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Abstract—This paper presents an approach to ana-

lyzing a model of networked cyber-physical systems for

fault propagation. We present an implementation of a

probabilistic logic model, which allows for reasoning via

symbolic evaluation as well as numeric evaluation to

perform a quantitative fault analysis. Our models are built

from a few building blocks, which can be instantiated

as standard or high integrity; communication paths can

be made redundant, and finally, whole subsystem blocks

can be replicated. We assume an underlying networking

infrastructure of TTEthernet, which allows traffic of

time-triggered, rate-constrained, or best-effort modes with

different safety features. We apply our approach to a case

study of a brake-by-wire system that contains communi-

cation flows with different traffic modes according to their

criticality.

I. INTRODUCTION

Safety-critical networked systems such as the avion-
ics in an airplane or an automotive X-by-wire system
typically have to be fault tolerant, i.e., these systems
have to remain operational even in the presence of fail-
ures. Achieving fault tolerance requires safety analysis
that is best performed beginning with the earliest design
stages. Part of such design analysis is the so-called fault
propagation analysis of the system model. In safety-
critical systems, we are interested in characterization
faults and how faults manifest as failures that affect
overall reliability goals of the system.

In this paper, we present a fault analysis tool for
networked cyber-physical systems (CPSs). We present
networked CPSs as a graph where nodes represent
physical components, such as CPU, communication
controller, and physical links, and edges represent the
direct information flow between nodes. We assume
that faults occurring in a particular node may propa-
gate along the connections in the graph representing
the networked cyber-physical systems. For example, a
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faulty communication controller may send an arbitrary
number of faulty messages. Without having protection
mechanisms in place, the failure of the communica-
tion controller could lead to monopolizing the shared
network infrastructure, thereby making it unusable for
other non-faulty communication controllers.

Various redundancy schemes and safety techniques
can be used as a protection mechanism to prevent or
mitigate failure propagation and, thus, improve system
availability and integrity. However, the decision about
where to locate what protection mechanism along the
graph of the networked CPS currently relies heavily
on expert knowledge. The proposed tool allows de-
signers to efficiently analyze various network choices
and evaluate the effect of protection mechanisms on
fault propagation, and therefore rely less on expert
knowledge.

We provide a formal Maude [4] model that uses
basic building blocks (Host, End System, Switch) to
model networked CPS topologies. Given an underlying
networking infrastructure of TTEthernet (TTE) [15],
which is an extension to standard Ethernet, we can
select traffic modes with varying safety properties.
Other safety techniques are selecting components with
standard- or high-integrity features and adding path
and system redundancy. We then combine this network
and protection mechanism model with fault propagation
rules that describe in a probabilistic logic how faults oc-
curring in a component, or at an input of a component,
transform into a fault at the output. Our implementation
allows for both symbolic and quantitative fault propa-
gation analysis. We use the example of a brake-by-wire
(BBW) system with multiple communication flows to
illustrate our approach.

II. RELATED WORK

Our work is mostly inspired by the functional and
component failure analysis of the Hierarchically Per-
formed Hazard Origin and Propagation Studies (HiP-
HOPS) [14] method. HiP-HOPS uses these analyses



in conjunction with the system model to automatically
construct fault trees. Our symbolic analysis yields prob-
abilistic logic formulas, which could be interpreted as
fault trees. In contrast to our work, HiP-HOPS supports
mature tool integration and hierarchical models.

An inductive method to study fault propagation is
the Failure Propagation and Transformation Analysis
(FPTA) [6]. A failure logic for each component allows
for automated analysis of the system. Here, the failure
logic depends only on the inputs, which is appropriate
for modeling software failures, but cannot explicitly use
failure states of the component itself. In [5], the authors
present an approach to quantify the failure propagation
analysis using the PRISM probabilistic model checker.

