bigger – unlike the CHERIoT effort, no one has attempted to do a significant TCB
reduction. So, it is a less honed platform, but a more exercised one, and easier (I suspect) to
extend in both hardware and software. (Adapted from RNMW notes.) They could also be
more amenable to proofs that their BSV specs satisfy the CHERI hardware ISA properties
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than the more complicated CHERI-Arm-Morello spec [62].

A.5 A Highly Trustworthy MLS Telephone Network Bridge

Several incompatible secure networks are currently in use from SCIFs, particularly to com-
municate with different government agencies. Most of these appear currently to be incom-
patible with other classified telephone networks, which seriously hinders multi-agency com-
munications. A high-level architectiral examination of tightly bound requirements for highly
constrained trustworthy MLS realistic systems suggests that a trustworthy hardware-software
bridge that is able to accommodate networks with comparable clearance levels could be an
enormous gift to the intelligence and national-security communities. The hardware-software
CHERI-Arm Morello prototype boards (with proofs that their hardware specifications prov-
ably satisfy critical security properties) could be a suitable hardware base.

A.6 Clean-Slate MLS Firewalls and MLS Local Nets

A modern MLS firewall would open up the possibility of some measure of assurability for
suitably constrained efforts at MLS local networking independent of, and necessarily not
connected to, the Internet. The Sytek local-area network [19] that a cryptographic option to
give it some semblance of MLS, as well as the Verdix MLS local-area network [16], and the
Boeing MLS Local Area Network [86]. These and others should be re-examined, and a new
modern architecture considered if that were desirable.

A.7 An MLS Internet

The mulitilevel-secure network suggested at the end of Section1.9.9is worth pursuing along
with MLS systems that can work together in highly controlled networking, with extensive use
of cryptography, oversight, monitoring, misuse detection, and thorough attention to covert
and side channels.

This would be a huge step forward, but suggests starting anew to avoid all the accu-
mulated cruft of the existing Internet – especially with a clean-slate architecture that inte-
grates interconnections among multilevel-secure systems and makes use of new protocols
and sound post-quantum cryptography, overcoming existing vulnerabilities, also taking ad-
vantage of extensive formal analysis.

However, experience with the existing Internet, with rampant security flaws and ongoing
exploits, suggests that this is a terrible idea. Combining Secret sites with Top Secret sites
is already too risky. On the other hand, an internet of only Top Secret collateral sites might
seem to be potentially reasonable – with extensive vetting of would-be users and compara-
ble monitoring of activities. The requirements would have to be very carefully understood,
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and the threat model and risks carefully assessed. Adding compartmental isolation is also
probably a very bad idea.1

A.8 Some Guidance on Using Rust for MLS Software?

Our proposed (but never picked up) DARPA I2O CHERI-Rust seedling effort implement-
ing a Rust compiler on CHERI for the Rust language (aided bu a formal model for Rust)
us worth mentioning here, especially if we can find a funding source for our white paper
outlining the effort. The main idea would be to (1) develop a model for Rust that includes
all of the non-memory-safe corner cases (e.g,, library calls, machine-language, and input-
output native code), and (2) then mechanically compartmentalize the pieces of the Rust lan-
guage/compilation that are not memory safe. (Earlier, David Chisnal showed how that could
be done for Java [10].) With a formal model of Rust, formal analysis could demonstrate the
soundness of such an approach. Would Rust be any more useful for writing code for MLS
applications? Probably not. But it is mentioned here as something that might help us and
others to understand the implications relating to minimizing security risks in programming,
compiling, dealing with multilevel-secure libraries, data integrity, and so on.

1My intuition tells me that a new start on a replacement Internet is a non-starter. Achieving MLS over IP
using cryptographic protection and encrypting MLS gateways is the way to go. There will be residual covert
channels, but that’s a price to pay, and auditing or noise generation may reduce the risk. SBL

54



Appendix B

A Brief History of CHERI
Compartmentalization

It is worth noting that CHERI’s approach to compartmentalization was inspired by Cap-
sicum [91, 90] (included in FreeBSD since its version 9x, developed by Robert Watson,
Ben Laurie and Jon Anderson). It was a precursor of CHERI that already made some ma-
jor conceptual leaps forward regarding compartmentalization. Capsicum extend, rather than
replaced, UNIX APIs, providing new kernel primitives (sandboxed capability mode and ca-
pabilities) and a userspace sandbox API. These tools support compartmentalization of mono-
lithic UNIX applications into logical applications, an increasingly common goal supported
poorly by both discretionary and mandatory access controls.

