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Abstract

Vulnerabilities continue to be discovered with high frequency. Threats

that exploit them can be recognized by intrusion detectors. Manual re-

sponse, however, is becoming decreasingly tenable. We introduce a model

for automatic real-time mitigation of the risk posed to a host. The model

is derived from an extant risk analysis framework used by the information

assurance community, applying it to the operating system paradigm. We

describe runtime support for implementing the scheme.

SADDLE provides an auditing architecture that allows high fidelity au-

diting for intrusion detection with limited computational load and storage

requirements. ARM modifies the reference monitor to dynamically con-

strain permissions to control the probability of exposing threatened re-

sources. RICE allows guarantees to be made about the confidentiality,

integrity and availability of data after a penetration occurs. NOSCAM pro-

vides a service for pro-active gathering of forensic evidence for postmortem

analysis of an attack. These systems are combined through a prototype

response engine, RheoStat, whose utility is demonstrated using a set of

synthetic attacks.
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Chapter 1:

Introduction

1.1 Attacks

ARPAnet, the precursor to the Internet, was designed to allow communi-

cation while under attack. Survivability of the network in the face of node

failure was a high priority. The security of a single node and the account-

ability that would assist in maintaining this, however, was a low priority

[Clark88]. With the Internet’s rapid growth has come a proportional in-

crease in exposure to attackers.

The range of attack methodologies has been wide. They exploit errors

in design, implementation, or configuration. A large number of defensive

technologies have also been developed in response. These include virus

scanners [Cohen85], firewalls [Chapman92], compiler extensions for hard-

ening code [Cowan98], intrusion detectors [Denning87], cryptographic file

systems [Blaze93], encrypted network connections [RFC2246], and formal

security policy verifiers [Peri96].

However, the dramatic increase in the scale of the Internet has had

several implications. It has brought with it an increase in the number

of potential attackers. It allows, and has resulted in, rapid changes in

deployed software with a commensurate proliferation of exploitable bugs.

Further, it provides a medium by which the attackers can rapidly commu-

nicate vulnerability information between each other.
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1.2 Response

To maintain the security of a networked node, it must be continually mon-

itored. When there is suspicion that an attack may be underway, it is

prudent to effect a response. The first course of action would be to inter-

rogate the runtime environment to obtain finer grain data to cross-check

the audit information that raised the alarm. If the suspicion remains, the

next step would be to reconfigure the system (potentially reducing func-

tionality) to limit the exposure of portions that may be vulnerable to the

attack in progress. Data that may be affected by the attack should be

safeguarded. Measures to ensure its confidentiality, integrity and avail-

ability after a successful attack should be taken. Finally, an effort should

be made gather and preserve forensic information from the environment

that may not be available at a later point in time.

1.3 Automation

Maintaining security levels in the face of increased attacks requires a com-

mensurate effort invested in response. As the frequency rises, so does the

benefit of automation. Additionally, time based security [Schwartau99]

argues that the time to detect and then react to an attack must be less

than the amount of time afforded by the system’s protection mechanisms.

Automating the response reduces the onus placed on the protection sub-

system.

Current intrusion detection technology does not yield a low enough

false positive rate to allow unchecked active responses [Axelsson00]. Since

there is a significant possibility of misidentifying activity as aggressive

2



when it is not, taking offensive action against the hypothetical attacker

can yield new unwarranted attacks rather than stopping current ones.

Instead, we identified as a target of opportunity the case when an in-

trusion detector can identify an attack with an intermediate level of cer-

tainty. If all such activity were flagged as intrusive, the detector would cu-

mulatively trigger false alarms at an unacceptably high rate [Axelsson99].

Hence, the detector will opt to allow this activity to pass unchecked. We

argue that the intrusion detectors should instead have the option of ef-

fecting a passive intrusion response, defined as operations on resources

within the owner’s domain of administration, in such cases.

1.4 Risk

We equate protecting a system with minimizing the risk it faces. If we term

the risk R, it is dependent on three factors. The first is the threat it faces.

The probability that it faces a threat is termed T . If there is no threat to

the system, then it is not at risk. The second is the vulnerabilities that

exist in the system. The probability of these being exposed is termed V .

If there are none, then even in the presence of a threat, no risk is posed.

The third factor is the consequence of an attack succeeding. We term the

cost of the consequence, C. If there is no consequence, the system is not

at risk.

R = T � V � C (1.1)

Threat is primarily defined by the attacker. T can be reduced through

methods such as the use of egress filtering or disarming hostile hosts

[Bruschi01] if T originates in a domain where the administrator is coop-
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erative. However, recognition of T is the domain of the defender. Vulner-

abilities and consequences fall within the control of and can therefore be

reduced by the defender.

1.5 Mitigation

The adaptive auditing architecture, SADDLE [Gehani02a], was designed

to allow intrusion detectors to obtain fine grained audit data. This allows

better discrimination when searching for partial matches to intrusion sig-

natures. Its role is to support finer granularity estimates of T and implic-

itly R. This is the subject of Chapter 2. Once such a match has occurred,

there are at least three types of responses that can be effected.

The first type of response is the dynamic adjustment of the access con-

trol configuration of the system, so as to minimize the exposure of vulner-

abilities, V , perceived to be relevant to current threats. The ARM subsys-

tem, described in Chapter 3, describes programmable permissions, which

use the context of the runtime environment to decide whether to grant a

request.

The second type of response aims to guarantee the security of the data,

since this limits the consequences, C, should the attack succeed. The

RICE subsystem, described in Chapter 4, maintains the confidentiality,

integrity and availability of data using cryptography and replication by

taking action before an intrusion completes.

The third type of response is the preservation of evidence for subse-

quent examination. Since the risk model does not capture a fraction of the

potential threats, there remains the possibility of a successful penetration

4



which effects damage. In the event this occurs, the forensic analyst will

need the evidence to characterize the attack source. Chapter 5 describes

the tool NOSCAM [Gehani02b], which can be used to effect this. It contin-

uously monitors output from an intrusion detector, pro-actively gathers

forensic information and then records it to an immutable medium.

We describe the formal framework for using the above set of response

primitives in Chapter 6. The model is derived from an extant risk analysis

equation used by the information assurance community, applying it to a

host operating system paradigm. We then use this to guide the develop-

ment of a prototype real-time risk management based intrusion response

engine, RheoStat, that consists of a modified version of a SADDLE-aware

intrusion detector, JStat, to dynamically modify ARM’s permission set,

RICE’s file set, and NOSCAM’s audit set.

Future avenues of research and lessons learned are described in Chap-

ter 7 along with concluding remarks.

5



Chapter 2:

Adaptive Auditing Architecture

2.1 Overview

Intrusion detection uses anomalous activity in a system to recognize an

attack. Toward this end, events are audited and resources are monitored,

with the logs thus generated serving as the input to an analysis engine.

Increasing the fidelity of recognition implicitly requires refining the granu-

larity of logging. Current systems can achieve this at the cost of increased

computational load and storage space. SADDLE provides an architecture

that alleviates the apparent tension between the aforementioned goal and

its associated cost.

2.2 Background

A prototypical intrusion detection system consists of several components.

Sensors record events in the system or traffic on a network link, com-

mitting the data to log files. This is fed into an analysis engine, which

uses a signature database to decide when an intrusion has occurred. The

database can consist of a set of bounds on statistical measures. If current

activity strays beyond the bounds, the analyzer concludes that anomalous

behaviour is occurring. Alternatively, the database can contain misuse

rules that each describe a set of events that leads to an access control

breach. If current activity matches a rule, the engine flags an intrusion.

A third option uses application specifications of expected behaviour. If a

process’s events deviate from its specification, an alarm is raised. An on-

6



line analyzer processes log entries at the rate they are generated, while an

offline analyzer does the pattern matching later.

[Denning87] framed the model used by current intrusion detectors. Nu-

merous schemes have been tried for intrusion recognition [Axelsson00].

However, intrusion detectors are still not ubiquitously deployed. False

positive rates, or how often an alarm is raised in the absence of a breach

in security, are measured relative to the maximum number of possible

false positives (which is proportional to the number of audit records). Intu-

itively, the utility of a detector diminishes if there is an increase in the pro-

portion of the alarms that are raised but turn out to be false. [Axelsson99]

uses the base-rate fallacy of Bayesian statistical estimation theory to ar-

gue that the criterion of interest should be the false positive rate relative

to the number of expected intrusions instead. Current intrusion detection

systems fare poorly using this metric. Thus there still exists a need to

decrease false positive rates.

2.3 Refining Detection Signatures

There exists a general method to reduce the frequency with which normal

system activity is incorrectly flagged as intrusive. This can be achieved

by increasing the specificity of the signatures used for detection. For ex-

ample, for anomaly detection using statistical signatures, sampling can

occur at a greater frequency, derivatives of the frequency can be utilized,

or cross-products of different metrics can be used. For rule-based and

specification-based signatures, in addition to the class of event, parame-

ters can be matched, temporal constraints can be imposed, or filters based

7



on sequence history can be used. A combinatorial analysis verifies that the

expected value of the false positive rate can be drastically reduced by such

an approach.

The disadvantage of using more detailed signatures is two-fold. Sys-

tems based on detecting anomalous behaviour may experience an increase

in false negatives. Since a signature that is less specific may match more

subsequences of the audit record, the chances of it matching a real intru-

sion are higher. The increase in specificity makes the signature inherently

more brittle in the face of variation in the attacker’s statistical profile. On

balance, the reduced false positive rate is likely to outweigh the increased

false negative rate. Rule-based and specification-based detectors, how-

ever, are not adversely affected. A more specific rule or specification is

constructed using a priori knowledge of a particular attack. Therefore,

a real attack will continue to be detected, while a previous false positive

may no longer match. The rate of false negatives is monotonically non-

increasing with a rule’s specificity.

The second concern is the increase in storage and processing overhead

that is imposed on the auditing subsystem. To refine a signature used

to detect anomalous behaviour, more detailed audit data is needed. For

example, improving temporal fidelity involves increasing the frequency of

sampling the variables of interest, such as the CPU, filesystem or network

load. This results in a commensurate increase in the storage space used

as well as the processing done initially for logging, and subsequently for

parsing and filtering, the audit data. In the case of rule-based signatures,

refinement can be effected through the use of more contextual events. As

more events are logged, the storage overhead increases. Refinement can
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Figure 2.1: SADDLE allows the audited event set to be honed dynami-
cally. Each horizontal bar represents the set of instances generated that
are of a single event class. Events that are marked in white are gener-
ated by a traditional auditing subsystem which does not discriminate on
the basis of an event’s relevance to intrusion detection. Events that are
marked in grey are generated by a typical host-based intrusion detector’s
auditing subsystem (in addition to being generated by a traditional au-
diting subsystem). Events that are marked in black are generated by a
SADDLE-compliant system (in addition to the two other types of auditing
subsystems). SADDLE-compliant systems audit the event if it is currently
relevant to the intrusion detector’s signatures. Each class is progressively
more discriminating in the events it chooses to audit, reducing perfor-
mance and storage overhead.
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also be achieved by increasing the details collected for each event, such

as inclusion of parameters along with system calls. This increases the

runtime cost of processing an event significantly. For example, the use

of a tool that traces each system call as it is invoked imposes enough

overhead that it renders any large application unusable in practice.

2.4 Design

Using more detailed intrusion signatures does not inherently require a

significant performance penalty. Rather, the impact described in the pre-

vious section is due to the architecture of current auditing subsystems.

