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1 Introduction

There are many key challenges to developing the appara-
tus and methodologies necessary to evaluate the emerging
suite of approaches to large-scale worm defense. Within
the DETER/EMIST initiative [3], challenges that have
arisen during the development of our experimental frame-
work include the need to support experiment repeatability
[17], greater scalability in network topology [16, 8], and
greater realism in traffic dynamics [1]. Among these key
challenges, we also seek to expand the rigor with which
we model the protection claims of the worm defense al-
gorithm, particularly as we design tests that we hope can
fully stress and evaluate the protection claims of the algo-
rithm of interest.

To date, most of the work in understanding the behavior
of malicious code propagation and defense has centered
exclusively on understanding the effects of a proposed
malware countermeasure on the global infection growth
rate given a specific modeled network and malicious code
scenario. In this study we consider how to more rigor-
ously express design goals regarding the local impact of
a defensive algorithm from the perspective of those who
participate in the defense. We contrast this perspective of
local benefit from what we view as the current tradition of
evaluating worm defense performance based on assessing
growth rate impact on an abstracted topology of global
population.

Current worm defense performance analyses often pro-
vide little insight into understanding the potential negative
impacts of a defensive strategy on the local network. For
example, two worm defense strategies that are evaluated
against a worm that operates using a particular propaga-
tion strategy and speed may very well be found to equally
reduce the global infection growth rate on a given net-
work. However, in this work we consider performance
concerns such as whether one defense may disrupt the
communication ability of noninfected systems more than
the other. It may also be the case that while both per-

form equivalently on a given infection sequence, one may
be more susceptible to circumvention by worms that em-
ploy specially crafted infection sequences. The question
of finding stressful infection sequence cases given a spe-
cific worm defense algorithm is a critical problem, and
using model checking to search for such sequences in a
systematic way has, in the small scale, yielded some use-
ful results [5].

We perform an initial exploration toward more formal
definitions of the design goals of collaborative worm de-
fense algorithms such as those to achieve dynamic quar-
antine. We believe that our analytical modeling approach
can inform future simulation and emulation experiments
in ways that will lead to more challenging tests of the pro-
tection claims of a system under evaluation in the DETER
framework. We begin by discussing current approaches
to worm evaluation, and briefly survey the design space
of current worm defense algorithms. We then discuss the
basic definition of quarantine in the context of worm de-
fense algorithms, and suggest more precise definitions of
quarantine that can capture increasingly stringent require-
ments for a worm defense algorithm. We suggest how
formalizing such definitions could help analyze a worm
defense algorithm and produce insight into designing sim-
ulation and emulation experiments that are more targeted
to stressing the design goals of a defense algorithm under
evaluation.

2 Worm Defense Evaluation

Most of the effort toward evaluating the efficacy of mal-
ware defense schemes has focused on analyzing the im-
pact of these schemes on infection growth rate in the
presence of common worm propagation strategies [1, 11,
4, 18]. Researchers study proposed worm defense algo-
rithms in the context of naı̈ve or generic randomly propa-
gating epidemic strategies, or at best attempt to mirror the
propagation strategies of previously experienced worms
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Figure 1: Design space of defense strategies (extended from [7])

such as Code Red [19] and Slammer [12]. Often simula-
tion is employed as a cost-efficient way to examine growth
rate impacts of a malware defense against a modeled epi-
demic. However, simulation provides little insight into
how the defense performs on propagation strategies other
than the specific propagation strategy modeled within the
simulation. Simulation is also an inherently insufficient
methodology for asserting algorithm behavior beyond the
scope of the simulated time window.

At the other end of the spectrum, operational testing can
provide detailed insight regarding the pragmatic issues of
worm defense overhead, management, and impact to nor-
mal operations, as well as a greater understanding of the
duress that the malicious code outbreak causes. However,
testing is generally recognized as being an intensive ac-
tivity to establish and control, particularly in the assess-
ment of defenses that are intended to scale and span over
large networks. Wide variability of topology configura-
tions and worm behavior is also expensive to fully ex-
plore, and testing is often more effective in answering di-
rect questions about specific environments and test cases
than in assessing behavioral properties across a range of
conditions. Emulation environments may offer a middle
ground for worm defense analysis that is closer to reality
than formal modeling or simulations. Among the goals of
the DETER emulation environment is to reduce the cost
of creating complex worm emulation experiments that can
more accurately capture the dynamics of a defense algo-
rithm, while reducing the effort and equipment costs as-
sociated with live testing.