So-called State/Event-Fault Trees (SEFTs) [8] inte-
grate finite state models with fault trees, in particular
Markov Chains and Statecharts. For quantitative proba-
bilistic analysis, SEFTs are translated component-wise
into Dynamic Stochastic Petri Nets (DSPNs) and then
merged into one flat net for analysis using tools such
as TimeNet.

III. NETWORKED SYSTEM ARCHITECTURE

For this study, we assume an underlying communica-
tion network using TTEthernet (TTE) technology [16].
TTE is an extension to standard Ethernet for usage in
networked cyber-physical systems such as avionics or
automotive applications. In standard Ethernet, messages
are communicated according to a best-effort paradigm,
which means that no bounds on a message’s transmis-
sion latency can be given. Under high load, buffers in
network switches can overflow and messages are lost
entirely. In noncritical systems, higher-layer protocols
such as TCP/IP often compensate for message loss
using re-transmission strategies. However, networked
cyber-physical systems typically have stringent end-to-
end timing requirements that do not allow the temporal
penalty of repeated transmission attempts. Furthermore,
standard networks cannot guarantee that any successive
transmissions will actually be successful.

TTE achieves timely transmissions with known up-
per bounds on latency and jitter by providing rate-
constrained (RC) and time-triggered (TT) communica-
tion paradigms in addition to standard best-effort (BE)
traffic. Rate-constrained traffic is well-known from an
avionics Ethernet variant ARINC 664P7-1 [1]. It is
based on an a priori agreement of the network com-
ponents on the number, size, and maximum frequency
of messages. This knowledge is sufficient to calculate
the required network resources, i.e., the switch buffers,
and it can be guaranteed that no message will be lost
due to buffer overflows. However, different network
components may source their messages at about the

same point in time or may even source several messages
back to back. This uncoordinated transmission pattern
quickly leads to high transmission latencies.

The time-triggered communication paradigm takes
the level of determinism to the extreme. Here, all
communication participants are equipped with local
clocks that are brought in close agreement to establish
a synchronized global time. An Ethernet frame may
now be dispatched at an a priori specified point in
the global time, which makes the frame transfer time-
triggered. The sum of all those specified points in time
for dispatch, relay, and potentially also reception is
collectively referred to as the “communication sched-
ule” for time-triggered communication. When correctly
aligned, the communication schedule ensures that any
two time-triggered Ethernet frames will never compete
for transmission resources (e.g., communication links,
switch buffers) and their transmission latencies can be
kept minimal and almost constant.

End System HostSwitch End SystemHost

Physical LinkBus Bus

Fig. 1. Simple chain of network components

To model networked CPSs, we identified a few
generic components from which we build networks.
Fig. 1 shows an example of these components that are
connected via a communication link. We distinguish the
host (H) component (CPU, memory, I/O and so on)
from an end system (ES), which denotes the network
interface card, here the TTE controller. H and ES
components are often located on the same physical
platform and are usually connected via an on-chip bus.
To connect different ESs in the network, one uses at
least one switch (SW) in between. For our models,
these are TTE SWs, which allow the different traffic
modes, but a legacy system could also be built with
standard Ethernet SWs. A bus connects Hs and ESs,
and a physical link connects SWs with other SWs or
ESs.

A. Dependability Means

Aside from choosing an appropriate traffic mode that
TTE supports, we consider the following three broad
fault tolerance strategies that improve the integrity and
availability properties of a network architecture and
thereby also enhance the safety of the network. Integrity
is the absence of improper system alteration; it is the
ability of a system to detect faults in its own operation
and to reach a fail-safe state or safe output states in
the event of failure and inability to recover. Availability



is a measure that the system functions correctly in the
presence or absence of both transient and permanent
failures of the different network components. We dis-
cuss the three strategies next.