The first issue is the coarse granularity at which they can be manipu-

lated. Logging involves all instances of a class of event. If the intrusion

detection system requires a detailed version of one instance, detailed log-

ging is turned on for all instances implicitly. The second issue is the static

nature of determining whether a particular audit record should be gener-

ated. An intrusion detection system may only need to know about a small

subset of all events at any given instant. Yet all events that may ever be of

interest are logged. The final issue involves extensibility. If a system was

designed to sample a variable, such as the processor load, at a fixed in-

terval and later a change is required, no methods exist to implement this.

The change may be quantitative such as the change in the sampling inter-

val, or qualitative, such as the need to obtain the current rate of change

of the variable instead of its current value.

The above limitations can be seen to derive from the unidirectional

nature of the communication between the logging facility and the intru-
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sion detector. It is possible to remedy the problems through the use of

a reverse channel through which the detector can specify to the auditing

subsystem exactly what information it currently needs. It should be pos-

sible to dynamically modify the description of what information should be

audited. A programmable interface should be present to allow the filtra-

tion and processing of audit data before it is committed to the log record.

This also facilitates automated changes instead of manual reconfigura-

tion. [Bishop96] describes a formal procedure for deriving exactly which

pieces of data must be logged to assure the security of a particular proto-

col. Event pattern recognition can occur in either the auditing subsystem

being described or by the intrusion detector, depending on the event fil-

ters defined. Depending on the specifics of a rule, the right choice can

be either one. The architecture must be flexible enough to handle this.

A simple programming interface is needed which can be invoked by an

intrusion detection application, and is amenable to the above constraints.

2.4.1 Audit Registry

There may be multiple audit data producers and consumers, with poten-

tial duplication of requests from consumers. A means for these streams

to interact is needed. We term a process that provides such a service

the Audit Registry. It will expose a programmable interface that intrusion

detection applications can invoke. It will also convert the collection of re-

quests into a canonical form and then initiate and terminate fine-grained

auditing as needed. An architecture that conforms to this description ef-

fects System Auditing via Demand Driven Logging of Events (SADDLE).

11
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2.4.2 Audit Trail Producers

A design choice must be made regarding the audit trail producers. The

data can come from the network or the host. Typically data derived from

the network is sampled from a raw stream. Stateful packet inspection

can potentially allow more complex determinations to be made as well.

The design of the architecture should not preclude the use of this data.

However, in the absence of clear security semantics, data from such a

source may be unreliable.

Audit data gathered on a host can come from trusted sources such as

the kernel, system libraries in user space, or applications whose trustwor-

thiness can be established by a mechanism external to the scope of the

architecture. Checking the user or group identity, or verifying an authen-

tication credential are typical ways to decide whether to trust a program.

Audit data from the operating system has several advantages. Its format

can be controlled regardless of the application that is executing. The se-

mantics of the audit record are clear. It is trusted.

A potential advantage of log data from applications is the richer se-

mantics available. However, this comes with the tradeoff that this data is

usually generated for the purposes of debugging rather than security, may

not conform to an audit record specification, and may not be trustworthy

since it is not typically feasible to verify the runtime security properties of

an application without the use of a scheme such as proof-carrying-code

[Necula97].
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2.4.3 Audit Trail Consumers

The Audit Registry continuously accepts the event streams generated by

the audit trail producers. It must mediate access to this data. We propose

that it should expose an interface of the following form that can be invoked

by applications such as intrusion detectors:

registerCallback(Event event, Callback callback, Boolean logInFile);

unregisterCallback(Event event, Callback callback);

When an event occurs, the handler callback will be invoked with event

as a parameter. This requires callback to have been defined to conform

to to a predefined specification. If logInFile is true, then the event will be

appended to the persistent audit trail, stored on disk. This interface allows

intrusion detectors without support for a SADDLE architecture to use an

audit trail as usual through the use of wildcard events and null callback

handlers. A SADDLE-compliant detector instead uses the callbacks to get

exactly the data it needs directly, even turning off requests for logging to

a file to reduce overhead when fine-grained signatures are used.

2.4.4 Callback Chains

Each time an event of interest occurs, a callback is made to the applica-

tions that had subscribed to the event. An application can then utilize the

information and take further action. In the case of an intrusion detector,

the most frequent choice will be to unregister interest in the event and

then register interest in another event. However, latency between the un-

register and register operations could allow an event of interest to occur

between. This would cause an intrusion detector to remain uninformed
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from a cell in the Audit Control Matrix.
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about an event, creating a false negative.

One method of resolving the issue is to pass a lock back to the appli-

cation along with the callback. After it has unregistered the event and

registered any others of interest, it can surrender the lock. However, this

method suffers from the drawback that the latency of a call will depend

on the length of time that an application opts to hold the lock for. Since

multiple threads may obtain locks that they are mutually dependent on,

this scheme allows deadlock to occur. In addition, if an application refuses

to surrender a lock, it can starve other processes. Thus, this scheme is

untenable.

Instead, we introduce the notion of a callback chain, where each call-

back is replaced with a subsequent one by the Audit Registry itself. Since

all events are reported to the Audit Registry, by synchronizing the relevant

data structure internally, it can ensure that unregistering a callback and

registering its successor is an atomic operation. This prevents the report-

ing of an event between the two operations. To effect this, each callback

can designate another callback as its successor. When an event triggers

a callback, if it has a successor the Audit Registry invokes the callback,

then subsequently unregisters it and replaces it with its successor. Thus,

a chain of callbacks can be created, which recognize a consecutive series

of events, without the possibility of an event of interest occurring in the

system but not being reported to the audit trail consumer.
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2.5 Implementation

We now describe the implementation of SADDLE on two different plat-

forms. In both cases, the implementation is restricted to the use of manda-

tory logging in the operating environment and does not handle authenti-

cated application generated audit trails.

The first implementation modifies the Java runtime environment (ver-

sion 1.4). Auditing functionality is added to a subset of the methods in

the classloader, access controller, filesystem and networking code. When

a class is loaded, a privileged action is performed, a file is opened, a net-

work connection is made or accepted, or when a network service is started,

the Audit Registry is informed.

The second is done on Linux (with kernel 2.2.12). The kernel auditing

facility is used to monitor a subset of the system calls that are analogous

to those modified in the Java runtime. This is effected by inserting a

kernel module that registers its own wrapper functions in place of the

relevant system calls. The wrapper function audits the call, and then

invokes the original call. The use of this module allows us to monitor

when a privilege elevation occurs, when a program is executed, when a file

is opened, when a network connection is made to or from a remote host,

and when a program starts a network service.

Both the modified platforms now have auditing code that communi-

cates with a common implementation of the Audit Registry described in

the previous section. In addition, a SADDLE-compliant intrusion de-

tector, JStat, modeled after the state-transition approach of [Ilgun95] is

constructed with the input events all being members of the set described
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Figure 2.4: Modeled after STAT, JStat’s intrusion detection signature con-
sists of a series of states. Each state encapsulates a condition. When it
becomes true, the signature’s current position is advanced to the next
state. When it reaches the last state an intrusion is deemed to have been
detected and an alarm is raised.

above.

2.6 Evaluation

We now describe three experiments undertaken to evaluate the utility of

SADDLE. First, we compare the storage requirements of generic auditing,

auditing entire classes of events relevant to signatures, and auditing just

the instances needed for correct operation of the intrusion detector. This

enables us to characterize the benefits of using SADDLE-based selective

auditing. Next, micro-benchmarks are performed on some of the calls

that were modified to include auditing functionality. Finally, a macro-

benchmark is run with a SADDLE-compliant state transitional analysis

intrusion detector while varying the number of signatures. This allows the

characterization of the scalability of a SADDLE-based system. The first

and third are performed by driving a web server with a set of requests,

since this is an application that exercises the subsystems that we have

modified.

The first experiment measures the size of the audit trail generated in

three cases: (i) when all the system calls in our audit set are logged, (ii)

when only system calls that are present in intrusion detection signatures
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Figure 2.5: Audit trail size reduction is effected via automated filtering of
which system calls to log.

are logged, and (iii) when relevant system calls are logged only when they

are currently being watched for by the intrusion detector. A set of 10 signa-

tures, averaging 5 events in length, was used. The workload was generated

by using [SPECweb99] with 10 clients and 1 Apache web server (version

1.3.9). The graph in Figure 2.5 shows the drastic reduction in audit trail

size by filtering out classes of events that will never match any event in the

intrusion detection signature database, and the further filtration by tem-

poral relevance. The third type is effected using a SADDLE-based JStat.

We see the utility of SADDLE when fine grain auditing (such as the system

calls instrumented) is required and the intrusion detector is to operate in

real-time on data from a heavily loaded node such as a web server.
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Java Java Linux Linux
with Saddle with Saddle

File open 0.5 ms 4 ms 60 �s 120 �s
Network socket 150 ms 160 ms 10 ms 12 ms
Load class/binary 15 ms 20 ms 7.2 ms 7.8 ms

Table 2.1: Impact of SADDLE on system call performance.

The modifications made in the runtime environment of Java and Linux

introduce overhead. We wished to examine the extent of this. We picked

the 3 most frequently invoked calls - opening a file, creating a network

socket to a remote node, and starting the execution of a binary, and mea-

sured their time with and without the SADDLE-based system in place.

Network connections were made to local virtual hosts to avoid variation in

network conditions, and Java classes (that were loaded) and Linux bina-

ries (that were executed) were generated with no other operations in them.

The results are summarized below.

Initial implementation was done on the Java platform and synchro-

nized calls by holding a lock in the Audit Registry to guarantee consistency

in the Audit Registry’s view of the sequence of events. This was improved

in the Linux implementation through the use of FIFO buffer to which calls

were reported from where the Audit Registry read them allowing the caller

to proceed without blocking on an Audit Registry lock.

Another aspect of interest was how the SADDLE-enabled JStat affected

the performance of the workload as the number of intrusion detection

signatures increased (and hence caused more instances of the modified

system calls to be audited). To evaluate this we ran SPECweb99, varying

the number of signatures in each run and noting how many requests were

served per minute. From the graph in Figure 2.6 we see that the number

20



Figure 2.6: Workload performance is not affected as the number of detec-
tion signatures increases.

of signatures did not noticeably decrease the performance. Although the

penalty paid on individual system calls can be high as seen above, the

overall contribution of the set of audited calls is still not significant - al-

lowing performance to scale with the use of a large number of intrusion

detection signatures.

2.7 Related Work

[Anderson80] first used audit records to monitor for threats against Air

Force computers. Most host-based intrusion detection systems still use

logs[Axelsson00]. [Schneier99] tackles the problem of maintaining the in-

tegrity of log files on a host. [Sibert88] considered the problem of secure
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auditing in a distributed system. [Chapman00] focused on reconstruct-

ing formal semantics from logs. [Roger01] implemented an online algo-

rithm that checks the model defined by declarative constraints stated in

a temporal logic against log records. Previous efforts have focused on log

processing, while our work hones log generation for intrusion detection.

2.8 Summary

The benefits of the use of SADDLE are threefold. First, by obviating the

need to store all events of a class, it allows very fine grain auditing while

maintaining reasonable storage requirements for the log files. Next, by mi-

grating the decision whether to log closer to the point of event generation,

there is a reduction in the propagation of unused data through the (typi-

cally slow) I/O subsystem, thereby potentially reducing the running time

of applications. Finally, there is a reduction in the administrative bur-

den of manual selection of event granularity and determination of which

subset of events to audit.