3 Understanding the Design Space
of Worm Defenses

Before we illustrate how one may approach stating design
goals using a particular kind of worm defense—namely
collaborative, dynamic quarantine techniques—we focus
on understanding the design space first. The design space

can encompass many diverse defense strategies. We as-
sume that across the design space, one can employ a sim-
ilar approach of formally defining design goals using ab-
stractions adapted to the class of defenses.

Inspired by Brumley et al.’s [7] worm defense strategy
taxonomy, we present a modified and extended form as
depicted in Figure 1. The first level of distinction between
defense strategies now encompasses strategies focused on
incoming1 and outgoing2 traffic but also a category of
decoy-based techniques such as honeypots and tarpits,
and collaborative defenses such as dynamic quarantine.
On the next level remains the distinction between proac-
tive and reactive strategies. Proactive defenses are not
specific to a worm outbreak or a vulnerability in contrast
to reactive ones. We provide examples for each type of de-
fense to illustrate our understanding of the categories. In
addition to this hierarchy of strategies, we identify hybrid
strategies to be orthogonal in the design space.

For the remainder of this paper, we exemplify how to for-
mulate design goals for worm defense evaluation using
the class of dynamic quarantine strategies. There have
been a number of algorithms that approach malicious code
defense by proposing to contain, or quarantine, the in-
fected population from the uninfected [13, 2, 4, 10, 9].
The general intuition behind such strategies is that as an
epidemic spreads among a collaborative subpopulation in
the global network, infection indicators are exchanged
among the network population in a manner that may allow
members to recognize the epidemic and adjust their secu-
rity postures appropriately. For example, Dash et al. [9]
explore the detection efficacy of such strategies in the
presence of slow scanning worms that may propagate at
rates below what any single entity might recognize as the
epidemic spread. In prior work, we suggest how collabo-
rative strategies might be mixed with techniques that can
throttle a propagation enough to increase the potential for
corroboration to occur [15, 4].

1Formerly “Protection.”
2Formerly “Local Containment.”



4 Design Goals of Quarantine-based
Defense Techniques

We use the general class of dynamic quarantine algo-
rithms to illustrate how we may more rigorously under-
stand the protection claims of large-scale network defense
algorithms in general. Such understanding is particularly
important in the context of DETER/EMIST, as we con-
sider how to more strenuously evaluate a defense in search
of its benefits and disadvantages, and as we attempt to
fairly assess competitive defense schemes from more than
a single dimension.

4.1 Quarantine Definitions

For the sake of our evaluation question, let us assert that
the desired outcome of any quarantine scheme is to isolate
the infected population from the uninfected, thus slow-
ing, or ideally halting, the infection spread. Let us fur-
ther assert that the act of quarantining an individual from
the community comes at a nontrivial cost, in our case this
cost may include both the coordination overhead of imple-
menting the quarantine policy and the loss of otherwise le-
gitimate communications that cannot be performed while
the target entity remains under quarantine. We can state
a more rigorous definition of the desired worm defense
property using a formal language, such as Linear Tem-
poral Logic (LTL) [14]. As a reminder, LTL introduces
two temporal operators, ♦ (“eventually”) and � (“hence-
foth”), to the set of usual logic connectives.

For example, given a network of size N and an algorithm
that asserts it can detect and quarantine (i.e., completely
filter or block targeted communications from) an infected
subpopulation within N , we can express this property as
follows.
Property 1 (Weak Quarantine). Eventually every infected
member of N is quarantined from N. Formally,

♦(∀j ∈ {1..N} : Infected[j] ⇒ Quarantined[j])

A key term in our definition is the word “eventually,”
meaning that infected members are not born quarantined,
but rather are detected and transitioned to a quarantined
state. In a more detailed approach—for example, us-
ing Interval Temporal Logic—one could define acceptable
time bounds for such a transition. Under current evalua-
tion methods, we strongly consider the question of how
many members of N eventually resided in the infected
set as well as the rate at which they were added to this
set (i.e., infection growth rate analysis of the global net-
work).