HI Component
SI

Component
output

SI
Component

input

Fig. 2. High-integrity self-checking pair

In our model, all Hs, ESs, and SWs can be instan-
tiated as standard- or high-integrity components. As
shown in Fig. 2, a High-Integrity (HI) component con-
sists of two replicated Standard-Integrity (SI) compo-
nents functioning as a single unit for increased integrity.
The input messages received at each SI component pair
are exchanged and compared to ensure that each of
them receive identical inputs and as a result triggers
identical internal message processing states in each
component. The output messages are also compared
and only identical messages whereby both components
agree are in effect transmitted. The expectation is that
by providing each SI component with identical inputs,
using the same internal processing logic, states and
clocks, the pair’s outputs will match exactly under
fault-free conditions. When operators

�
during input

exchange or output comparison do not agree, then
the combined high-integrity component fails silently
so as to not influence downstream components. In our
formal model, this behavior translates into converting
an arbitrary fault into an omission failure. Notice that
this mechanism uses replication of components solely
for integrity at the cost of availability.

End System Host
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End SystemHost
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Fig. 3. Path redundancy in simple chain

Including path redundancy increases the availability
of a message by transmitting an identical copy over
disjoint but redundant paths from the source to the
destination. Fig. 3 shows the simple chain of network
components enhanced with two switches A and B that
allow for disjoint paths between the ESs. The receiving
ES now picks the first arriving message from the sender,
thereby protecting against message loss on one of the
paths due to permanent or transient failures of the
SWs or links on that path. Note that this mechanism
does not protect against failures at source or destination

components.
Finally, system redundancy in conjunction with the

availability and integrity constructs introduced above,
can be used to improve the overall safety and relia-
bility of the network, if safety properties like repli-
cate group determinism or interactive consistency are
strictly adhered to [2], [7], [9], [10]. Literature de-
fines architectures such as dual-dual active standby,
triple or N-modular redundancy, and triplex-triplex [3],
[17]. Additional replication coordination mechanisms
are passive, semi-active, or active replication; voting and
multistage N or Triple Modular Redundancy (N(T)MR),
congruency exchange.

B. Faults

Faults

Omission (om)

Commission (com)

Value

Timing

Source Address (vSA)
Destination Address (vDA)
Sequence Number (vSN)
Frame Length (vLen)
Payload (vData)
Bit Flipped (vFCS)

Early (te)
Late (tl)

Fig. 4. Hierarchy of faults

We depict a hierarchy of faults in Fig. 4. This
hierarchy is meant as a reference to typical faults used
in literature. In our study, we are concerned only with
the leaf nodes, which comprise the set of possible faults
in our network-centric application with specific modes
for the TTE communication technology used such as
vSN for incorrect sequence numbers in rate-constrained
traffic.

Faults listed in Fig. 4 can be introduced in specific
components, or can be detected and stopped or trans-
formed to a different fault at some components and thus
propagated downstream. A number of fault detection
and protection mechanisms are builtin to the different
network components and depend on the type of traffic
mode: Time-Triggered (TT), Rate-Constrained (RC) or
Best-Effort (BE). We model the fault propagation prob-
abilistically, taking into account the component failure
rates and the efficacy of the protection mechanisms.
We highlight some of the fault detection and protection
mechanisms in Table I. The TTE specification [15]
contains more details.

IV. A CASE STUDY: BRAKE-BY-WIRE

Papadopoulos et al. [13] describe an initial brake-by-
wire model that we are extending to include commu-
nication of signals from the wheel brakes to the brake
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Fig. 5. High-level overview of brake-by-wire system design

TABLE I
FAULT DETECTION AND PROTECTION MECHANISMS

Mechanism Traffic Type Components

FCS/CRC addition TT, RC, BE ES, SW
VL ID & destination address TT, RC, BE ES, SW
Message length and type TT, RC, BE ES, SW
Payload length TT, RC ES, SW
Scheduled TT dispatch TT ES, SW
FIFO ordering RC, BE ES, SW
Traffic shaping RC ES
Timing window TT SW
BAG policy RC SW
Port BAG enforcement BE SW
Age check RC SW
Redundancy management TT, RC ES
Integrity checking TT, RC ES
Input exchange TT, RC, BE High Integrity
Output cross comparison TT, RC, BE High Integrity

lights as well as feedback to the driver from the light
sensors about whether any of the bulbs need to be re-
placed. We also include a safety-critical communication
of brake signals to the motor control logic in order to
prevent opening the throttle while braking.