22



Chapter 3:

Dynamic Defense Decisions

3.1 Overview

As the frequency of attacks faced by the average host attached to the In-

ternet increases, reliance on manual intervention for response is decreas-

ingly tenable. Operating system and application based mechanisms for

automated response to perceived threats will be necessitated. One possi-

bility is the modification of the reference monitor of the operating system

such that the choice about whether a right should be granted (that was

previously made with a lookup of a static value), can instead be made by

dynamically delegating the decision to code that is customized to the spe-

cific right and is able to use the context of the request to make a more

informed choice. We describe such an Active Reference Monitor (ARM) and

the associated changes in semantics of the security subsystem.

3.2 Background

A range of defensive technologies exist that address specific threats, such

as cryptographic file systems [Blaze93], encrypted network connections

[RFC2246], compiler extensions for hardening code [Cowan98], and formal

security policy verifiers [Peri96]. However, they are not designed to address

a constantly changing set of threats.

Other security tools do address this variation, such as virus scanners

[Cohen85], firewalls [Chapman92], and intrusion detectors [Denning87]

by focusing on recognizing a pre-configured set of threats. However, these
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tools limit their action to raising an alarm. We argue that it is possible to

further manage the risk by dynamically reconfiguring the permissions of

a system.

3.3 Limiting Exposure

Security research has focused on finding and removing sources that con-

tribute to V , such as buffer overflows, and tools that reduce C in the

presence of T and V , such as firewalls. (Recall that T and V refer to

the probabilities of threats and vulnerabilities being exposed, respectively,

and that C refers to cost of consequences for the system as described in

Section 1.4.) These methods are dependent on manual intervention for

reducing the values of V and C. Automating the intervention would sig-

nificantly reduce the mean time to response (MTTR). This would decrease

the cumulative exposure of the system. Therefore, it is our aim to provide

system support to facilitate automated reduction in V .

3.4 Design

3.4.1 User Space Response

One option for automating intrusion response is the use of the NOSCAM

[Gehani02b] pro-active auditing utility. It synchronously monitors the out-

put of an intrusion detector to determine the current threat level, and can

be configured to invoke specific responses based on the threat level. This

approach suffers from three drawbacks, the latter two of which are inher-

ent to the approach of invoking a user space application to effect response.
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Granularity

The first problem is that more information is needed to customize the re-

sponse than what is available as output from a typical intrusion detector.

Without this, the response has to be generic, which reduces its utility

and increases the frequency of it occurring when not required. This could

potentially be addressed through modification of the intrusion detector.

Overhead

The second issue is that this is a ”push” based method, where changes in

the defense posture of the system are made each time a potential threat is

detected with the associated overhead of effecting the change. (Consider

the example of making a large set of files inaccessible to a particular user

if their activity matches that defined in a particular intrusion signature.

A push based system changes the permissions of all the files each time

the signature matching passes a predefined threshold, then returns the

permissions to their previous values after the threat is deemed to have

passed. This imposes very significant overhead.)

Asynchronicity

The third flaw is that there remains a temporal gap between when activity

occurs and when it is detected, followed by a delay till the time a response

can actually be launched. This creates a race condition between detection

and response. It allows numerous attacks to effect damage where it would

have been possible to mitigate their effect if the response could have been

effected asynchronously.
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3.4.2 Operating System Support

The experience described above argued that automated response needed

operating system support to be effective. We had previously instrumented

both a Linux 2.2.12 kernel and a Java 1.2 runtime to create the SADDLE

auditing subsystem. Based on measurements of the overhead that was in-

curred there, we concluded that instrumenting all system calls with hooks

for responses to be inserted was not a preferable option. We would need

to discriminate and choose a small subset of system calls where the most

impact could be achieved. We chose to add the hooks to the extant secu-

rity subsystem, calling the result an active reference monitor for reasons

described below.

3.4.3 Security Policy

The access control matrix uses the two axes of a grid to define the set of

principals and resources of a system. Each cell corresponds to the access

of a specific principal to a particular resource. The rights to be allowed are

stored in the cell. Operations that change the set of of principals, set of

resources or rights in a cell, of the system by definition trigger a change

in the protection state of the system. A set of rules define which states are

safe. This is the access control policy of the system.

The model was first described by Lampson [Lampson71]. Harrison,

Ruzzo and Ullman [Harrison76] formalized the model. They defined a leak

to be the transfer of a right from one cell of the matrix to another. The sys-

tem is said to be safe if it starts from a safe state and all leaks are allowed

by the access control policy. They showed this problem was undecidable
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for arbitrary systems. Jones, Lipton and Snyder [Jones76] articulated

the take-grant model with properties similar to those of capability based

systems. New models continue to be proposed, such as Sandhu’s typed

access matrix [Sandhu92].

Denning [Denning76] defined information flow between two objects as

the dependence of the value of one object on the value of the other. A set of

rules regarding which flows are permissible constitutes the system’s infor-

mation flow policy. Bell and La Padula’s Multi Level Security policy [Bell73]

for the military and Brewer and Nash’s Chinese Wall policy [Brewer89] for

corporations, are examples of such information flow policy.

Complete security policy covers both access control and information

flow. It may be specified in any formal language. For example, Fo-

ley [Foley89] used predicate calculus, Cuppens [Cuppens93] used modal

logic, and Peri [Peri96] used temporal logic.

3.4.4 Permission Semantics

Policy can be specified using the constants, variables and operators of a

formal language, L, adhering to the language’s grammar. The axioms, X,

rules of inference, I, and proof technique, Q, must also be specified. A

statement, �, in L can be verified by starting with the set X, applying

rules from I, according to the methodology of Q, and checking to see if �

can be derived. In principle, it is possible to completely specify and verify

the security policy of a system, as shown by Peri [Peri96]. If L is expressive

enough, the response to exceptional conditions (such as partial intrusion

matches) can also be specified as part of the policy. Yet such approaches

are not used in practice due to the extreme complexity of fully specify-
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ing the policy (even without a response component) of a typical deployed

system. Additionally, they rely on being able to precisely and completely

define the elements of the formal system, an unrealistic expectation when

only part of the system is within the policy specifier’s administrative do-

main. Finally, they do not account for the gap between the abstract model

and the implementation of it.

An alternative approach is to use a subset of the security policy that

can be framed intuitively. While this method suffers from the fact that

the resulting specification will not be complete, it has the benefit that it is

likely to be deployed. The specific subset we consider is that which con-

stitutes the authorization policy. These consist of statements of the form

(� ) p). Here � can be any legal statement in L. If � holds true, then the

permission p can be granted. In the current paradigm, the reference mon-

itor maintains an access control matrix, M , which represents the space of

all combinations of the set of subjects, S, set of objects, O, and the set of

authorization types, A.

M = S � O � A; where p(i; j; k) 2M (3.1)

The space M is populated with elements of the form:

p(i; j; k) = 1 (3.2)

if the subject S[i] should be granted permission A[k] to access object O[j],

and otherwise with:

p(i; j; k) = 0 (3.3)

In our new paradigm, we would replace the elements of M with ones of the

form:

p(i; j; k) = �; where � 2 L (3.4)
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Figure 3.1: ARM (Active Reference Monitor) predicated permissions have 3
distinguishing features: (i) Constant running time, (ii) Dynamic activation
if expected benefit exceeds cost, (iii) Interrogatable for cause of denial.
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Thus, a permission check will no longer be a lookup of a binary value, but

instead be the evaluation of a statement framed in a suitable language, L,

which will be required to evaluate to either true or false, corresponding to

1 or 0.

3.4.5 Temporal Constraints

A user space application gains access to a resource through a system call.

This call in turn will check whether permission exists by a call to the refer-

ence monitor. The latter call implicitly makes several assumptions, two of

which are affected in this paradigm in a manner that must be addressed.

The first is the expectation that call will complete in O(1) time. Given

that we propose to grant a permission, p, predicated on the successful

evaluation of a statement, �, it would appear that the time complexity of

the call to the reference monitor will increase. In addition, the choice of

the language, L, would appear to be a factor. (Consider, for example, that

� may be decidable in some languages but not in others.)

To avoid the above issues, we use a constant bound, t, on the number

of steps that the proof technique, Q, can take. If this bound is crossed,

the evaluation is deemed to have failed. This guarantees that the reference

monitor will return in O(t) = O(1) time as required by the implicit assump-

tion made by applications. Under this constraint, the choice of language

is also no longer material. (Recall that a Turing-complete language with

alphabet �, if limited to being recognized in t steps, becomes decidable

since it can be recognized by a finite state automaton corresponding to

the regular expression of the disjunction of the appropriate subset of the

j�jt possible strings in L.)
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The second assumption relates to the period of time for which the re-

turn value of a permission check remains valid. In the old paradigm, this

was governed solely by a static value stored in the system that was un-

likely to have changed during the course of execution of an application.

In the new paradigm, the check can be dependent on a large number of

factors some of which are evaluated in real-time and may therefore vary

rapidly, such as system load or free memory. The result is that when

permission is denied, it can now reasonably be expected that this may

change in a short period for some permissions. To maintain compatibility

with existing applications, this can not be communicated through the ex-

isting programming interface of the system calls. It is, however, important

to expose the reason for the denial so that new applications (or modifica-

tions to old ones) can use the information to decide whether to wait and

request permission again. (They could also utilize the information to take

alternate defensive actions.)

Since the details must be communicated in parallel with the extant

control flow of the application, a new signal, e, is defined. It can be sent

asynchronously when a permission is denied with the tuple (p; �) stored

in a temporary buffer, b, accessible to the signal handler. Note that � is

the statement that evaluated false causing permission p to be denied. Ap-

plications can gain access to the information in (p; �) by defining a signal

handler for e which extracts the data from b each time it is invoked and

inserts it in a thread-specific location, B, accessible to the interrupted

thread. Application code can access the cause of a permission denial by

immediately accessing B each time it is interrupted by signal e and ex-

tracting the tuple (p; �). Note that the code for the system call has not
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been modified, so e propagates immediately to the application code and

can be immediately handled, before another permission check can occur

in the course of executing the system call.

3.4.6 Activation

The goal of evaluating a predicate before granting a permission is to tighten

the circumstances under which access to a resource is granted. The con-

straint, however, may not be required by default. Since predicate evalua-

tion imposes a computational overhead, it would be preferable to activate

it only when needed. There are three factors that impact the choice.

The first is the running time of the predicate, t. The next factor is

the frequency, w, with which that permission gets evaluated in a typical

workload. If the expected value of t is larger, the cost associated with its

use is greater. Similarly, if w is higher, the overhead imposed is greater.

The predicate evaluation will typically be activated based on increase in

the threat level as determined by an intrusion detector. The threats being

monitored for by the intrusion detector require a number of permissions

to be granted in order to succeed. The frequency of occurrence of the

permission in question in this set is termed, f . The greater the value of f ,

the more benefit there is to tightening the permission in question.

Thus, the cost of activation, a(p), for a permission p, is given by:

a(p) =
f

w � t
(3.5)

If the current level of threat to the system is l, then a threshold b(p; l)

specific to each permission can be calculated. When

b(p; l) > a(p) (3.6)
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holds true, the predicate is evaluated before granting the permission. In

this manner it is utilized only when the benefit from doing so is warranted

by the circumstances.

