The problem of group membership has been the focus of much theoretical and experimental work on fault-tolerant distributed systems. This has resulted in a voluminous literature and several formal specifications of this problem have been given. In this paper, we examine the two most referenced formal specifications of group membership and show that they are unsatisfactory: One has flaws in the formalism and allows undesirable executions, and the other can be satisfied by useless protocols.

We give a formal specification and an implementation for a partitionable group communication service in asynchronous distributed systems. Our specification is motivated by the requirements for building “partition-aware” applications that can continue operating without blocking in multiple concurrent partitions and reconfigure themselves dynamically when partitions merge. The specified service guarantees liveness and excludes trivial solutions; it constitutes a useful basis for building realistic partition-aware applications; and it is implementable in practical asynchronous distributed systems where certain stability conditions hold.

We give a formal specification and an implementation for a partitionable group communication service in asynchronous distributed systems. Our specification is motivated by the requirements for building “partition-aware” applications that can continue operating without blocking in multiple concurrent partitions and reconfigure themselves dynamically when partitions merge. The specified service is sound in the sense that it guarantees liveness, excludes trivial solutions and is implementable in practical asynchronous distributed systems where certain stability conditions hold.

View-oriented group communication is an important and widely used building block for many distributed applications. Much current research has been dedicated to specifying the semantics and services of view-oriented group communication systems (GCSs). However, the guarantees of different GCSs are formulated using varying terminologies and modeling techniques, and the specifications vary in their rigor. This makes it difficult to analyze and compare the different systems. This survey provides a comprehensive set of clear and rigorous specifications, which may be combined to represent the guarantees of most existing GCSs. In the light of these specifications, over 30 published GCS specifications are surveyed. Thus, the specifications serve as a unifying framework for the classification, analysis, and comparison of group communication systems. The survey also discusses over a dozen different applications of group communication systems, shedding light on the usefulness of the presented specifications. This survey is aimed at both system builders and theoretical researchers. The specification framework presented in this article will help builders of group
communication systems understand and specify their service semantics; the extensive survey will allow them to compare their service to others. Application builders will find a guide here to the services provided by a large variety of GCSs, which could help them choose the GCS appropriate for their needs. The formal framework may provide a basis for interesting theoretical work, for example, analyzing relative strengths of different properties and the costs of implementing them.


We describe a novel scalable group membership algorithm designed for wide area networks (WANs). Our membership service does not evolve from existing LAN-oriented membership services; it was designed explicitly for WANs. Our algorithm provides agreement on membership in a single message round in most cases, yielding a low message overhead. It avoids flooding the network and uses a scalable failure detection service designed for WANs. Furthermore, our algorithm avoids notifying the application of obsolete membership views when the network is unstable, and yet it converges when the network stabilizes. In contrast to most group membership services, we separate membership maintenance from reliable communication in multicast groups: membership is not maintained by every process, but only by dedicated servers. The membership servers are not involved in the communication among the members of the groups. This design makes our membership service scalable in the number of groups supported, in the number of members in each group, and in the topology spanned by each group. Our service is complemented by a virtually synchronous communication service which provides clients with full virtual synchrony semantics.


This file was generated by bibtex2html 1.96.