Fig. 5 shows a high-level overview of our brake-
by-wire system design. Each sensor and actuator has
a corresponding logic unit, which interfaces with the
TTE communication infrastructure. Corresponding to
the criticality of the signal, the TTE communication
links are labeled as TT (high criticality), RC (medium
criticality), and BE (low criticality). The highly critical
paths should also be protected by redundancy. The
following rules govern the expected behavior of the
system.

• If brake pedal is engaged, brake at each wheel.
• If wheel brake is engaged, illuminate brake lights.
• If wheel brake is engaged, close throttle at motor.
• If brake light does not work, show warning.
From the general system specification, we model the

system using the components and mechanisms intro-
duced above. For each message flow, we assign a so-
called Virtual Link (VL) between the source and the

TABLE II
TRAFFIC FLOWS IN BRAKE-BY-WIRE SYSTEM

VL Sender Receiver(s) Type

1 Pedal Logic Brake Logic 1, 2, 3, and 4 TT
2 Brake Logic 1 Motor Logic TT
3 Brake Logic 2 Motor Logic TT
4 Brake Logic 3 Motor Logic TT
5 Brake Logic 4 Motor Logic TT

6 Brake Logic 1 Light Logic 1, 2, and 3 RC
7 Brake Logic 2 Light Logic 1, 2, and 3 RC
8 Brake Logic 3 Light Logic 1, 2, and 3 RC
9 Brake Logic 4 Light Logic 1, 2, and 3 RC

10 Light Logic 1 Driver Display BE
11 Light Logic 2 Driver Display BE
12 Light Logic 3 Driver Display BE

destination(s). During design refinement, each VL is
mapped onto actual channels in the network architec-
ture. Table II contains all 12 virtual links in our model
of the brake-by-wire system.

V. MAUDE IMPLEMENTATION

A. Equational Logic and Maude

Equational logic (EL) [12] is the subset of first-
order logic with = as the only predicate symbol, and
equations as the only formulas (i.e., there are no logical
connectives). Despite being a very small subset of first-
order logic, equational logic can be used to define any
computable function. Furthermore, EL can be used as
a programming language, by treating equations as left-
to-right rewrite rules (i.e., ignoring the symmetry rule).

Maude is a multiparadigm executable specification
language encompassing EL. The Maude interpreter pro-
vides efficient prototyping of quite complex test cases as
well as built-in search and model checking capabilities.

For the fault analysis tool, we use (conditional)
equations to specify fault propagation rules. Terms for
the equations are built from operators and variables.
Equational axioms are introduced with the keyword eq
(or ceq for conditional equations) followed by the two



terms being declared equal separated by the equality
sign =.

B. Probabilistic Fault Analysis Using Maude
We have developed a network fault analysis in Maude

that allows us to specify network topologies and traffic
flows, and analyze the fault introduction and propaga-
tion in the network in a probabilistic way. The most
important data structures in this framework are network
configurations, consisting of a network and one or more
dataflows. A simple network configuration specified in
this framework is shown in Fig. 6.
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bu
s(
0)

pl
(0
)

pl
(1
)

bu
s(
1)

