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ABSTRACT
We present an approach to the question of evaluating worm
defenses against future, yet unseen, and possibly defense-
aware worm behavior. Our scheme employs model checking
to produce worm propagation sequences that defeat a worm
defense of interest. We demonstrate this approach using an
exemplar collaborative worm defense, in which LANs share
alerts about encountered infections. Through model check-
ing experiments, we then generate propagation sequences
that are able to infect the whole population in the modeled
network. We discuss these experimental results and also
identify open problems in applying formal methods more
generally in the context of worm quarantine research.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—
Security and protection

General Terms
Security, Design

Keywords
Model checking, malicious code, worm defense, network se-
curity

1. INTRODUCTION
While the Internet continues to foster technological progress,

this ever-connected world also bears the risk of self-propagating
code causing computer epidemics. Researchers are develop-
ing countermeasures in response to this threat, by both ex-
amining the algorithms of real-world worms and performing
experimentation using captured worm traffic traces. How-
ever, these approaches limit experimentation to anticipated
or previously seen worm strategies. To study worm defenses
in light of yet unseen worm behavior, we advocate reason-
ing about fundamental properties of worm propagation and
quarantine in a formal framework.

As a starting point to this grander vision, we focus on the
potential of model checking as a means to produce worm
propagation sequences against a modeled worm defense with-
out considering any specific worm strategy. As an example,
we model a collaborative defense scheme and run the model
checker through a range of varying parameters. We evalu-
ate generated propagation sequences that defeat the defense
and are able to infect the whole population in the modeled

network. As a human interpreter of these sequences, we hy-
pothesize about underlying worm intent that would exhibit
behavior matching the observations. We also discuss cases
in which the model checker proves that the defense success-
fully saves at least one of the population. This assertion
holds over all possible worm propagation sequences.

We suggest that this approach is applicable both for de-
veloping more challenging test cases when evaluating many
contemporary worm defenses and for understanding the de-
gree to which more customized worm propagation sequences
can be designed to circumvent (or optimally tolerate) a given
worm defense strategy. In addition, we enumerate several
open research problems that we have identified during our
initial study, which we deem important to overcome to facili-
tate greater use of formal methods in worm defense analysis.

2. RESEARCH IN DYNAMIC WORM
QUARANTINE STRATEGIES

The increasing speed and sophistication of worm epidemics
has offered strong motivation to develop quarantine tech-
niques that can detect and react to worm outbreaks as they
propagate through a community of networks. Detection may
be one step in the quarantine process, followed by techniques
to corroborate an attack pattern and institute a containment
strategy. Throughout the quarantine process there remain
significant research challenges in all aspects of detection,
response coordination within a narrow reaction time [11],
and containment strategies, such as port-based filtering, IP
blacklisting, or shared dynamic content filters [5].

Over the last few years researchers have proposed several
collaborative quarantine schemes, which they argue are ef-
fective in curbing the infection rates of certain classes of
large-scale worm epidemics. GrIDS [19] is an early example
of a hierarchical detection scheme to identify coordinated
worm activity, with an overlay sensor network that reports
connection anomalies up through a distributed management
structure. Nojiri et al. [12] propose a cooperative alert shar-
ing scheme using a friends protocol under which each egress
router within an enterprise selects a static peer group with
which to share worm indicators, and in turn is also selected
by other domains to receive reports. When an egress router
receives a certain number of alerts over a temporal window,
it enters a filtering posture to block inbound worm traf-
fic. Anagnostakis et al. [2] propose a variant scheme called
COVERAGE, in which each egress router randomly selects
a set of remote nodes to poll for worm reports at periodic
intervals. Briesemeister and Porras [3], propose a combined
rate limiting and group sharing protocol, whereby a connec-



tion rate limiting scheme such as [21, 18, 7] is used both as
the source of peer alert production, and as a fundamental
mechanism through which fast-spreading worms are slowed
down enough to allow peer groups an opportunity to corrob-
orate and engage their defenses. Kannan et al. [8] propose
a cooperative framework for firewall-level peer cooperation
across the Internet, suggesting that even in minimal deploy-
ments, the participating firewalls can achieve high degrees
of containment under certain worm propagation strategies.

Most of the effort toward evaluating the efficacy of such
quarantine schemes has focused on analyzing the impact of
these schemes on infection growth rate in the presence of
common worm propagation strategies. In particular, re-
searchers study proposed worm defense algorithms in the
context of näıve or generic randomly propagating epidemic
strategies, or at best attempt to mirror the propagation
strategies of previously experienced worms such as Code
Red [24] and Slammer [20]. Often, simulation is employed
as a cost-efficient way to examine the growth rate impacts
of a quarantine algorithm against a modeled epidemic [1,
10, 23]. However, simulation provides little insight into how
the defense performs on strategies other than the specific
propagation strategy encoded within the simulation. One
objective of our present study is to employ model checking
to exhaustively examine the behavior of a proposed worm
defense across the complete space of all possible infection
sequences.