Early work on CHERI compartmentalization began under the DARPA I2O CRASH pro-
gram CTSRD project, which ran from 2010 to 2019. The history began with our Deimos
work - a clean-slate (and pretty minimalist) demonstration microkernel that we built in the
first couple of years of CRASH, and demo’ed on a very early CHERI ISA on the t-Pad tablet.
This was entirely supported by CRASH.

Next, our 2015 IEEE Oakland paper [95] demonstrated compartmentalization running
over CheriBSD, including a compartmentalized tcpdump isolating various layers of packet
processing. This was supported by both CRASH and MRC.

The first real examples of the use of CHERI Compartmentalization were for mitigating
the Heartbleed attack and in a paper on making Java more robust/secure [10], in which the
Java Native Interface (JNI) was partitioned and protected using CHERI compartmentaliza-
tion. This compartmentalization protected the Java Virtual Machine’s (JVM) memory safe
execution from the unsafe C code accessed via the JNI.

Under CTSRD from 2015 to 2019, we developed the CheriABI pure-capability process
environment. This spatially safe ABI is the technical foundation for our library and co-
process compartmentalization efforts. The scope of software we have ported (over 35 million
lines of code) provides proof of the deployability of CHERI, and provides the foundation for
large-scale compartmentalization in CPM.

Compartmentalization was nominally a task in our slightly overlapping I2O SSITH pro-
gram ECATS project (2017–2021), although some of the proposed work could not be accom-
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plished as proposed – because of MTO funding cuts, and their management reprogramming
the project to satisfy somewhat inappropriate metrics. CompartOS (a compartmented real-
time system on CHERI-RISC-V) was initially developed under ECATS.

During DARPA SSITH, we also developed the co-process compartmentalization model,
which accelerates inter-process IPC, with early results on FPGA in that programme suggest-
ing an order-of-magnitude performance win. This is now running on Morello, and weve
actually had a few third parties (to our surprise) using it successfully in TAP.

Under the SSITH ECATS project, we also developed a compartmentalized CheriFreeR-
TOS. Alongside that, supported by EPSRC and Arm, Lawrence Esswood developed CheriOS,
a clean-slate CHERI-based OS. Both of these are primarily documented in the technical re-
ports of their PhD dissertations (see
https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/), although we are urging Hesham Al-
matary to write a conference paper on CheriFreeRTOS.

Compartmentalization was one of the three main topics of the DARPA I2O ETC, En-
abling Technologies for Compartmentalization. The work in this report on co-process com-
partmentalization and library compartmentalization, and their evaluation plans, which are
expected to improve performance and ease of use. This effort is seem as a valuable precursor
for our existing four-year CPM DEC project.

Compartmentalization is one of the topics for the DARPA I2O MTSS seedling project,
Memory and Type Safety at Scale, which turned out also to be anticipating the DARPA
I2O CPM DEC project, Deploying Effective Compartmentalization. The DEC project is
expected to begin near the end of March 2024, and involves developing application of CHERI
compartmentalization to large existing systems.
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Appendix C

Broad Retrospective Position Statements

In this document-in-progress, I am seeking to find a few niches among what is generally
perceived to be an impossible problem under various realistic adversarial threat models.
Here are two strong position pieces that have been volunteered by long-time friends and
colleagues.

C.1 Steven M. Bellovin

Although I have no stake in the issue, I think that spending too much effort on MLS is a very
bad ideaI think it’s a security dead end. Outside of DoD settings (and probably within it),
it’s too inflexible and cannot be used without trusted guards, and there the problem is more
semantic than anything an MLS system will protect. What is needed to secure anything like
this is better security architectures, and perhaps a different security model on the host, but
one that is probably not MLS.