op net : -> NetworkConfiguration .
eq net =

(< si-host(0) | empty | out(0) >,
< conn(0) | si-host(0) : out(0) to bus(0) : in(0) >,
< bus(0) | in(0) | out(0) >,
< conn(1) | bus(0) : out(0) to si-es(0) : in(0) >,
< si-es(0) | in(0) | out(0),out(1) >,
< conn(2) | si-es(0) : out(0) to pl(0) : in(0) >,
< pl(0) | in(0) | out(0) >,
< conn(3) | pl(0) : out(0) to si-sw(0) : in(0) >,
< si-sw(0) | in(0) | out(0) >,
< conn(4) | si-sw(0) : out(0) to pl(1) : in(0) >,
< pl(1) | in(0) | out(0) >,
< conn(5) | pl(1) : out(0) to si-es(1) : in(0) >,
< si-es(1) | in(0),in(1) | out(0) >,
< conn(6) | si-es(1) : out(0) to bus(1) : in(0) >,
< bus(1) | in(0) | out(0) >,
< conn(7) | bus(1) : out(0) to si-host(1) : in(0) >,
< si-host(1) | in(0) | out(0) >,
< conn(8) | si-host(1) : out(0) to null : in(0) >) ||
df(0 | tt |

faults(conn(0) | unknown ),
faults(conn(1) | unknown ),
faults(conn(2) | unknown ),
faults(conn(3) | unknown ),
faults(conn(4) | unknown ),
faults(conn(5) | unknown ),
faults(conn(6) | unknown ),
faults(conn(7) | unknown ),
faults(conn(8) | unknown )) .

Fig. 6. Example of a network configuration specified in Maude

The network part consists of a number of network
components, each surrounded by angle brackets. The
network specified here is an all-SI version of the net-
work shown in Fig. 1. We have two SI hosts, two buses,
two SI end systems, two physical links (PL), and an
SI switch. Each component has ingoing and outgoing
ports, connected by connections. Numbers are used as
identifiers to distinguish different components of the
same type. The bottom part of the network configuration
is a dataflow (df). The dataflow specifies its traffic type
(in this case tt for time triggered). It also lists all
the connections that are part of the dataflow, with a
fault annotation for each one. Before fault analysis,
each fault annotation is unknown. The first objective
of the fault analysis is to replace all the unknowns

with boolean formulas representing the conditions under
which the fault occurs.

Each network component can introduce and/or prop-
agate faults of the different types shown in Fig. 4. The
introduction/propagation behavior of each component
is specified using one or more equations in the Maude
specification. For example, the rule for transmitting SI
host is shown in Fig. 7.

ceq
(< SIHost | INS | Out1,OUTS >,
< Conn1 | SIHost : Out1 to C : In1 >, Net) ||
(df(DF | TType | faults(Conn1 | unknown), CS),DFS)
=
(< SIHost | INS | Out1,OUTS >,
< Conn1 | SIHost : Out1 to C : In1 >, Net) ||

(df(DF | TType |
faults(Conn1 | om : OMout, com : COMout,
vSA : VSAout, vDA : VDAout, vSN : VSNout,
vLen : VLENout, vData : VDATAout,
vFCS : VFCSout, te : TEout, tl : TLout ),CS),
DFS)

if
outgoingBusConn(< Conn1 | SIHost : Out1 to C : In1 >,
Net, CS) /\

HFail := pr(si-host-out-fail,SIHost : Out1) /\
OMout := HFail /\
COMout := HFail /\
VSAout := if TType == be then HFail else false fi /\
VDAout := HFail /\
VSNout := false /\
VLENout := if TType == be then HFail else false fi /\
VDATAout := HFail /\
VFCSout := false /\
TEout := HFail /\
TLout := HFail .

Fig. 7. Fault introduction rule for SI hosts

This is a conditional equation, consisting of a left side
before the = sign, a right side after the = sign, and a
condition after the if. Note that all the capitalized parts
are variables. The rule will execute when any part of
the network matches the left side, and the condition is
true. Thus, this particular rule applies to SI hosts with
an outgoing connection that is part of a dataflow. The
result of executing the rule is to replace the matched
part of the network with the right side of the equation.
The only difference between the left and right sides of
the equation is that in the right side, the unknown fault
annotation has been replaced by a number of actual
fault annotations for the different fault types (om, com,
etc.). The variables that represent the boolean formulas
(OMout, COMout, etc.) are defined in the condition part
of the equation. The condition first creates a probabilis-
tic variable (using the pr operator) called HFail of
type si-host-out-fail. This variable represents a
failure associated with the outgoing port of the host.1
This variable is then used in the variable assignments
that follow in a straightforward way. Most of the faults
simply happen if and only if the host failure happens.