3.5 Implementation

We chose to augment a conventional reference monitor by interceding on

all permission checks and transferring control to our ActiveMonitor. This

subsystem delegates the decision to code customized to the specific right

if an appropriate binding exists. Such bindings can be dynamically added

and removed to the running ActiveMonitor. The goal is to continuously

vary the restrictiveness of the system’s access control configuration, with

minimal overhead, in response to the changing potential of an intrusion

occurring. Salient points of the implementation are described below.

3.5.1 Reference Monitor Modification

Our prototype was created by modifying the runtime environment of Sun’s

Java Development Kit (JDK 1.4), which runs on the included stack-based

virtual machine. The runtime includes a reference monitor, called the

AccessController, which we altered as described here.

When an application is executed, each method that is invoked causes

a new frame to be pushed onto the stack. Each frame has its own access

control context that encapsulates the permissions granted to it. When ac-

cess to a controlled resource is made, the call through which it is made

invokes the AccessController’s checkPermission() method. This inspects

the stack and checks if any of the frames’ access control contexts contain
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permissions that would allow the access to be made. If it finds an appro-

priate permission it returns silently. Otherwise it throws an exception of

type AccessControlException.

We altered the checkPermission() method so it first calls the active Ac-

tiveMonitor’s checkPermission() method. If it returns with a value of

false , a customized subclass of AccessControlException is thrown. If

it returns with a value of true , the AccessController’s checkPermission()

logic executes and completes as it would have without modification. Thus,

the addition of the ActiveMonitor functionality can restrict the permis-

sion set, but it can not cause new permissions to be granted. Note that

it is necessary to invoke the ActiveMonitor’s checkPermission() first since

the side-effect of invoking this method may be the initiation of a response.

If it was invoked after the AccessController’s checkPermission(), then in

the cases that an AccessControlException was thrown, control would

not flow to the Active Monitor’s checkPermission() leaving any side-effect

responses uninitiated.

Code that is invoked by the ActiveMonitor should not itself cause new

ActiveMonitor calls, since this could result in a recursive loop. To avoid

this, before the ActiveMonitor’s checkPermission() method is invoked, the

stack is traversed to ensure that none of the frames is an ActiveMonitor

frame, since that would imply that the current thread belonged to code

invoked by the ActiveMonitor. If an ActiveMonitor frame is found, the

AccessController’s checkPermission() returns silently, that is it grants the

permission with no further checks.

34



3.5.2 Mapping Permissions to Predicates

When the ActiveMonitor’s checkPermission() is invoked, it must locate

and invoke the statement upon whose successful evaluation the dynamic

check is to be predicated on. It does this by using the permission as a

key to do a lookup in a hash table, termed the Active Table. If it finds

a mapping, it extracts the code found, invokes it and returns the answer

it obtains to the caller. If no predicate exists, it returns true. The hash

table is currently defined for the entire system, causing the ActiveMonitor

checks to be effected globally.

If deemed necessary, the system could be extended to allow users to

customize access by others for resources they own. This could be im-

plemented by adding a second hash table consisting of mappings to code

defined by users for guarding access to resources that they own. If the

global check passed, the resource’s owners custom code would also be

invoked.

3.5.3 Privileged Predicates

We opted to define a core set of functionality that could be used by the code

run by the ActiveMonitor in deciding whether to grant a permission. The

first reason is that this is functionality that needs system support in the

form of privileged execution, and the second is that it is likely that these

functions would otherwise be redundantly defined independently in differ-

ent predicates, increasing the load on the system with no benefit. The first

element is a library of methods that can be used to interrogate the system

about runtime conditions such as the average processor load, free mem-
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ory, free swap space, and the amount of data received and transmitted by

each network interface.

The second element is support for a database of intrusion signatures

predefined by the administrator. A call can be made checking whether a

particular signature has been matched by system activity thus far, allow-

ing the permission to be denied if it has. Alternatively the signatures can

be used to represent specifications of correct behaviour in which case the

signature would be required to evaluate as true to allow the permission to

be granted.

The signatures are based on the state transition scheme defined in

[Ilgun95]. We implemented this in a separate component called JStat and

modified a set of methods in the Java runtime to generate events that are

fed to JStat. Currently the modifications of the runtime cover file read-

ing and writing, network client and server socket creation, class loading,

execution in privileged mode, exceptions and errors.

3.5.4 Active Monitor

When the system initializes, the ActiveMonitor first creates and popu-

lates the Active Table, the hash table mapping permissions to predicates,

by loading the relevant classes, using reflection to obtain appropriate con-

structors and storing them for subsequent invocation. It also reads in the

database of intrusion signatures for JStat. At this point it is ready to ac-

cept delegations from the reference monitor. When the ActiveMonitor’s

checkPermsission() method is invoked, it uses the permission passed as a

parameter to perform a lookup in the Active Table, and extract any code

associated with the permission.
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If code is found, it is invoked in a new thread and a timer is started.

When the code completes, the output value is stored in a shared hash

table, using the specific permission instance as the key. When the timer

expires the value stored is checked. If it succeeded, the method returns

evaluating as true. If it fails, an ActiveMonitorException, our customized

subclass of AccessControlException, is thrown, which reports the name

of the predicate that failed. If the code has not completed in the allotted

time, no value would have been stored and the ActiveMonitor will throw

the same exception indicating that the permission is not to be granted. In

general, the thread forked to evaluate the code can be destroyed at this

point. (Although the Java Thread API currently allows this, stopping a

thread is deprecated in the API, so care has to be taken when defining

predicates so that they are guaranteed to terminate.)

3.6 Evaluation

The ActiveMonitor design allows the use of any intrusion detection method-

ology. To facilitate easy development of predicates, we provide support for

state transition rule-based signatures in the form of JStat. These signa-

tures may be used as part of a predicate that is evaluated immediately

prior to granting a permission. The result of the use of JStat is that when

a predicate checks if a sequence of events has previously occurred in the

system it is effectively executing a single call to JStat to consult it on the

current state a predefined automaton, so the response has low overhead

that does not alter appreciably the running time of the permission check.

This is due to JStat operating independently in the background, process-
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Access Type Time
getSystemLoad() 0.34 ms
getTransmitted(eth0) 1.02 ms
getReceived(eth0) 1.01 ms
getFreeSwap() 0.39 ms
getFreeRAM() 0.39 ms

Table 3.1: Cost of evaluating runtime context predicate primitives.

ing events as they are generated.

A library of privileged predicates was also defined for use when the vir-

tual machine is running on Linux. These use a native interface to sample

metrics such as CPU load, memory usage and network utilization. The

running time of some examples are listed below:

However, we still needed an estimate of how complex the predicates

that are evaluated by the ActiveMonitor can be. To estimate this we

carried out the following experiment. We gathered a suite of applications

with which to test the running time of the system as the value of t as

described in Section 3.4.5 was varied.

The applications used are from the SPECjvm98 benchmark [SPECjvm98].

check exercises the virtual machine’s core functionality such as subclass-

ing, array creation, branching, bit operations, arithmetic operations. com-

press is a Lempel-Ziv compressor. jess is an expert system that solves

puzzles using rules and a list of facts. db performs a series of add, delete,

find and sort operations on a memory resident database. mpegaudio is an

MP3 decompressor. jack is a lexical parser. mtrt is a ray tracer. The only

application in SPECjvm98 that was left out was javac since it requires an

older JDK.

We instrumented the java.lang.Permission class, then ran the bench-
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Figure 3.2: Impact on SPECjvm98 applications when the predicate eval-
uation time is varied.

mark suite once and determined that there were 5939 permission objects

instantiated during the runs. Of these, 4363 were java.util.Property-

Permission(”file.encoding”) objects, used to check the current default

character set. Next, we found that 1443 were java.io.FilePermisison ob-

jects, used to access 487 different files. Therefore, we chose to conduct our

analysis by defining Active Monitor bindings for java.io.FilePermission’s.

Since we were interested in the worst case, we defined the code so it would

return when the timer would have expired after t time had passed.

The graphs in Figure 3.2 show the running time of the SPECjvm98 ap-

plications as the bound on how long a permission’s predicate could be

evaluated for was increased. Based on this we can conclude that reason-
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ably complex predicates can be evaluated with an acceptable impact on

the running time of typical applications. The uninstrumented case is rep-

resented by the data point where the predicate is evaluated in 0 ms. Only

two applications degrade noticeably, compress and jack, due to numerous

java.io.FilePermission requests.

3.7 Related Work

Flexible access control has been studied in detail by the database com-

munity. Research has been done on making the checks dependent on

the time of access, history of previous accesses, content of the record and

structure of the query [Baraani96]. Databases, however, form a very struc-

tured domain and the range of threats (and therefore responses needed)

is narrower than that of an operating system. [Campbell98] explored the

use of active capabilities for mobile agents where signed scripts were used

to gain access to a resource.

In the context of operating systems, research has been conducted into

interposition of system calls to monitor for intrusive activity. [Uppuluri01]

describes the use of finite state automata to describe specification based

intrusion signatures that can be monitored for in real time using sys-

tem call interposition and raises the possibility of invoking a response.

[Fraser99] describes a wrapper language for wrapping generic system calls.

We focus only on modifying access control related behaviour, restricting

the domain in which semantics change, thereby reducing the scope for

unintended side-effects.

Projects such as Flask [Spencer99] and RSBAC [Ott01] provide a gen-
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eral framework which address a similar goal. Our work differs in the

following specifics. First, we seek to maintain the constant running time

guarantee implicitly made by the operating system to an application for a

permission check. Second, we seek to expose to the application through a

programming interface the (potentially) richer semantics of a permission

denial, so that the application has the option to adapt intelligently. Third,

we aim to activate predicate evaluation only when the benefit warrants the

cost. Fourth, the Active Reference Monitor is specifically designed to allow

the activation and deactivation of predicate evaluation at the granularity

of individual permissions without re-initializing the security subsystem.

3.8 Summary

We have argued for the use of predicated permissions with temporal con-

straints on their running time, demonstrating empirically the performance

impact of the approach. In addition, we describe how the changes in per-

mission check semantics can be exposed to applications via a program-

ming interface. Predicates can be dynamically altered to change the host’s

level of exposure, a property that is needed when managing the risk of a

system while it is running.
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Chapter 4:

Curtailing Consequences
Cryptographically

4.1 Overview

Hosts connected to the Internet continue to suffer attacks with high fre-

quency. The use of an intrusion detector allows potential threats to be

flagged. When an alarm is raised, preventive action can be taken. One

major goal of such action would be to assure the security of the data

stored in the system. If this operation is to be effected manually, the delay

between the alarm and the response may be enough for an intruder to ef-

fect significant damage. The alternative is to automate this response. We

describe a subsystem that effects Response Initiated Cryptographic En-

capsulation (RICE) of data that is deemed to be threatened by an attack.

If it is activated when an attack appears likely to succeed, it guarantees

the confidentiality, integrity and availability of threatened data even after

a successful penetration occurs.

4.2 Background

Vulnerabilities in deployed software continue to be discovered and ex-

ploited by attackers. If possible, the error in design, implementation or

configuration that results in a weakness ought to be addressed directly.

However, in many environments, users need to install, manage and con-

tinue to use software that may introduce the vulnerabilities. Here alterna-

tive preventive measures must be utilized, such as firewalls and intrusion
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detection systems. These tools allow an extra level of defense to be intro-

duced to prevent exposure of the weaknesses that may exist in the system.