Consider any web site that handles sensitive data. Perhaps it’s an e-commerce site with
credit card numbers and purchasing habits, or a hospital’s health records site, or a financial
institution. All of these are really a web server (plus load balancers and TLS front ends)
plus multiple databases. Some random user connects across the Internet. Now, per the
TCP/IP spec (and for very good reasons, if you believe in covert channels), both ends of
the connection have to be at the same level and compartments. So: random users are at
UNCLASS, which means that the web server has to be running at UNCLASS. It now has to
get information from an MLS database, but at what level? Obviously, UNCLASS. But that’s
wrong; we really need a compartment per user, since we want to protect each user’s data
from everyone else. Do we have a separate compartment for everyone on the planet?

It gets worse. If we’re going to have that sort of compartment structure, we have to be
able to authenticate everyone and verify their compartment. How can that happen? Do we
assert that every device on the entire net is trustworthy? There are also implications for
family computers, and while the ideal might be for every member of the family to have a
separate login on the family computer (an ability that Windows has had since Windows 95),
I don’t think that that would be the most common type of household behavior. Ignore that,

57



APPENDIX C. BROAD RETROSPECTIVE POSITION STATEMENTS

thoughthis technical scenario would pretty much have to rely on a global PKI, with all that
that implies for privacy. (Enrolling new users on a site is also a challenge.)

It also means that the web server, or at least part of it, has to be fully trusted, to authenti-
cate the user and then fork a new instance at the proper level and compartment. Do you trust
web servers that much? I sure don’t, though again, the authentication piece can be small
and separate, albeit with a huge impact on performance. (The load balancers/ TLS front
ends pose other difficult questions that I’ll leave as exercises for the reader.) Now I want to
buy something from the e-commerce site. Perhaps my web server instance is the only one
that can read my credit card numbers, but how does billing work? What level and compart-
ment will handle the credit card payment? And remember that the network connection to
the billing computer has to be at a single levelwhat level is that? Maybe we have a trusted
component doing such things, but that goes back to the system architecture question.

Health records? What permissions are needed to populate a user’s test results or appoint-
ments Note that appointment data can itself be very sensitive in some situations, e.g., an
abortion clinic or an STD clinic or even something that a random public figure does not want
disclosed. Some years ago, I was talking with a health record security specialists hereclinical
faculty at the Columbia University Medical Center - and he said that there were (as I recall)
160 different permission bits. In fact, there were actually twice as many, since some patients
have the ”VIP bit” set, in which case their records are more carefully guarded. Clearly, the
ability to write such things is sensitive, but we have to deal with No Write Down. We also
need to label per-patient data properly, which also demands privilege and high security in all
labs.

I could go on, but I’ll conclude with two anecdotes. First, about 25 years ago at AT&T, I
tried building an MLS-based system to control access to very sensitive internal data. I gave
upit needed guards all over the place to move stuff between levels, and I had no assurance that
those would be correct and secure; there were too many modules that would have to be writ-
ten by too many people. As we all know, it’s devilishly hard to get code correct, even security
code. (Btw, have you seen https://www.crowdstrike.com/wp-content/uploads/2024/08/Channel-
File-291-Incident-Root-Cause-Analysis-08.06.2024.pdf, the Root Cause Analysis of the Crowd-
Strike failure?)

The other anecdote concerns the Internet Worm of 1988, at a time when the Orange Book
was current and was the best advice on how to build secure systems. After the worm hit and
was analyzed, I reread the Orange Book and concluded that nothing it would have stopped
the worm. I went to someone considerably more senior and asked him about it. ”On, B3
would have, since it requires a thorough search for bugs.” Umm, noI was too much a student
of Fred Brooks and Dave Parnas to believe in such things. More generally, and I didn’t
fully realize this until a decade later, when I was on the NRC committee that did ”Trust in
Cyberspace”, the whole MLS model was based on trusted kernels and untrusted user space.
But the security problems we’ve seen most of in recent years are at the application level; they
don’t implicate the kernel.