1It is also possible to create more fine-grained failure types, rather
than one big failure type for the whole component.



Because a transmitting host is the originator of any
data it sends, unlike all other components, it cannot
propagate faults, only introduce them. For a more
typical case, Fig. 8 shows part of the condition of the
rule for SI end systems. Here, we have both propagation
and introduction of faults, and separate possible failures
on the incoming and outgoing ports, respectively.

ESInFail := pr(si-es-in-fail,SIES : In2) /\
ESOutFail := pr(si-es-out-fail,SIES : Out2) /\
OMout := OMin or (COMin or VDAin or TEin or TLin) and

not ESInFail or ESInFail or ESOutFail /\
COMout := ESOutFail /\
VSAout := ESOutFail /\
VDAout := (VDAin and ESInFail) or ESOutFail /\
VSNout := if TType == rc then ESOutFail else false fi /\
VLENout := ESOutFail /\
VDATAout := VDATAin or ESInFail or ESOutFail /\
VFCSout := ESOutFail /\
TEout := ESOutFail /\
TLout := ESOutFail

Fig. 8. Part of fault rule for SI end systems

Note that the incoming failures (OMin, COMin, etc)
are themselves (possibly complex) formulas. Thus, the
execution of the equations builds up these formulas in
a combinatorial way. We are primarily interested in the
fault annotation on the last connection of the dataflow,
i.e., the combined effect of all of the network compo-
nents that data has to go through. As an example, Fig. 9
shows the fault formula for com faults on connection 8
of our example network, after doing the fault analysis.

pr(si-es-out-fail, si-es(1) : out(0)) or
pr(si-es-in-fail, si-es(1) : in(0)) and

(pr(si-sw-out-fail, si-sw(0) : out(0)) or
pr(si-es-out-fail, si-es(0) : out(0)) and

pr(si-sw-in-fail, si-sw(0) : in(0)))

Fig. 9. A fault formula generated by the Maude fault analysis

Again, the formula is a boolean combination of
probabilistic variables that represent the occurence of
failures in various components through which the data is
transmitted. In general, these formulas can become quite
large. The next step of fault analysis is to evaluate the
formula. Given some actual numbers for each type of
failure (si-es-out-fail, si-sw-in-fail, etc.), we
want to know the probability for the whole compound
formula. There are both exact and approximate ways
of doing this. In the following, we present our first
implementation of both types of methods.

To calculate the probability of one of our formulas,
we use the following rules of probabilistic logic.2

Pr(not P ) = 1.0− Pr(P )
Pr(true) = 1.0
Pr(false) = 0.0
Pr(P andQ) = Pr(P ) ∗ Pr(Q)

2http://en.wikipedia.org/wiki/Probability space

if P and Q are independent
Pr(P orQ) = Pr(P ) + Pr(Q)

if P and Q are disjoint

The issue here that prevents a straightforward calcu-
lation is the side conditions for the and- and or- rules.
The two subformulas are typically not independent or
disjoint due to variables appearing in both. There are
different approaches to computing with probabilistic
logic [11].

One approach is to convert the whole formula into
a form where all conjunctions are independent and
all disjunctions are disjoint. It turns out that formulas
in full disjunctive normal form (full DNF) are of the
type described. A formula is in DNF if and only if
it is a disjunction of one or more conjunctions of
one or more literals (a literal is either a proposi-
tional variable or a negated variable). For example,
(P andQ) or (P andR) and P or (Q and notR) are
both in DNF. A formula is in full DNF if and only if it
is in DNF and if each of its variables appears exactly
once in every clause. Any formula can be converted to
full DNF. For example, the first formula above becomes

(P andQ andR) or (P andQ and notR) or
(P and notQ andR)

Note that each formula has a unique full DNF form,
but not a unique DNF form. The full DNF form can be
interpreted as the entries in a truth table that make a
formula true. For example, for the formula above (with
1 for true and 0 for false) the truth table is shown in
Table III.