3. COLLABORATIVE DEFENSE AND
WORM PROPAGATION

To illustrate our approach, we present an exemplar group-
based defense, in which local area networks (LANs) coop-
erate by alerting other LANs about a worm infection they
might encounter. We assume the defense algorithm is inte-
grated into the network infrastructure, typically running on
an egress router of a LAN. In our model, the egress router
has the capability to switch into a defensive posture filter-
ing successfully all incoming and outgoing traffic from the
offending worm packets. To arrive at a sufficiently abstract
model, we do not specify how to accomplish perfect filter-
ing but we attribute a cost to it and preclude the algorithm
from simply staying in the defensive posture. Others are
developing automatic signature generation systems such as
EarlyBird [17] and Autograph [9], which could be used for
filtering in an implementation of our scheme.

In presenting our model, we will henceforth not distin-
guish anymore a LAN from individual LAN components
such as an egress router within the LAN executing the al-
gorithm and end hosts within the LAN that are susceptible
to the worm. We refer to all these meanings under the term
of a node. A node can be infected (i.e., at least one end
host within the LAN is infected), can be filtering (i.e., the
egress router drops offending packets), and can send alerts to
other nodes (i.e., peer-to-peer communication among egress
routers).

Next, we describe the group-based worm defense as a dis-
tributed algorithm running on a set {1..N} of N nodes. The
parameter G denotes the group size with 2 ≤ G ≤ N . The
defense algorithm initially selects the preceding1 G−1 peers
to which it will later send alert messages. Thereby we reach
optimal coverage over the population of nodes, in that each

1When reaching zero we start over from N .

node becomes a peer of the same number of other nodes.
Two parameters s = 3 (severity of an incident) and r (cor-
roboration level) define an alert threshold α = s · r.

Each node maintains a counter a to denote its current
alert level. The value of a is initially set to zero. Upon re-
ceiving an alert from another node, a node adds s to the alert
level but ensures that a is not more than the maximum α.
When the algorithm detects an internal worm infection (e.g.,
employing outbound rate limiting and an aggressive worm
violates the threshold) it sends an alert to all its peers and
increments the alert level as if receiving an external alert. If
increasing the alert level on either occasion reaches the alert
threshold α, the node switches into defensive posture. At
the end of a time step, the counter a is decremented by one
but not if below zero. If a reaches zero, the node turns off
the defensive posture.

In addition, after sending an alert, the algorithm enforces
a period of s time steps, in which it remains quiet. A local
variable c denotes the hold-off counter used to implement
this duration of hold-off. During hold-off time, a node does
not react upon detecting a local worm infection. The hold-
off mechanism ensures that no single node forces its peer
group to enter the defensive posture.

Refer to Figure 1 for a more detailed flow diagram that
implements the distributed and collaborative worm defense
algorithm sketched out above. As the flow diagram uses a
state-transition system notation to describe the algorithm,
it is relatively straight-forward to convert it into the SAL
language used for model checking. We performed this trans-
lation manually but had two people checking the implemen-
tation independently. Therefore, the model checking exper-
iments below are based on a faithful implementation of the
algorithm presented here.

In our formal model, we combine the state-transition sys-
tem of the defense algorithm outlined above with a non-
deterministic worm propagation model. Per time step, an
infected node either chooses another node to which it will
attempt to spread or decides to lay dormant, but it is oth-
erwise not limited to any specific propagation strategy. As
a result, all choices in the execution of the combined model
can be attributed solely to the worm behavior because the
transitions of the defense are all deterministic.

4. AN EXPERIMENT TO GENERATE
SUCCESSFUL PROPAGATION
SEQUENCES

We designed an experiment of using model checking to
generate worm propagation sequences. Model checking is a
method to algorithmically verify whether a model satisfies
a specification. A model checker tool usually takes as input
a state-transition system (model) and a temporal logic for-
mula (specification) to either prove the assertion or generate
a counterexample.

We exploit the latter to automatically produce propaga-
tion sequences that are successful against a modeled worm
defense. Given the combined model of defense algorithm
and worm propagation in Section 3, we express in a linear
temporal logic (LTL) [13] formula (see Property 1) what it
means that the worm is successful .