Efforts have been made to utilize information about the attack to take

precautionary measures automatically, such as terminating processes or

network connections. The approaches typically aim to cut off an attacker’s

access to the execution environment. The last line of defence is protecting

the information stored itself, which is what we focus on.

4.3 Dynamic Data Protection

Computing systems are designed to manipulate data. It is this data whose

security is paramount and the final target of protection. Our goal there-

fore is to assure that the data’s confidentiality, integrity and availability is

maintained, even after the system is penetrated. We aim to achieve this by

providing a response primitive that can be invoked by an intrusion detec-

tion system when it detects an attack that is likely to succeed. Invoking

the primitive must ensure that the data is encrypted to guarantee confi-

dentiality, a hash of it is signed to allow its integrity to be subsequently

verified, and it is replicated at another node so that it is available even if

the local copy is lost.

Effecting the above mentioned operations on a large data set is a com-

putationally intensive task. The latency of the operation would be too high

if it were to be completely executed at invocation time. Our strategy to

address this issue is to amortize the cost over the course of the life of the

data. This is done by maintaining data in a protected state until an appli-

cation needs access to it. At this point, transparent to the application, it is
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exposed. When it is no longer used by any application, it is transparently

protected once again. This process imposes an overhead whenever data is

used, but it has the benefit of allowing data to be rapidly protected, by sim-

ply deleting exposed copies of the data and the cryptographic key material

needed for the transparent manipulations. The scheme uses mechanisms

similar to a cryptographic filesystem. The differences are highlighted in

Section 4.7.

4.4 Design

4.4.1 Protection Groups

Protection groups allow predefined subsets of the data to be cryptograph-

ically safeguarded atomically. We use them for several reasons. Each

group has a public key pair associated with it. Their use is elucidated in

Section 4.4.2.

The safeguards are instituted in response to threats. Each threat has

associated with it a set of files that may be affected by it. The grouping

is orthogonal to any operating system attributes. If an intrusion detector

determines the need to take precautions against a threat, one course of

action is to safeguard the relevant files. A protection group serves as

the data structure used to track a subset of files that are always affected

together, regardless of what the current threat may be. Hence, a single

threat may affect a number of protection groups.

Since protection groups are defined independent of any other file at-

tributes, they can be defined as arbitrary sets. This ensures that files that

are unlikely to be affected by a threat are not safeguarded. This property
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Figure 4.1: RICE allows an intrusion detector to rapidly provide data
protection when faced with a likely attack. Cryptographic encapsulation
is reduced to simple key deletion so it can be effected rapidly.
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ensures that subsystems and applications that do not utilize data that is

threatened can continue operating normally.

When a threat appears and a set of files must be protected, it is impera-

tive that the safeguards be instituted in as short a time period as possible.

The longer it takes, the more damage can be effected in the interim. The

use of protection groups allows the system to perform a small number

of key deletion operations on the groups’ meta-data, rather than a large

number of operations on all the constituent files.

4.4.2 Assurance

When the system is under threat of penetration, data must be safeguarded.

The aim is to guarantee three properties for the data - confidentiality, in-

tegrity and availability - that will hold even after a successful attack.

Confidentiality

Each file that is part of a protection group is kept encrypted in a sym-

metric cipher with its own unique key, which serves as a cryptographic

capability. This capability in turn is kept encrypted with the group’s pub-

lic key. If an attacker is likely to compromise the system in a manner that

threatens the protection group of the file, the private key of the group will

be deleted. This will prevent the file’s cryptographic capability from being

decrypted. Without the file’s capability accessible, the file’s confidentiality

is guaranteed.

When an application seeks to use the file and its protection group has

not been threatened, then the runtime environment is able to transpar-

ently enable access to the file by retrieving its cryptographic capability
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(which can be unsealed with the extant protection group private key), de-

crypting the file and then opening the temporary decrypted version. When

the application is done with the file, it is re-encrypted and the temporary

version deleted from the system.

If a file was still in use at the time of the penetration, along with the

deletion of the group’s private key, the temporary decrypted version of the

file will be deleted. Any changes made since it was last opened would be

lost, but its confidentiality would be maintained.

Integrity

In order to be able to verify the integrity of a file, a cryptographic hash

of the contents of the file is maintained with the file’s meta-data. To pre-

vent the hash from being manipulated without authorization, it is always

sealed with the file’s protection group’s public key before it is stored. If the

file is changed after being opened, then the hash of the new version must

be computed, sealed with the protection group’s public key, and stored in

the file’s meta-data. When a file is opened, either for reading or writing, the

file’s hash is computed and compared to the one stored in the meta-data

(after unsealing the stored hash using the protection group’s private key).

If the hashes match, the file’s integrity is deemed to have been verified.

If an intrusion detector determines that a protection group is threat-

ened, it deletes the group’s public key. Once this has been done, any

changes that an attacker makes to a file will be detectable. Since the pro-

tection group’s public key is no longer present, it is not possible to seal the

hash of the changed version of the file. When the file is accessed subse-

quently, the fact that the computed hash does not match the stored hash
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(after it has been unsealed with the protection group’s private key), signals

that the file’s integrity has been compromised.

If a file was in use when an intrusion occurs, the integrity of any

changes that were made since the file was opened will not be recorded.

This is due to the fact that the decrypted version of the file will be deleted

without re-encrypting it (since that would introduce an unacceptable de-

lay which an attacker may be able to exploit), and hence since the changes

will be lost there is no question of verifying their integrity. If the attacker

does not alter the file, it will remain in the state that it was before the last

time it was used and its integrity can be verified. If the attacker alters it,

the integrity check will fail.

Availability

The goal of guaranteeing the availability of data in the face of an attack is

usually managed by instituting a regular backup regimen. When a sys-

tem penetration is detected, data from a backup prior to the intrusion is

extracted and used to replace the tainted version. This is an inherently

synchronous process, bringing with it a necessary tradeoff. Increasing the

frequency of the backup decreases temporal extent of data loss. However,

it also imposes an increased overhead. These two factors must be bal-

anced. In addition, either all the files are backed up or the entire filesys-

tem must be inspected to search for files that have changed. This fact

places a lower bound on the time to effect a single backup. The bound

grows with the size of the filesystem, a quantity that continues to increase

with time.

We address the issue through the use of an asynchronous approach.
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We incorporate functionality in the runtime environment which copies

changes made in files to a remote node. If an attack is subsequently

deemed to have occurred, the state of any file that has been changed can

be computed using the sequence of changes that have been copied over.

When a file is accessed, a copy of the original version is maintained.

After the file is closed, the runtime determines if the file has been written

to. If it has, a delta is computed between the original version and the

new version. A hash of the delta is computed and sealed with the file’s

protection group’s public key. The delta itself is encrypted with the file’s

cryptographic capability. Thus, the modifications are provided the same

confidentiality and integrity guarantees as the original file. The sealed

hash and the delta are placed in a temporary location on the disk. A

separate process synchronizes the deltas with a remote node.

4.4.3 Virtual Layer

In order to implement the changes needed to provide the data security

guarantees in a manner that is transparent to extant applications, it was

necessary to introduce them in the operating system itself. There are two

possible approaches. The first option is to modify the filesystem itself,

altering its data structures to include the new meta-data needed, along

with the cryptographic transformations that use the auxiliary protection

information. The alternative approach is to introduce the functionality

as a virtual layer over an existing filesystem. When runtime environment

calls are made to operate on files, they can be intercepted and the new

transformations effected if required, making calls to the native filesystem

as needed.
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With the latter approach, there is a further choice of where to store the

security related meta-data. One option is store both the meta-data and the

actual content in the native filesystem version of the file. The other option

is to maintain the meta-data separately. We opted to use the virtual layer

approach with the meta-data stored separately. Described below are some

of the factors that were involved in making the choice.

Using either a different native filesystem format or a virtual layer with

the meta-data stored with the data within a single file in the native filesys-

tem has several limitations. It will not be backward-compatible with any

extant data stored in a currently deployed filesystem due to differing for-

mats. All that data will have to be copied over. The functionality provided

by any attributes stored in the meta-data of the old filesystem will either

be lost or have to be re-implemented. The new filesystem will not be inter-

operable with any other runtime system that does not have support for the

new file format. Additionally, the resulting system will not be extensible -

that is if new attributes are to be added to the meta-data of each file, they

can not be inserted for each file without rewriting the entire filesystem.

Maintaining the meta-data separately brings with it the advantage of

being able to add new fields for existent files with little cost. For example,

to add functionality to retrieve a file’s cryptographic capability dynamically

from a remote capability server if it is not present, new fields would be

needed to store the capability server’s location. The cost to introduce the

field into the meta-data stored separately would be proportional to writing

out all the meta-data, and would not incur the cost of having to write out

all the data stored in the filesystem as well.

Using a virtual layer approach with the meta-data stored separately
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from the files has the disadvantage that the native filesystem’s synchro-

nization of the meta-data can not be leveraged. However, this is addressed

by limiting the use of shared data structures that must be locked - they

are used only when a file is opened and closed, not when it is read or

written. Therefore the overhead introduced is minimal.

The approach of storing the meta-data with the data has the advantage

of allowing files to be transported from one filesystem to another, even

across different hosts, and yet retain their protection profile so that they

may potentially be accessed independently of the resource in which they

reside. Since we are focused on a single host operating environment, this

did not provide a significant advantage.

4.4.4 Protection Granularity

Another choice that must be made is the granularity at which crypto-

graphic operations are to be performed. Cryptographic file system projects,

such as those described in Section 4.7, either encrypt or decrypt an entire

file or just a block at a time. Operating at file granularity results in a per-

formance impact when opening and closing a file, while operating at block

granularity introduces overhead for read and write operations. Since read-

ing and writing are far more common operations in a typical workload, we

opt to use file granularity. Below we further describe the tradeoff involved

in the choice.

Performing cryptographic operations at file granularity results in the

fact that opening and closing a file, which is an O(1) operation in a tra-

ditional filesystem, becomes an O(n) operation, where n is the length of

the file. This is because the entire file must be decrypted and its integrity
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verified when opening the file. Similarly, the file must be encrypted and

its hash computed when closing the file. If blocks of size b are used and

cryptographic operations are performed at block granularity, then open

and close operations have O(b) = O(1) cost. One method to address this

issue is to fix an upper limit on the size of file that may be protected, say

k. The complexity of opening and closing a file is then O(k) = O(1) if the k

is a constant.

The advantage of performing operations at file granularity manifests

when files are being read and written. Operating at block granularity in-

troduces the latency of decryption and encryption during reads and writes.

If operations are performed at file granularity, an unencrypted version is

used during read and write operations so there is no cryptographic over-

head. When the workload used involves concurrent accesses of files by

multiple processes or there exists significant locality of reference, then the

fact that reads and writes have no extra cost in this approach results in a

performance advantage over the block granularity approach. If a signifi-

cant portion of the file is used, then operating at file granularity approxi-

mates the use of an optimal pre-caching policy that has perfect lookahead,

coupled with an infinite size cache.

If the following conditions are all true for the files in the workload,

then using block granularity would have been preferable - a very small

fraction of each file is used (since operating on the entire file would add

significant overhead), the file is not reused (since block granularity reuse

is much more expensive as cryptographic operations must be effected on

each use), the file is not used by concurrent processes (since there is no

extra cryptographic cost added for all processes after the first that use the
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file).

4.5 Implementation

Below we describe the organization of the meta-data used, the tool Group

Manager used to manipulate it manually, and the runtime subsystem Ca-

pability Manager that transparently manages it for applications.