TABLE III
FULL DNF FORMULA AS A TRUTH TABLE

P 0 0 0 0 1 1 1 1
Q 0 0 1 1 0 0 1 1
R 0 1 0 1 0 1 0 1

(P and Q) or (P and R) 0 0 0 0 0 1 1 1

Each column describes one complete variable assign-
ment, or “possible world.” Each column differs in at
least one position. Hence, each column is disjoint from
all the others. They describe different states of affairs
that cannot be true at the same time. Similarly, each row
for the atomic variables is independent of the others,
since we already stated that we assume that the atomic
variables are independent.

Looking at the table, we see that the entire formula
(last row) is true exactly in the situations described
by the rightmost three columns. In other words, when
P is true, Q is false, and R is true, OR when P is
true, Q is true, and R is false, OR when all three are
true. As can be seen from this verbiage, each column

http://en.wikipedia.org/wiki/Probability_space


can be interpreted as a conjunctive formula, and the
combination of several columns can be interpreted as
a disjunction. Each column contains all the variables.
Hence, what we get from the table is a full DNF
formula, the probability of which we can easily compute
using the rules above. Our first implementation used this
approach, within the Maude framework.

The problem with the “full DNF” method described
above is its computational complexity. The conversion
to full DNF (or even regular DNF) form is exponential
in the number of variables contained in the formula.
Thus, we have been able to use this method only
for small examples, and as a reference implementation
with which to compare other approaches. Our second
approach uses Binary Decision Diagrams (BDDs) as
a representation instead of converting the formulas to
full DNF form. There are several highly efficient BDD
packages. These can very quickly return all variable
assignments that satisfy a given formula/BDD. Given
those variable assignments, we can calculate our prob-
abilities the same way as with the full DNF formulas.
Our implementation uses Maude to generate the fault
formulas, and then uses the JavaBDD3 library to analyze
the results in Java. In our tests, computation time
with BDDs was negligible, even where the original
implementation crashed or stalled.

It is still possible to hit upon limitations with the
BDD approach, as its theoretical worst-case behav-
ior is still NP-hard. Another approach to calculating
the probabilities is to use an approximate, sampling-
based method. The idea is to generate a number of
samples, where each sample randomly determines the
values (true or false) of all the probabilistic variables,
according to their probabilities. The formula is then
evaluated with all the variables replaced with true or
false. The whole formula thus becomes true or false for
each sample. With enough samples, the distribution of
true/false for the entire formula will approach the cor-
rect result that would be calculated by an exact method
such as the one described above. We have implemented
a sampling-based method using a combination of Java
code and Maude. The implementation is capable of
evaluating several hundred thousand samples per sec-
ond. However, our failure probabilities are sometimes
on the order of 10−9. In order to “catch” these tiny
probabilities, we need a huge number of samples and
hours of computation time. Thus, this method is still
not fast enough for practical purposes. However, we are
exploring alternative, weighted sampling methods that
may be applicable, which would make the computation
much faster.

3http://javabdd.sourceforge.net/

C. Fault Analysis Results for BBW
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Fig. 10. Example VL 6 (rate-constrained, no path redundancy) with
points of symbolic and numeric analysis and fault introduction

Let us reconsider the BBW application introduced
in Section IV. Fig. 10 depicts the subgraph of VL 6
as an example. In our implementation, we model buses
and physical links as part of the network, so as to define
failures on such links. In VL 6, a signal from one wheel
brake is sent to all three brake lights to illuminate. The
numbers in parenthesis denote identifiers in the Maude
code.