Property 1 (Worm Wins). Eventually, all nodes be-
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Figure 1: Flow diagram of collaborative defense algorithm running on each node

come infected. Formally,

3(∀j ∈ {1..N} : Infected[j])

To generate a propagation sequence successfully infecting
everyone, we run the model checker against the negation
of Property 1.2 Then, counterexamples produced by the
model checker are guaranteed to exhibit Property 1. In other
words, we ask the model checker to prove that our defense
will forever protect at least one node, and each counterex-
ample produced represents a winning infection strategy that
the defense designer must carefully consider. Again, this re-
sult is significantly different than what is achieved through
simulation in that simulation explores only a specific propa-
gation strategy (e.g., random scanning) over a limited tem-
poral window.

While we vary the parameter combinations, the model
checker does not always produce a counterexample and in-
stead proves the negation of Property 1 in some cases that
we discuss first.

For r = 1 and G = 1, no alerts are generated and it is
easy to see that the worm wins as only the routers of infected
LANs have a chance to switch into filtering mode.

For r = 1 and G > 1, the model checker proves that at
least one node is always spared. In these cases, the initially
infected node sends an alert to at least one other node in
the first time step, which forces recipients immediately into
filtering (r = 1) before they are infected. These alerts repeat

2Negation of Property 1: It is always the case that there
exists an uninfected node.

with periodicity s = 3 before nodes back off, so that they
remain filtering from then on. The worm then never has a
chance to infect these nodes, and hence no winning strategy
for the worm exists.

For r > 1, there generally exists a winning strategy for the
worm, which the model checker produces as a counterexam-
ple. Within the experiments that we were able to complete,
only a few peculiar combinations of parameters preclude the
worm from winning as seen in Table 1. All experiments were
carried out modeling the system in the SAL specification
language [14] and employing the SAL model checker [6] on
a Linux machine with two Pentium Xeon 3.6 GHz proces-
sors with 16 GB of memory. We suspect that for r ≥ 2,
the negation of Property 1 can be proven if G and N are
sufficiently large. Unfortunately, the performance limita-
tions of the model checker prohibit the full exploration of
the state space corresponding to large parameter values. In
future studies, we hope to construct and (manually) prove
the general formula for these cases.

Next, we discuss one counterexample obtained from model
checking. It exemplifies a strategy that a “smart worm”
can take to circumvent the group-based defense. Figure 2
depicts the infection and alert propagation of this coun-
terexample with N = 10 nodes and a group size of half
the population G = 5. The small value of the corrobora-
tion level r = 2 makes the defense very sensitive to alerts
and overprotective—nevertheless, model checking reveals a
propagation sequence to infect the entire network before any
node can transition into its defensive posture.

In the first three time steps, the worm spreads to loca-



Table 1: Model checking results for partial parameter space
r = 2 3

N = 2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10

2 x x x x x x x x x

3 x x x x x x x ? x x x x x x ? ?
4 x x x x x x x x x x x x ? ?

5 x x x x x x x x x x ? ?

G = 6 p x x - - x x x ? ?
7 p p x - x x x ?

8 p p p x x ?

9 p - p ?

10 p p

(p: proved, x: counterexample, -:out-of-memory, ?: run not finished,
gray: parameter combination not applicable)
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Figure 2: Successful infection propagation sequence for r = 2 and G = 5

tions that do not overlap with the peers receiving alerts at
the same time (since r = 2, a coinciding infection and alert
reception causes immediate filtering). A second interesting
observation is node 1 selecting node 6 as the first infection
target. Choosing node 6 as its first victim has the impor-
tant implication that neither the alerts of node 1 nor the
subsequent alerts from node 6 at t2 overlap with each other.
Note also that the worm in node 1 lies dormant in t2 and
t3. This initial infection sequence prevents overall alert lev-
els from rising too fast and pushing any node into defensive
posture. At t4, when half of the population is infected but
none of these are filtering, the worm launches a concerted
attack against the remaining uninfected population, where
every infected node targets a different susceptible node.

Essentially, this worm operates in two phases: strategic
placement of worms and possible periods of dormancy such
that infections avoid group overlap, followed by a coordi-
nated overrun of the remaining nodes. While the attack
seems to require sophisticated coordination by the worm,
this strategy is both generalizable and can be efficiently pre-
calculated, assuming the worm acquires access to the prese-
lected group map. Each worm instantiation is subsequently
handed an “infection schedule” of which nodes it is allowed
to infect and at what time interval it is allowed to attack.
The generated propagation sequences suggest the danger of
static preselection of the group structure. One solution is
to periodically and randomly alter the set of peers to pre-
vent worms from reliably avoiding group overlap. COVER-
AGE [2] is an example of a quarantine strategy that ran-
domly recomputes the group to share alerts at periodic in-

tervals.