So what is the answer? Viewed generically, in the metaphor I’ve been using for a fair
number of years, our security structures are based on walls and doors. A wall might be the
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kernel/user level boundary or the isolation of different processes on Unix(-like) system or
VMs and the hypervisor. In the network world, the firewall is the canonical wall. We’re
pretty good, though by no means perfect, at building walls, and things like SPECTER and
row hammer show what can happen when your system model isn’t complete. But doors are
the way we pass information through walls, system and hypervisor calls, network requests,
protocols that can pass through firewalls, etc. These doors are the real problem, both in
the policy specifications and in their implementation. (Some years ago, I asked a top se-
curity person at a large company how many authorized connections they allowed through
their firewall(s). ”About 500.” And how many unauthorized connectionsin my terminology,
unauthorized doors - do you think you have? ”Probably another 500.” And that’s assuming
that the firewall rules for the authorized pass-throughs were specified correctly and that the
firewall code for them was implemented correctly – have you ever looked at what it would
take to handle SIP correctly, to give just one example?

As I’ve implied, I think that the correct answer is a correct system architecture. It’s a
question I’ve been trying to answer for almost years; I think I have a handle on the answer
now.

Steve Bellovin

C.2 Steve Lipner

I spent a lot of my career (1970-75, 1981-92, occasionally thereafter) working on MLS sys-
tems. I’m substantially in agreement with Steve Bellovin’s position paper in this Appendix
section.

The report includes a reference to my paper ”The Birth and Death of the Orange Book”
(https://www.stevelipner.org/links/resources/The%20Birth%20and%20Death%20of%
20the%20Orange%20Book.pdf) that was published in the IEEE Annals of the History of
Computing in 2015. The history of the Orange Book is largely a history of MLS, so I con-
sider the paper a resource that should be required reading for people who are interested in
revisiting MLS. That paper describes the origin story of the early MLS efforts by the Air
Force and MITRE and the way those efforts led to the Bell-LaPadula model. It also refers
to the usability problems that resulted from the constraint that the Military Message Experi-
ment software provide a user interface compatible with the Bell-LaPadula model: a user who
wants to send a lower classified reply to a higher classified message is faced with the need to
jump through user interface hoops ”declassify” the reply message. The need to ”write down”
occurs in many common real-world scenarios and even the Military Airlift Command and
Air Force Data Services Center (AFDSC) applications would have faced it.

Making the user interface to an MLS system more palatable inevitably requires expand-
ing the Trusted Computing Base (TCB) for the system - giving more code the ability to
compromise classified information. The Multics system deployed at AFDSC included an
extension to the Multics email utility that did just that. The extension was claimed to have a
limited impact on the TCB, and while I no longer recall the details, I recall being skeptical
at the time. (The AFDSC Multics system was targeted at roughly B2-level assurance where
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there’s no requirement to minimize the TCB, so the extension was acceptable.)
As Tom Van Vleck says, a major objective of MLS was to avoid having to provide each

user with multiple computers, but the pain that resulted from the MLS solutions and the
diminishing costs of personal computers and network connectivity made MLS systems un-
acceptable or unpalatable. Of course, commercial organizations’ security policies don’t work
like the government’s policies for handling classified information, so there’s no commercial
demand for MLS. The end result: the government didn’t buy the MLS systems that the in-
dustry attempted to build, and no one else did either.

The MLS work was an interesting technical challenge, and we came up with creative
solutions to a lot of problems, but without a market, the projects were canceled. I think
that a lot of the work done during the MLS era has been lost - the DEC work on VAX SVS
is documented in a handful of professional papers - from the IEEE Oakland conference in
1990 and 1991 and from IEEE Security and Privacy in 2012 [footnote to the citation below
my signature] and some patents. But the detailed design documentation and code seem to
be long gone. I particularly believed that our rigorous application of a layered software
architecture to a system that then seemed to be of reasonable size (about 50K lines of code)
was a significant accomplishment, and the published papers include little detail of what we
did and how we did it. I don’t know about the other MLS projects from the late 80s and early
90s, but I’d not be surprised if that documentation and source code too were long gone.

I’m happy to assist in research that illuminates what was done and to answer questions
about what we did on MLS ”back in the day” and I definitely advocate making public any
of the work done back then that hasn’t already been released (including details of VAX
SVS if they could be found). But I think that real-world considerations of usability and
complexity make the MLS model impractical or insufficient for almost all applications- that
was probably a major reason why not enough customers wanted to buy.