4.5.1 Meta-data

Each file that is protected by RICE has several attributes that are stored

in an instance of the ObjectMetaData data structure. These include:

objectLocation The location of the file in the filesystem at the time of

protection.

objectGroup The protection group to which the file belongs.

instances The number of concurrently open instances of that currently

exist.

decrypted The location of a temporarily unencrypted version (if one ex-

ists) of the file.

pristine The location of a temporary copy of the file in the state that it was

when the file was opened, before any writes occurred. It only exists if

a file is currently open and serves as a baseline against which deltas

of the file can be computed.

sealedCapability The cryptographic capability (symmetric key) used to

encrypt the file, wrapped in the public key of the protection group of

which it is a member.
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capability The value of the unsealed cryptographic capability, which is

only present while the file is open.

currentCheckpoint A counter used to indicate the position in the se-

quence of deltas that are computed each time a file is closed after

changes have been made.

computeDelta The value serves as the equivalent of a dirty bit on a page.

It indicates whether any instance of the file was opened for writing,

in which case a delta must be computed when it is closed.

sealedHash The cryptographic hash of the file as it was when it was last

closed, kept sealed in the protection group’s public key.

idempotency Each instance of an open file has a unique hash associated

with it that is stored in this set.

Each protection group is stored in an instance of the ObjectGroup data

structure. Each instance contains the group’s name, its public key (used

to seal the cryptographic capabilities and hashes of files in the group)

and its private key (used for unsealing those capabilities and hashes). In

addition it contains a hashtable of pointers to the meta-data of the group’s

members, which is indexed by the full path of the member’s location in the

filesystem.

Finally, the Resources data structure contains two hashtables. The

first is indexed by the names of protection groups, associating the group

name with a pointer to the group’s meta-data, from which a list of all mem-

ber files may be extracted. This is used when a group is to be protected,
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since each member’s decrypted and pristine copies must be erased if con-

fidentiality is to be guaranteed. The second hashtable is indexed by the

full path of a file. Upon being queried about a file, it returns the meta-data

of the group to which the file belongs.

4.5.2 Group Manager

The GroupManager is a tool for the administrator to manually manage the

protection status of files. It performs all operations on a groups database

which stores all the meta-data associated with all the files of all protection

groups. To make changes to this database, a password is required. By

maintaining the meta-data of the virtual layer in this manner, it is possible

to have multiple groups databases and switch between them to institute a

different protection policy. We describe below the operations that may be

performed using the GroupManager.

All operations require a password since they all read or write the groups

database. The password is used to create a symmetric key which is used

for decryption of the groups database when it is being read and encryption

when it is being written. The operations must also specify the type of

operation by passing a mode parameter to the GroupManager, and the

file in which the groups database is stored.

Capabilities File

Since the runtime system requires transparent access to the meta-data,

the GroupManager can be use to generate a capabilities file which is not

password protected using an output operation. During the course of ex-

ecution, this capabilities file will be manipulated by the runtime since it
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needs to update the cryptographic hashes (used for integrity checks) of

files that have been written to. To allow the groups database to reflect

these changes, the content of a capabilities file can be transferred to a

groups database using the input operation.

Group Listing

For convenience, the groups database can be interrogated with the list

operation. If a specific group name is passed as a parameter, then the

files which are a member of the group (if any) are listed. Alternatively,

if no parameter is passed, then the list of currently defined protection

groups is generated and emitted.

Altering Membership

Finally, a file may be added to a protection group with the add operation by

specifying its current location in the filesystem. If the file has previously

been added, the request will not alter the state of the meta-data. Files

may not be added to more than one protection group. Files that would be

members of the intersection of protection groups should be combined into

a new, separate protection group of their own.

If the protection group does not exist, it is dynamically created, includ-

ing a pair of public and private keys for sealing and unsealing its members’

capabilities and hashes. A hash of the plain file is computed before en-

cryption and is sealed with the group’s public key. A new cryptographic

capability (symmetric key) is generated for each file that is added. The file

is encrypted with this key, after which the key is sealed with the group’s

public key.
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The remove operation can be used to remove a file from a protection

group of which it is currently a member. The file is decrypted using its

cryptographic capability retrieved by unsealing it with the group’s private

key. Similarly, the file’s integrity is verified by computing its hash and

comparing it to the one stored in the meta-data (after unsealing the hash

with the group’s private key). All associated meta-data is then deleted. If

the file was the only member of the protection group, then the group and

its associated meta-data are also deleted.

4.5.3 Capability Manager

Platform

We implemented the CapabilityManager as a modification of Sun’s Java

Runtime Environment. The underlying implementation of all classes that

provide an interface to files is through the use of the java.io.FileInput-

Stream and java.io.FileOutputStream classes. Our implementation hence

instruments these two classes’ constructors and close() methods. (Ver-

sion 1.4 of the Java Runtime Environment introduced a new subsystem

for non-blocking input and output, which accesses the filesystem through

native virtual machine calls. RICE does not support file manipulation with

the java.nio subsystem.)

In principle, however, the design of the CapabilityManager supports

the augmentation of multiple classes, not just the java.io.FileInputStream

and java.io.FileOutputStream classes. This is because the only state that

is stored in the class which invokes the CapabilityManager is the name

of the file used in the constructor so that it can be passed back to the

CapabilityManager after a file is closed to allow the file to be re-protected.

57



Hence, adding support to new classes only requires the addition of a sin-

gle field to each and the instrumentation of the constructors and close()

methods.

Initialization and Committal

The CapabilityManager takes two parameters. The first is the capabilities

file referred to in Section 4.5.2. All meta-data for the virtual layer is stored

and manipulated in this file. The second parameter is a location on disk

where deltas are stored temporarily after they are computed for files that

are modified by writes. They are transferred from this location to a remote

node by an independent process.

When the runtime environment starts, the first time either a file read

or write operation occurs, an attempt is made to load the CapabilityMan-

ager. If either required parameter is not provided or there is an error, the

system will run without the CapabilityManager and files that are mem-

bers of protection groups will only be accessible in the encrypted form.

During initialization, the virtual layer is populated with meta-data read in

from the capabilities file.

While the system is operating, if at any point all the files opened by

applications are closed, the meta-data from the virtual layer is committed

to the capabilities file. This choice allows the meta-data to be committed

in a coherent state and assures that it is written out before the runtime

shuts down.

58



Opening a File

When an application constructs a class that provides access to the filesys-

tem, a call is made to the virtual machine’s native open() method. We

introduce code in the constructors to pass the filename as a parameter

to the CapabilityManager’s unsealFile() method. The CapabilityManager

inspects Resources’ hashtable of all protected objects and determines if

the file in question is being managed by RICE. If it is not, it simply returns

the same filename. The virtual machine’s native open() method is invoked

with the filename as it would in the absence of the CapabilityManager.

If the CapabilityManager determines that the file is being managed by

RICE, it looks up the ObjectMetaData for the file. With this it is able to

check whether this file has been previously opened either by any executing

thread (including the current one). If it has not been opened, then a check

is done to see if the file’s protection group’s private key is available. If it

is, then it is used to decrypt the file’s cryptographic capability and sealed

hash. The capability is used to decrypt the actual file, whose hash is

computed and compared to the unsealed hash. If the hashes do not match

the integrity check is deemed to have failed and is flagged. In addition a

pristine copy of the file is made. The decrypted file is stored in a temporary

location and it is this location that is returned by the CapabilityManager.

If the CapabilityManager found that the file had been opened, then a

decrypted file’s location would already be present in the ObjectMetaData

and this would be returned. In either case, the returned value is used as

the parameter when calling the virtual machine’s native open() method.

Since the CapabilityManager itself uses the filesystem, we introduce
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a new constructor with an extra parameter. The parameter is used to

determine whether the CapabilityManager will be used when opening the

file. The standard constructor also calls the new constructor, passing it

a value that indicates the CapabilityManager should be used. This is

transparent to applications (unless they use reflection and depend on the

fields stored in the class).

Closing a File

When an application finishes using a file, it invokes the close() method of

the class with which it gained access to the file. This may be java.io.-

FileInputStream, java.io.FileOutputStream or one of the classes which

in turn use these classes, such as java.io.FileReader or java.io.FileWriter,

to access files. We modify the close() method, allowing the normal oper-

ation to complete and then introduce a call to the CapabilityManager’s

sealFile() method. Two parameters are passed, which are the filename

and the computeDelta value which signifies whether the file was opened

for reading or writing. The CapabilityManager inspects the relevant Re-

sources hashtable to check if the file was protected by RICE. If not, it

returns silently.

A count is maintained in each file’s ObjectMetaData to keep track of

how many instances of a file have been opened. Each time a file is opened,

the count is increased and each time a file is closed, it is decreased. If this

count reaches zero, no application is currently using the file. When this

occurs, the CapabilityManager checks a flag to see if any instance of the

file had been opened for writing. If not, then the decrypted version and

pristine copy of the file are both deleted.
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If the CapabilityManager found that the file had been opened for writ-

ing, it needs to commit the changes. It must first check to see if the file’s

protection group’s public key exists. It then computes the delta of the file

as the difference between the pristine copy and the current state of the

unencrypted version. It computes the hash of both the file as well as the

delta and seals each hash with the group’s public key. The sealed hash of

the file is stored in the file’s ObjectMetaData, while the delta and its hash

are written out to a location calculated as a function of the filename, it’s

currentCheckpoint and the parameter passed to the CapabilityManager at

initialization. The currentCheckpoint is then incremented.

Each concurrent instance of a file that is opened is associated with a

unique token which is stored in the idempotency set. When a file is closed,

a check is performed to see if the token passed in as a parameter is in the

idempotency set. If it is not, then this instance of the file was previously

closed and the call is ignored, making close() an idempotent operation as

required by conventional semantics. In addition, unauthorized sealing of

the file is prevented since the sealFile() operation requires that the same

token be passed as a parameter as the one that was passed to the cor-

responding unsealFile() operation that was invoked when opening the file.

This assumes that the choice of the token is cryptographically random.

4.5.4 Runtime Protection

When the system is running, if an intrusion response engine determines

that a group is under threat, it can opt to use RICE to cryptographically

remove either write access or both read and write access.

To remove write access, it need only delete the protection group’s public
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key. Once this is done, files can still be written on the local filesystem, but

the hashes of the new files and the deltas computed can not be sealed

with the public key. When a system is investigated after a penetration,

the changes that have not been signed can be deleted, restoring the last

signed versions. In this manner, the filesystem can be restored to a state

where all unauthorized writes are left out.

To remove read access, the response component only needs to invoke

the disable() method and delete the private key used to unseal crypto-

graphic capabilities. The disable() method iterates through the protection

group’s member’s meta-data, deleting any unencrypted and pristine files

that are defined. Once this is done, if a penetration occurs, there is no

means (short of brute force key search) to gain access to the protected

files (modulo covert channels such as the magnetic remanence of data).

To re-enable access to a group, the response component can call the

enable() method. In this case, the group’s name is added to a set. When

an attempt is made to access any of the files in the set, the system will

attempt to authenticate the user. If it succeeds all groups in the set will

be re-enabled. The use of protection groups coupled with the process

of combining multiple protection groups’ re-authentication the minimizes

impact on usability.

4.6 Evaluation

In the previous sections we have described the benefits of augmenting the

runtime with RICE. However, the use of cryptography implemented in soft-

ware introduces a computational overhead that slows down file operations.
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To estimate the extent to which RICE affects performance we describe two

sets of experiments.