5. FORMAL METHODS IN WORM
DEFENSE ANALYSIS

Formal modeling and model checking early in the design
stage of a quarantine algorithm can help identify infection
propagation sequences for which the algorithm or its param-
eters are poorly suited to address. In Section 4, we discover
a strategy from one such propagation sequence that we call
the “preplacement and overrun” strategy. The example il-
lustrates a threat that can be both generalized and scaled
up to defeat cooperative defenses that employ static peer
groups.

Model checking, unlike simulation and operational test-
ing, allows one to assert or refute which desired protection
properties and other design expectations hold over the entire
space of infection propagation within a modeled network.
While testing and simulation provide good insight into the
potential impact of a worm defense on the growth rates of
certain classes of worm epidemics, they are very limited in
their ability to assert behavioral characteristics of the worm
defense beyond their observation time horizon or to validate
the efficacy of the defense beyond the scope of the specific
worm infection strategies that are simulated or tested. In
[4], we present the results of an effort to use model check-
ing to answer questions regarding algorithm correctness in
an exemplar cooperative quarantine defense and validate or
refute various quarantine properties against a fully nonde-
terministic, exponentially growing worm infection.



However, formal methods and model checking also have
significant limitations and open research challenges that may
limit their broader use in evaluating contemporary worm de-
fenses. Readily available and standard model checking used
with our state-transition system does not support simul-
taneous nondeterministic behavior among both the worm
propagation and the worm defense. Nondeterministic de-
fense and attack models dramatically increase state space
size and make it impossible to attribute any counterexam-
ple discovered by the model checker as being a result of an
intelligent worm infection sequence rather than poor defen-
sive behavior. To solve this problem we are exploring the
development of customized search algorithms that guide the
model checker in constructing the counterexample. Solv-
ing this problem is critical as randomized algorithms offer a
valuable defense against worms that seek to exploit thresh-
old values or circumvent group structures.

We are also developing model checker extensions to gener-
ate more than one counterexample from one parameterized
model and specification to collect more data on success-
ful infection propagation sequences. Sheyner and Wing’s
work [16, 15, 22] attempts such an endeavor in a similar
context. In our situation, we expect the number of coun-
terexamples to be infinite and thus need to conceive meth-
ods of bounding and scoping in a meaningful way. Having a
collection of observed infection propagation sequences, one
needs to further consolidate them by detecting isomorphisms
and other redundancies.

Another key challenge is to methodologically infer worm
behavior from the observations. In this initial study, we
applied manual and ad hoc analysis to draw conclusions
about underlying worm strategies that would exhibit behav-
ior matching the counterexamples. For future use, we plan
to investigate whether existing methods of meta-programming
apply, for example, constructing decision trees or hidden
Markov models by using observations as training data.

When applying model checking to worm propagation and
quarantine protocols, we recognize a rather high level of
abstraction. The semantics of the network infrastructure,
such as firewalls, routers, and end hosts, are significantly
abstracted, as are the influences of traffic dynamics, conges-
tion, quarantine message volume, or other network charac-
teristics that affect worm propagation speed. Future studies
will address means of translating between the abstraction
levels and provide mechanisms to apply results back to the
real world.

Finally, model checking as a means of exhaustive search in
an exponentially growing state space suffers naturally from
issues of scale. Based on the vast literature on model check-
ing in general, where this problem repeatedly arises in other
application contexts, we hope to arrive at larger-scale sys-
tems by exploiting homogeneity in the system and human-
guided customization of the system model. Also, one may be
able to prove hypotheses derived from smaller-scale, toy-like
network models with the aid of theorem provers.

6. CONCLUSION
We present an initial study of applying model checking

in the context of dynamic worm quarantine. Contrary to
many simulation and evaluation studies, our formal model
does not assume any specific worm propagation strategy but
rather encompasses all possible infection sequences. Using
a linear temporal logic formula as the specification for the

model checker, we automatically generate infection propa-
gation sequences that successfully penetrate the whole mod-
eled network.

We evaluate different runs of the model checker with vary-
ing parameters of the system model. Studying one exemplar
propagation sequence leads to an interpretation of how the
worm defense algorithm can be improved to preclude similar
infection patterns from succeeding in the future.

During the course of our model checking experiments, we
identified various open problems in applying formal methods
more generally in the context of worm quarantine research.
We discuss these key challenges and give a few pointers to
potential remedies. Overall, we hope to motivate the prac-
tice of formal methods as an alternative and complementary
approach to the daunting problem of worms infesting com-
puter networks.
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