See also Lessons from VAX SVS for High Assurance VM Systems, with Trent Jaeger
and Mary Ellen Zurko, IEEE Security and Privacy, November-December 2012

[Steve added some additional details on 23 December 2024:]
As to the VAX SVS effort, I believe that the biggest contribution was the use of rigorous

layering to design and implement the system. That work built on prior research including a
MITRE system (Venus?) that I believe acknowledged a debt to Dijkstra’s work in the 60s,
the early PSOS design, and of course Roger Schell’s work at NPS that eventually culminated
in GemSOS. One can build a layered system without MLS of course. In fact, Microsoft
restructured Windows as a strictly layered system around the Vista-Windows 7 timeframe.
I probably pointed the Windows team in that direction, but they did it successfully on their
own. As far as I know, those changes have endured and subsequent adaptations of Windows
(new versions and features, Phone, other hardware platforms, other new interfaces) were
acknowledged to be much easier to create and test because of the layering.

Regarding the 1982 paper [on suggested non-miliitary/intelligence uses of MLS), I be-
lieve it’s still required reading for the CISSP exam, but I don’t think anyone has ever done
anything with it. Both that paper and the Clark and Wilson model seem to have sunk with-
out trace, at least as far as people using the models to support an organization’s information
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security policy.
I imagine you know that Windows implements a variation on Biba integrity as a mecha-

nism to protect system data. As with all other mandatory policy implementations, the need
for exceptions to the model (in this case, I’m running at low integrity, but if I want to change
a system setting or install a new component, I need to be at a higher integrity level) poses a
usability challenge. The tradeoffs between rigorous enforcement and usability were explored
and tuned over several releases, starting with Vista. Steve Lipner

C.3 Tom Van Vleck

Steve Lipner taught me that MLS was an attempt to create and use 1960s computers in a
way that complied with specific United States rules about classification of information and
clearance of people, in a fashion that was less expensive than one computer per compartment
and less expensive than having armed security guards watching every operation.

The history I found about MLS is in section 1.4 of
https://multicians.org/b2.html which mentions the Ware Report and the Anderson Report.

In practice, trying to use MLS on a big computer utility was very expensive, frustrating,
and ineffective. NSA’s attempts to use MLS on Dockmaster led to site-local modifications of
the rules that were probably ”illegal.” – e.g., theextend high hack noted in Section1.7.2.

Minor point: covert channels and the ”confinement problem.” As I wrote in 1990in
https://multicians.org/timing-chn.html. ”every shared resource is a channel.” Multics-era
systems worked hard to share most resources for efficiency and cost reasons, making com-
plete analysis very complex. The Orange Book said that at level B2 we should identify all
covert channels and eliminate those with greater than 1bps bandwidth. (Orange Book page
80)

Since those days, other covert channels have been found, e.g. power drain. Can one make
an MLS design that does not share any resources between compartments?

Minor point: Footnote 7. True, the Multics clock would run fine past 2000, but there
were Y2K bugs date formatting etc, which were fixed by the one site that ran past 2000, in
the Canada Department of National Defence.

Multics was built without the benefit of powerful modeling and logic like PSOS used. It
did not have a proof of correctness. This meant it could not be an A1 system. (Although
I helped implement the Multics MLS features, I never used a Multics with MLS enabled.
Should interview some actual users of MLS systems, e.g. the Canada DND guys.)

(My office mate at Tandem went on to Sun, and worked on their Compartmented-Mode
Workstation product.)

(At Bell Labs, Doug McIlroy did an MLS version of Unix that had multilevel windows:
https://ftp.fibranet.cat/UnixArchive/Documentation/TechReports/Bell Labs/CSTRs/163c.
pdf

[More from Van Vleck:]
On page 33, Jon Callas discusses Loepere’s opinion that one bit per second is acceptable

in a covert channel. A 128-bit key is thus two minutes, and as you note, there are plenty
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of places where a single bit could give the game away. At the same time, though, I once
helped design a secure file system and documented a lot of covert channels and the customer
basically said, ”awww, covert channels, isn’t that sweet” with an affectionate noogie but I
was left wondering what the response might have been if I didn’t include a covert channel
discussion. I believe that Loepere’s basic point, that we can’t eliminate covert channels, only
throttle them is true. If that is true, the discussion is about where to put the threshold, only.