Since the use of RICE only introduces an impact when a file is be-

ing opened or closed, the first experiments consists of micro-benchmarks

that measure the cost it adds to open() and close() operations. The crypto-

graphic overhead is a function of the size of the file that is being opened

or closed. Hence, in the first experiment we vary the file’s size and mea-

sure the time to open the file. This cost is independent of whether the

file was opened for reading, writing or appending. The second, third and

fourth experiments measure the cost to close a file, as a function of its

size, after it has been opened for reading, writing or appending. The cost

to close a file after reading is minimal since no encryption, hash or delta

computation is needed. In the case that the file is opened for writing, the

file is created with zero length and then filled so it reaches the expected

size. The file opened for appending is already one which is the expected

size and no extra data is written to it. Thus in both the write and append

cases, the file that must be encrypted is the same size, but the append

case requires less computation for constructing the delta which results in

the operation being less expensive. The results of these experiments are

displayed in Figure 4.2.

The micro-benchmarks show that the impact of RICE on opening and

closing a file is significant. However, these operations constitute only a

fraction of the cost of a typical workload. Therefore, we ran the SPECjvm98

[SPECjvm98] suite of applications to obtain a macro-benchmark which

would provide an estimate of RICE’s impact in context.

The SPECjvm98 suite includes a separate file for each application which
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Figure 4.2: Cost of opening and closing a RICE protected file, measured
as a function of file size. The cost of closing depends on whether the file
was opened for reading, writing or appending.
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Figure 4.3: RICE imposes a noticeable impact on applications in
SPECjvm98 that rely heavily on the filesystem if limited to a single run.

contains output results that are used to check that the program ran cor-

rectly. RICE protection is added to these files. In addition, all but one of

the programs use one or more datasets that are stored in files. These files

are protected with RICE as well. The files vary in size from 55 bytes to 3:5

megabytes. The result of a single run is shown in Figure 4.3.

compress is a Lempel-Ziv compressor. It is the worst affected in terms

of absolute cost since it accesses the largest file in the workload. db per-
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forms a series of add, delete, find and sort operations on a memory res-

ident database. It is worst affected in percentage terms, since it uses

multiple small files, with the result that the key management overhead is

pronounced.

check exercises the virtual machine’s core functionality such as sub-

classing, array creation, branching, bit operations, arithmetic operations.

All the overhead introduced by RICE is from the cost of opening the file

against which the output is matched for correctness.

jess is an expert system that solves puzzles using rules and a list of

facts. jack is a lexical parser. mtrt is a ray tracer. mpegaudio is an MP3

decompressor. In each case, most of the overhead is from the capability

management. In the case of mtrt the overhead is greater since it uses a

significantly larger data set.

Since RICE is designed to take advantage of concurrent and repeated

use of files, we undertook two more experiments where the applications

are allowed to repeat a number of times. This allows us to see the benefit of

RICE when the workload involves repeated access to the same files, either

from a single process or multiple concurrent processes. The results of the

experiment with 10 runs is shown in Figure 4.4. The cases where RICE’s

overhead was most pronounced, such as db show a marked improvement.

Cases like mpegaudio are still dominated by key management since the

data is streamed once and there is little re-use. Finally, the results of an

experiment with 100 runs is shown in Figure 4.5. The impact of RICE is

no longer significant in these results.

Thus, if the workload has enough reuse of the files, RICE is viable as

is. RICE uses Java implementations of cryptographic subroutines. Native
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Figure 4.4: RICE’s overhead is noticeably diminished when SPECjvm98
runs 10 times, due to the benefits of caching.
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Figure 4.5: When SPECjvm98 runs a 100 times, the caching benefits
compensate for the initial and final cryptographic operations to the point
where the impact of using RICE is no longer significant.
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ones will offer a significant performance improvement. The experiments

were performed on a 700 MHz processor, while current generation ones

run at speeds over 3 GHz. Since the bottleneck that increased the running

time of the applications was the CPU-intensive cryptographic operations,

it is likely to reduce significantly with the use of newer, faster CPUs. In

addition, commodity processors will include dedicated hardware crypto-

graphic acceleration in the near future. This which will address the issue.

4.7 Related Work

Several projects have used cryptography to control data access at file gran-

ularity. Each has a difference from what we propose which makes it un-

suitable for application in the context we describe.

Cryptographic File System [Blaze93], Transparent Cryptographic File

System [Cattaneo01], and Cryptfs [Zadok98] use only symmetric key cryp-

tography. Guaranteeing a file’s integrity requires a means to check that it

has only been modified by an authorized party. If the key used to verify

the hash of the file was of symmetric cipher then it could be used to mod-

ify the hash as well. An asymmetric cipher is required to allow verification

of integrity without allowing changes. Framed in terms of file operations,

we need a asymmetric cipher to be able to grant read access without write

access.

Secure File System [Mazieres99] and Secure File System - Read Only

[Fu00] use asymmetric ciphers to provide authentication but not confi-

dentiality. Encrypting File System [MS99] uses an asymmetric cipher for

authenticated access along with a symmetric cipher for confidentiality. It
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does not sign hashes on writes which are verified on reads, so it is unable

to guarantee integrity.

Secure File System [Hughes00] and Cepheus [Fu99] target distributed

environments and rely on the network for gaining access to keys. Apart

from the latency introduced by the network access, this introduces the

weakness of allowing an attacker to cut off access to files by flooding the

port used.

Finally, none of these systems aim to address the issue of availabil-

ity of data after a successful attack. RICE addresses this by computing

the changes made to files and storing them on a different host to allow

file reconstruction should the original no longer be available after an in-

trusion. Additionally, RICE provides an interface for key manipulation to

allow cryptographic guarantees to be added to read/write access denials

with minimal overhead.

4.8 Summary

RICE provides a means to augment the runtime to provide data security

guarantees. Using RICE, precautionary measures can be added to files so

that in the event of an attack, the confidentiality, integrity and availablil-

ity of data can be maintained. By mapping read and write capabilities to

their cryptographic analogues of confidentiality and integrity, and orga-

nizing key management appropriately, RICE allows access to the data to

be removed rapidly by key deletion. File modifications result in deltas that

are replicated to a safe node, thereby guaranteeing availability even after

a penetration occurs.
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Chapter 5:

System Snapshot Service

5.1 Overview

A forensic analyst seeks to reconstruct an incident based on the evidence

available after the event occurs. If a site is considered to be a likely target,

precautionary measures such as the installation of surveillance equip-

ment is warranted. After an attack occurs, the recording made by the

aforementioned device can be used to aid in the reconstruction of events.

It can also guide the forensic examiner’s choice of what further evidence

to search for. Of particular utility is the fact that data of a forensic an-

alyst’s choosing can be gathered (by installing the relevant tools prior to

exposing the site to attackers) rather than relying solely on the evidence

unintentionally left by an intruder. An analogous approach is applicable

to computer forensics as well. NOSCAM is a tool developed to provide a

framework to facilitate the pro-active gathering of evidence and its subse-

quent examination.

5.2 Background

Despite the use of preventive measures, the number of security incidents

reported [Howard97] is rising. As society becomes increasingly dependent

on the computing infrastructure connected to the Internet, and technical

measures are unable to resolve all security problems, it is likely to turn

to the judiciary. Computer forensics is thus likely to play a greater role

in dealing with security breaches. The software running, the types of at-
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tacks, and the attack patterns are all becoming more complex. Relying on

incidental evidence alone to reconstruct an attack is therefore increasingly

harder.

One approach to alleviate this is to pro-actively invoke surveillance

tools on a computer system to create activity records should a forensic

analyst need them. This must be tempered due to performance and data

storage considerations as well as privacy concerns. Our work is informed

by these precepts.

5.3 Intermediate Certainty

The need to construct a tool that could be used by a forensic analyst to

shed more light on the circumstances of an intrusion arose from the fact

that not all attacks will be handled by the technical means developed to

effect automated intrusion response.

Current intrusion detection technology does not yield a low enough

false positive rate to allow unchecked active responses. Since there is

a significant possibility of misidentifying activity as aggressive when it is

not, taking offensive action against the hypothetical attacker can yield new

unwarranted attacks rather than stopping current ones.

Instead, we identified as a target of opportunity the case when an in-

trusion detector has identified an attack with an intermediate level of cer-

tainty. If all such activity were flagged as intrusive, the detector would

cumulatively trigger false alarms at an unacceptably high rate. Hence, the

detector will opt to allow this activity to pass unchecked. However, we can

opt to record the details of the circumstances in such a situation for they
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may be useful if it subsequently determined that an attack had indeed

taken place.

This goal gave rise to the tool NOSCAM that we now describe. Its scope

is the automated gathering of runtime environmental data such that hu-

man analysis may be performed to determine the source and means of

the attack. This will be needed to understand why the intrusion detector

failed to recognize the attack with a high enough degree of certainty. It

will also enable a legal response by gathering data useful to the forensic

analyst.

5.4 Forensic Goals

Forensic analysis of computers has focused on drawing inferences based

on the remnants of a system after an intrusion has occurred. For example,

the Coroner’s Toolkit [Farmer00] relies heavily on undeleted information

in the Inodes of a Unix filesystem. Intruders, however, are likely to attempt

to either hide or erase the trail they leave. This is seen, for instance, by the

recent publication of tools [Anon02] to encrypt or delete Inode information

to counter the Coroner’s Toolkit. We seek to address this specific concern.

Our goal is the automated preservation of evidence before an intrusion

occurs. Additionally, we wish to store it in a manner that is not suscepti-

ble to deletion by an attacker nor dependent on network connectivity for

the correct operation of this functionality. This is since the intruder may

attack the network functionality with ease. Further, we wish to obtain

audit information from several points in time, so that the analyst is not

forced to reason based only on the final state of the system. Finally, we
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wish to allow the analyst to prescribe what data is to be audited rather

than being forced to rely only on the logs of applications and the operating

system meta-data that survives an attack.

In addition to preserving evidence, a sound forensic examination doc-

uments each step, is repeatable, and can be verified by an independent

agent. Our design lends itself to achieving these goals.

5.5 Design

We now provide an overview of the design of the NOSCAM tool. There

are three components. noscam db is used to create and then manage the

database in which the audit trail is stored. noscam audit is responsible

for gathering data. noscam run is to be used to retrieve information.

5.5.1 Data Management

noscam db is used to create the database in which the audit trail is stored.

It creates a new database on the server with a table containing all the

requisite fields. It is further used during initialization to commit a baseline

version of the audit trail. It is subsequently used to handle the periodic

commitment of the new entries to an immutable medium, typically a CD-R

(recordable compact disc).

At a later point in time, if an intrusion is deemed to have occurred,

noscam db can be used to import the records from immutable media into

an instance of NOSCAM on an uncompromised system. They can then

be used to reconstitute an approximation of the runtime prior to intru-

sion. noscam db can convert data gathered from multiple executions of
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noscam audit into a coherent database suitable for use with noscam run.

The underlying database’s functionality is leveraged to interleave the

entries from multiple streams into an ordered sequence and to build an

index to facilitate sorting and retrieving the data.

5.5.2 Audit Trail Generation

noscam audit provides the framework with which runtime environmental

data is sampled. The set of activity that it monitors is configurable. It

allows the specification of which system utilities are to be invoked and

what parameters are to be passed.

Each type of information is audited at an interval specific to its type.