However, we must also remember that there are costs as-
sociated with quarantining a host. For example, in a com-
petitive evaluation we would most likely prefer an algo-
rithm that avoids quarantining uninfected nodes over an
algorithm that appears to minimally discriminate who gets
quarantined, even if the latter defense produces a smaller
final infection set. Furthermore, Property 1 does not re-
quire that there exists any uninfected population at all. We
thus call Property 1 the weak quarantine property because
it is satisfiable by a defense algorithm that quarantines the
entire population upon first sign of infection or by an al-
gorithm that waits until all are infected and simply quar-
antines the corpses.

While weak quarantine is a necessary property to hold
among dynamic quarantine algorithms, it does not pro-
vide a sufficiently interesting evaluation criterion. Rather,
it may be of greater interest to explore the conditions un-
der which a quarantine algorithm provides some degree
of benefit to those within a network in which the quaran-
tine defense operates. From the local perspective, benefit
would most likely be in the form of increasing the proba-
bility that the local site’s end nodes avoid infection if the
site participates in the defense. That is, a minimally de-
sirable property of a quarantine-based defense would be
that it saves at least one member in the population given
an infection outbreak. We express this property as fol-
lows.
Property 2 (Beneficial Quarantine). Eventually every in-
fected member of N is quarantined from N and there exists
an uninfected member within N. Formally,

♦((∀j ∈ {1..N} : Infected[j] ⇒ Quarantined[j])
∧ (∃k ∈ {1..N} : ¬ Infected[k]))

This property captures a more desirable end result in that
an algorithm that can satisfy this property for a given epi-
demic can spare at least one member of the network the
cost of recovering from the malware infection. Unfortu-
nately, here again such a property could be satisfied by a
quarantine defense that simply imposes universal quaran-
tine on all members of the network, as long as at least one
member is quarantined before transitioning to the infected
state. In such a case, one might view the cure as severe as
the disease.

One direct way to strengthen our expression of a
quarantine-based defense is to add to Property 2 the re-
quirement that at a minimum, the uninfected node must
not be in the quarantined state. This has the effect of elim-
inating algorithms that impose universal quarantine to all
members of N regardless of their infection status, and en-
sures an increase in the probability that a member of N
will be saved from infection should the defense algorithm
be imposed. An algorithm that can satisfy this additional



requirement for a given network of size N in the presence
of a specific epidemic is said to provide strong local ben-
efit, which we can express as follows.
Property 3 (Strong Beneficial Quarantine). Eventually
every infected member of N is quarantined from N and
there exists an uninfected and not filtering member within
N. Formally,

♦((∀j ∈ {1..N} : Infected[j] ⇒ Quarantined[j])
∧ (∃k ∈ {1..N} : ¬ Infected[k] ∧ ¬Quarantined[k]))

While we have thus far focused on the more rigorous
expression of local benefit in our assessment of the de-
fense strategy, we have not addressed concerns regarding
how long such a benefit should last. For example, No-
jiri et al. [13] propose the use of temporal decay functions
that allow a local site to automatically remove the defen-
sive posture after some interval of time. One concern is
that while an algorithm may succeed in satisfying Prop-
erty 3 during at least one point in the modeled epidemic,
its value may be greatly reduced if the algorithm subse-
quently enters a cycle of transitioning members of N in
and out of a quarantined posture that eventually allows
the epidemic to saturate all of N . We can express a design
goal that the achievement of strong beneficial quarantine
should hold over time by applying the “always” LTL op-
erator to Property 3 as follows.
Property 4 (Strong Permanent Quarantine). Eventually
every infected member of N is quarantined from N, and
henceforth there exists an uninfected and not quarantined
member within N. Formally,