In Fig. 11 we show the symbolic analysis for omis-
sion faults for the connection from the Brake1 end sys-
tem to the physical link toward Switch1. The symbolic
analysis for connections further downstream becomes
too large to print here.

pr(bus-fail, bus(2)) or
pr(si-host-out-fail, si-host(1) : out(0)) or
pr(si-es-in-fail, si-es(5) : in(0)) or
pr(si-es-out-fail, si-es(5) : out(1)) or
not pr(si-es-in-fail, si-es(5) : in(0)) and
(pr(bus-fail, bus(2)) or
pr(si-host-out-fail, si-host(1) : out(0)))

Fig. 11. Results of VL 6 symbolic analysis (for connection from
Brake1 to physical link with Switch1)

TABLE IV
EXAMPLE FAILURE PROBABILITIES FOR BBW

Fault Type Probability∗)

FCS check 10−9

physical link 10−9

bus 10−9

SI host input 10−6

SI host output 10−6

SI end system input 10−6

SI end system output 10−6

SI switch input 10−6

SI switch output 10−6

∗) These are not representative numbers for real network
components.

When analyzing the quantitative fault propagation of
a VL, we first supply the failure probabilities for each
component type as a valuation set. Table IV shows the
failure probabilities used for the example computation

http://javabdd.sourceforge.net/


below. Fig. 12 contains the result of analyzing VL 6 at
the receiving hosts Light1 (without any introduced fault)
and at Light2 (with a physical link failure introduced
between Switch1 and Light2).

om : 7.003789723448e-5,
com : 1.00001999971e-5,
vSA : 1.001000000009e-5,
vDA : 1.001010010009e-5,
vSN : 3.002969910071e-5,
vLen : 1.001010010009e-5,
vData : 1.001010010211e-5,
vFCS : 1.0010000000099e-5,
te : 1.000000000002e-10,
tl : 1.999990000002e-10

om : 1.0,
com : 1.00001999971e-5,
vSA : 1.001999979992e-5,
vDA : 2.001989959991e-5,
vSN : 1.0,
vLen : 2.001989959991e-5,
vData : 2.001989959991e-5,
vFCS : 1.001999979992e-5,
te : 1.000000000002e-10,
tl : 1.999990000002e-10

Fig. 12. Results of VL 6 analysis (without and with introduced fault)
using scientific notation (i.e., 1e-9 = 10−9)

One can see clearly that a faulty physical link at the
input of Light2 causes an omission error and also a
violation of the sequence numbers that are expected
during a rate-constrained communication. If the traffic
mode were to be set to time-triggered, the sequence
numbers no longer apply. However, the omission error
would still occur. If the system-level requirements call
for better reliability of the message delivery from the
brakes to the lights, the system design engineer could
now test an architecture with path redundancy or other
enhancements.

VI. CONCLUSION AND FUTURE DIRECTION

The Maude-based Fault Analysis tool provides a
means to evaluate the effectiveness of fault protection
mechanisms in various network architectures. We have
implemented the tool and applied it to various sample
networks. A special-purpose editor automatically gen-
erates input to the Maude Fault Analysis tool. Because
of space limitations, we have not featured the editor in
this paper. However, the network editor and the fault
analysis tool will be made publicly available.4

The evaluation on a simple brake-by-wire network
with high- and standard integrity components, and path
redundancy but no system redundancy, illustrates the
complexity of fault formulas. The analysis tool success-
fully performs symbolic and quantitative fault analysis.

Future extensions concern extending the underlying
network model and fault propagation rules for system
redundancy schemes and analyzing the symbolic fault
formulas to determine main contributors to faults, so as
to point the designer where additional protection would
have the most payoff. Another direction includes mod-
eling fault propagation with temporal aspects, possibly
extracting dynamic fault trees for better comparison
with other approaches. An additional temporal aspect
to consider is how failure rates change over time (e.g.,

4http://promise.csl.sri.com

as a “bathtub curve”). Our current tool assumes constant
failure rates.
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