I thought the 1bps number came from the Orange Book, section 8.0, page 80, and Keith
was just repeating it.

(I think the only valid bps limit for timing channels is 0 bps. Suppose a trojan horse
program signals 1 if a particular name ever spoke to a grand jury.) THVV

C.4 Marvin Schaefer

That number for covert channel bandwidth came full-born on Roger Schell’s forehead. Dan
Edwards and I didn’t subscribe to it; Sheilaqu Brand was a diciple of Roger. I was happy at
the time with the notion of a covert channel being able to drive a 1401 line printer at its then
top speed, which we’d demonstrated. Marv

Concerning Tom, A1 only called for a formal spec (i.e., a spec written in a
formal language that could, eventually, be submitted by a formal verification system.

A2 had not been defined at the time it was written, and as more was learned it could well
have had to be moved into A2+. This was a point of debate by more than a few of us as
we began to explore the different kinds of specifications and spec languages. And that, as
we later came to understand, was a significant area for research into modeling of time and
asynchrony became apparent [and the ensuing risks! PGN]Steve Lipner
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Miscellaneous Slides

Eventually, the most innovative of the earlier MLS kernel efforts may have some more de-
tails. For now, here is one slide on the fundamental principles for trustworthiness, followed
by two tables relevant to the PSOS design abstraction and would-be evaluation hierarchies.
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Table D.1: Fundamental Principles for System Trustworthiness
————————————————————————————————-
Overall Architectural Principles for Trustworthiness
0. Trustworthiness must be defined with respect to its constituents,
e.g., security, integrity, reliability, human safety, etc.
1. Sound conceptual system architecture, with realistic implementability
and requirements for sufficiently high assurance
2. Minimization of what must be trusted – e.g., avoidance of dependence on
components that must be trusted despite not being trustworthy, while
being respectful of the Einstein Principle:
Everything should be made as simple as possible, but no simpler.
3. Open design (e.g., Kerchhoff for cryptography, but protecting keys)

Design and Implementation Principles (Including Security)
4. Complete mediation (including nonbypassability and unforgeability)
5. Least privilege
6. Intentional use of rights (avoiding the confused deputy problem)
7. Layered and predictably sound compositional assurance
8. Robust dependency despite potentially questionable components
9. Abstraction
10. Modularity
11. Encapsulation (e.g., information and control hiding)
12. Object and type integrity
13. Separation of privileges
14. Separation of domains
15. Separation of policy and mechanisms
16. Separation of roles
17. Separation of duties
18. Economy of mechanisms
19. Least common mechanism
20. Fail-safe defaults
21. Sound authentication
22. Sound authorization
23. Compromise recording (and analysis)

Administrative/Operational Principles for Trustworthiness
24. Administrative control and integrity
25. Comprehensive accountability

Principles for Usability and Complexity Issues
26. Psychological acceptability & ease of use (avoiding bad user interfaces)
27. Compromise work factor (especially for cryptography and passwords)
————————————————————————————————–
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Table D.2: Simplified PSOS Abstraction Hierarchy
PSOS Abstractions Layers
Command interpretation 16
User input-output 15
User environments 14
Procedure records 13
User processes, user I/O 12
User objects (e.g., MLS) 11
Directories 10
Abstract object manager 9
Virtual segmentation 8
Paging 7
System processes 6
Primitive input-output 5
Arithmetic, other ops 4
Clocks 3
Interrupts 2
Registers, absolute memory 1
Capability instructions 0

Table D.3: PSOS Trustworthiness Properties
Layer Properties to be proved

17 Soundness of user type managers
15 Search path flaw avoidance
12 Process isolation, I-O soundness
11 No lost objects (w/o capabilities)
10 Strongly-typed MLS objects (OPTION 1)
9 Generic type safety
8 Correct segmentation, no residues
6 Interrupts properly masked
4 Correctness of the low-layer hardware

math/FP/interrupts/etc.
0 Unforgeable, nonbypassable, nonalterable

capabilities (MLS tags, OPTION 2)
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