♦((∀j ∈ {1..N} : Infected[j] ⇒ Quarantined[j])
∧�(∃k ∈ {1..N} : ¬ Infected[k] ∧ ¬Quarantined[k]))

One way for an algorithm to achieve permanent quaran-
tine is for it not to allow automated transitions out of the
quarantined state, which one may view as too high a cost
to be of practical value. Alternatively, some epidemic
and detection models may enable situations in which the
infected and quarantined members of N produce a con-
tinuing flow of alarm signals that preserve the quaran-
tine posture for the life of the epidemic. In either case,
one practical concern in evaluating permanence proper-
ties is that they are not easily assessed by simulation, em-
ulation, or testing, as these techniques can assert the be-
havior of algorithms only during their finite analysis win-
dows.

4.2 Design-Time Evaluation of Rigorous
Functional Claims

The ability to formally express the functional expectations
of our algorithm not only provides vital input in helping

to enumerate applicable test cases and evaluation metrics
within the DETER evaluation framework, but these prop-
erties can be assessed very early in the algorithm design
stage. For example, one can employ model checking of
an algorithm design to search for specific input streams,
such as a worm infection sequence, that lead to a con-
tradiction in a desired protection property. Unlike simu-
lation and emulation, model checking allows one to as-
sert or refute which protection properties and other de-
sign expectations hold over the entire infection sequence
space, at least within the confines of a small-scale net-
work model. In [6], we present the results of an effort to
use model checking to evaluate various protection claims
within one exemplar quarantine-based defense, both for-
mally validating and refuting various properties, includ-
ing the permanence properties that are outside the scope
of simulation and emulation, against a fully nondetermin-
istic, exponentially growing worm infection.

Another considerable benefit to applying model checking
early in the design of malware defenses is the ability to
utilize the counterexamples produced during proof con-
tradiction to generate evaluation test cases. In the context
of model checking worm defenses, a worm infection se-
quence that contradicts a quarantine property may reveal
a worm propagation strategy, which if exposed to the de-
fense within an operational setting could bypass the de-
fense’s efforts to contain the worm. We speculate that
we can eventually develop a future modeling system that,
given a specific worm defense strategy, can explore the
full space of potential infection sequences to identify an
optimal sequence that will circumvent or at least stress
the protection claims of a defense algorithm under eval-
uation. In [5] we demonstrate this idea by employing
model checking to generate infection sequences that vi-
olate a formally stated quarantine property of a modeled
quarantine-based defense. While the implications of such
a modeling system are quite concerning, as it may result in
future tendencies to limit the open sharing of a deployed
worm defense design to avoid maliciously intended ad-
versary modeling, we believe that overall the ability to
systematically search for test sequences to fully stress the
protection claims of a defense algorithm can benefit the
defense to a greater degree than the misuse of such tech-
niques.

5 Conclusion

As the DETER/EMIST program progresses in its devel-
opment of an evaluation framework to examine the pro-
tection properties of large-scale network defenses, one
need that arises is that of developing methods to express



just what the evaluatable protection properties are for a
given defense algorithm. In this extended abstract, we
observe that in the case of worm defense systems, algo-
rithm evaluation is typically centered on measuring the
impact that the defense has on the global network infec-
tion rate. While infection rate reduction is clearly a criti-
cal metric, we suggest that there are other dimensions to
evaluating the characteristics of competing defense algo-
rithms.

We illustrate one potential direction in enumerating key
protection properties of interest in malware defense algo-
rithms. To do this we attempt to define a general pro-
tection property of quarantine-based defense, and observe
that we can increasingly strengthen the property to elim-
inate unwanted defense behavior. For example, we can
extend a basic notion of quarantine to include the require-
ment to ensure an increase in the probability of avoiding
both infection and quarantine. We can express the no-
tion of persistent protection, though such properties would
not be evaluatable using current simulation and emulation
techniques. We also discuss a related study that employs
model checking early in the design stage to both formally
validate or refute desired protection properties, and could
be useful for informing the generation of test case scenar-
ios within the DETER evaluation framework.
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