Information unlikely to change often can be audited less frequently. Other

aspects are similarly configurable.

A second such factor is the priority level at which the utility should be

invoked. This provides a simple interface by which auditing activity can

be turned on an off.

The choice of whether the output should be stored on the immutable

medium is a third aspect. This allows auditing data that is very volu-

minous not to be stored in the limited space of the immutable medium.

(Instead a cryptographic hash could be stored to verify the integrity of such

data.)

A fourth such aspect is the choice regarding whether the output should

be stored, or whether a difference relative to a baseline initial invocation

should be stored. In the case where the information generated is large in

quantity but does not change much from invocation to invocation, saving

only the differences is worth the extra computational overhead since it can
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Figure 5.1: Architecture of NOSCAM, depicting the components
noscam db, noscam audit and noscam run. An intrusion detector spec-
ifies its estimate of the current threat level by writing a number in the
priority file. NOSCAM Audit polls this file and starts and stops processes
as needed. It captures their output and inserts it into a SQL database.
Periodically, the database’s content is backed up to a CD-R by NOSCAM
DB. After an attack, it can reconstruct the database from the CD-R’s. An
analyst can use NOSCAM Run to query the database.

effect a significant saving of space on the immutable medium.

Finally, the output can be labeled with a category to facilitate retrieval

during forensic analysis.

To minimize the need to replace the immutable medium, we expect

that noscam audit will be run as infrequently as possible. Instead, it is

designed to be invoked when an intrusion detector has partially matched

a rule or noticed moderately anomalous activity.
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5.5.3 Forensic Querying

After a forensic analyst determines what specific information will be most

pertinent to answering questions regarding an intrusion, they can use

noscam run. It is designed to provide an interface for efficiently extracting

relevant output from the large collection of data gathered.

It affords the analyst the opportunity to run a query as if they were at

the host at a point in time of their choosing before the system was suc-

cessfully subverted. The analyst can do this by specifying the command

and the time, and noscam run will produce output corresponding to what

would have been seen had they been logged in.

5.6 Implementation

We now describe some details regarding our implementation of NOSCAM.

5.6.1 Platform

The development is all currently being executed on a host that is run-

ning version 7.3 of Redhat’s distribution of Linux as the operating system.

MySQL serves as the backend database. Version 1.3 of the Java runtime

environment from Sun is being used. Earlier versions of each software

system will likely work since the primitives we use have had support in

several prior versions.

All but one of the packages used in constructing NOSCAM are available

for other Unix-like systems as well as Windows. cdrecord is a tool for writ-

ing to recordable compact disks that is limited to Unix-like environments.

Since NOSCAM depends on it, this prevents porting to Windows.
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Implicit in our discussion has been the requirement that the system on

which NOSCAM is to be run must have a CD writer installed.

5.6.2 Intrusion Detector Interface

noscam audit continuously monitors a ‘priority’ file. This file will always

contain a single integer, which is the current priority level. An intrusion

detector can communicate its current estimate of the likelihood of the sys-

tem being under attack by editing this file and changing the value stored

in it. When this is done, all commands in the configuration file that are

designated below the current priority level will automatically be activated

by noscam audit, while all activities of a higher priority than the new value

will be turned off. Auditing is halted by setting a low enough value in the

‘priority’ file. An alternate implementation exposes a program interface

that accepts the priority level as a parameter.

5.6.3 Thread Management

When noscam audit initializes, it reads the configuration file and spawns

a thread for each variant of a command coupled with its parameters. Each

thread consists of an inner loop that repeats at the specified interval and

an outer loop which synchronizes on a lock that is shared with the main

noscam audit process. When a priority level changes, the main process it-

erates through its list of spawned threads, comparing their priority levels

to the new level. If the new level is lower, then the thread is signaled to

break the inner loop and the outer loop is forced to wait for the synchro-

nization lock. (The lock will be released by the main process when it needs

to restart the thread at a later point in time.) This allows noscam audit to
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use a constant size thread pool and avoid the overhead of spawning new

threads.

5.6.4 Audit Trail Scope

The audit trail can extend to a range of runtime information. Examples

are: the list of processes running; the creation, access and modification

times for a pre-specified list of files; cryptographic hashes of these files; the

routing table of the host; the list of open files and network connections; the

disk usage; the firewall rules; the list of currently used kernel modules;

traces of routes to hosts; port scans of hosts; and vulnerability scans of

connected hosts. The system is extensible so that other audit data can be

incorporated into the trail.

5.6.5 Query Utility Interface

NOSCAM aims to allow queries that mimic the execution of system util-

ities during a query-specific time frame. Consider an example where an

intrusion detector’s alarm is triggered at 12:10 pm. An analyst may wish

to see what the output of ‘netstat’, a tool that prints network statistics,

would have looked like at 12:05 pm, before the intrusion occurred. This

would allow the analyst to see which remote hosts were connected to the

compromised machine immediately before the attack.

noscam run currently provides two functions. The first takes a date and

two times as input. It produces a list of commands with options, the time

they were executed and an entry number for each. The second function

takes as input an entry number as produced by the previous function,

and outputs the data written to the standard output and standard error
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streams by the relevant command at the specified time.

5.6.6 Use of Immutable Media

noscam db keeps track of the records that have already been committed to

the immutable medium. Since the records are inserted with a monotonic

entry number and there is a single instance of noscam db with only one

thread running at any time, this consists solely of keeping track of the last

entry that was committed.

Periodically, it selects all the records that have their immutable field set

and that have an entry number that is larger than the current maximum

committed. These are then written to a file which is compressed. cdrecord,

part of the Redhat distribution, is used to create a new session on the

currently loaded CD-R in which this file is copied.

During recovery, all the relevant immutable media are mounted and

have all their sessions’ record files uncompressed. Each resulting file is

then processed and its contents are inserted into the current live NOSCAM

database, at which point it can be queried using noscam run.

5.7 Evaluation

To evaluate the feasibility of writing the records to the CD-R without need-

ing to change the media too often, we measured the space requirements

for executing a set of commands. The configuration file corresponding to

what we ran is attached in Appendix A.1. The system priority level was

higher than all entries, so all commands in the configuration were active.

As can be seen from the plot in Figure 5.2, the space used over an
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Figure 5.2: NOSCAM database size

execution of two hours was about 4 MB uncompressed and about 1.3MB

compressed. If this level of activity was used on the system, then a 700MB

CD-R would be able to hold over 6 weeks of audit trail data. A configu-

ration which used more aggressive auditing by way of a large range of

commands, files monitored and frequency of sampling would reduce this

timeframe. It appears likely, however, that the capacity is enough for many

usable configurations.

5.8 Related Work

Previous work that is related to NOSCAM falls into two broad categories.

The first consists of tools used to prepare evidence for a legal proceeding.

These are of several types. The second is auditing.
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5.8.1 Forensic Utilities

The first class includes those that aim to preserve pristine copies of a

resource such as a hard disk. This is either done by attempting to make a

bit by bit replica of the original on hardware that is identical to that of the

source, or by creating a digital image of the bitstream on an intermediate

resource. If the latter is done, then it is either followed by a process that

uses the image to recreate the data on other hardware or operated on by

software that provides an interface to the internal contents of the image.

These tasks can be achieved under a Unix-like operating system through

the use of the system utility dd.

The next class of utilities aim to gather data from areas not accessible

through an operating systems system call interface. Two examples of this

are the recovery of content in slack space and free space. The former

refers to data from an erased file that exist in a disk page that has been

reused for a new file but whose unused portion has not been deleted. The

latter refers to entire pages that have been freed and not reallocated. Both

result from the design decision made in most operating systems not to

actually delete the content of disk pages when the file is deleted, in the

interest of achieving faster delete operations. Such utilities do not run on

live resources and are hence outside the scope of NOSCAM.

The third class of tools is those that are used to analyze an extent of

data. The most frequent instantiation of this class involves the creation

of a list of keywords of interest to a forensic analyst, the construction of a

database of the occurrence of these words in the gathered data, and ability

to query the database for pointers to locations where specific words occur.
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More general tools such as glimpse [Manber94] serve this need on Unix

systems.

The fourth class is the verification of the integrity of the evidence. The

typical means of effecting this is to compute a checksum over the data

in question, storing the value and repeating the process subsequently,

checking if the computation output matches. On a Unix system, the

md5sum utility which computes an MD5 cryptographic hash may be used.

Most of the tools that fall into the above categories are complementary

to NOSCAM and can be invoked from our tool to effect their functionality

within our framework.

5.8.2 Auditing Utilities

The second broad category of related work is that done on auditing. Since

there have been numerous research efforts in the area, we describe below

the aspects that distinguish our tool from others available.

NOSCAM differs from prior work on auditing in several respects. It opts

to audit a broad set of events in a limited temporal window, as opposed to

using a narrow definition of security-related events over a long period of

time as in the NIST specification [Barkley94]. This is to allow the forensic

analyst enough contextual information to reconstruct an intrusion.

Further, NOSCAM seeks to prevent the modification of the audit trail,

rather than just detect the existence of changes as effected by integrity

checks, such as cryptographic hash chains [Schneier99].

Additionally, NOSCAM pro-actively invokes other system utilities and

records their output, rather than relying on applications to report audit

information as does the syslog tool [Lonvick01].
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Finally, NOSCAM does not rely on network connectivity for the safe

deposition of data when the host is under attack as do tools like syslog

[Lonvick01] and Remote Access Service [MS96].

5.9 Summary

NOSCAM provides the forensic analyst with a flexible means of adding a

wide range of auditing capabilities, including multiple temporal versions

of each. Additionally, it allows parts of the audit trail to be stored on a

tamper-resistant medium, guarding against the common problem of dele-

tion of the evidence upon which a forensic analysis is dependent.
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Chapter 6:

Rapid Runtime Response

6.1 Overview

A host-based intrusion detection system monitors the events in the oper-

ating system watching for patterns that signify an attack. If it is comple-

mented by an intrusion response system, then it can initiate a defensive

course of action immediately. This reduces the window of exposure dur-

ing which an attacker can effect damage. Previous work on automated

response focused on developing primitives for use in specific scenarios,

such as disabling a user account after multiple authentication failures.

We introduce a general model for real-time analysis and management of

the risk posed to a host. It requires and utilizes operating system support

for dynamically altering the access control, data protection and auditing

subsystem configurations. It searches, selects and implements a course

of action that reduces the risk below the threshold of tolerance while min-

imizing the impact on performance. Finally, we describe RheoStat, our

prototype detection and response engine.

6.2 Background

If a system is simple, its properties can be completely ascertained, either

analytically or empirically. When a system is complex, analytical tools can

not address all issues and empirical techniques require more resources

than can typically be devoted to the task of verification. To secure an

information processing system, it is necessary to ensure that it obeys a
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set of rules and maintains a set of properties. Modern computing systems

are complex. This makes it infeasible to address the task empirically.

Analytical techniques can alleviate the issue, but they can not resolve it

completely [Harrison76]. In this context, risk serves as a measure of the

extent to which the security of the system is likely to be violated.

Early approaches to computer security risk management employed static

strategies, such as the use of passwords, discretionary or mandatory ac-

cess control, and encrypted network connections [Fletcher95]. These ap-

proaches did not provide the flexibility needed to allow risk managers to

alter the levels of risk they were willing to tolerate in exchange for com-

mensurate costs. Hence, techniques to dynamically vary the risk were

developed. Inherent in the new approach was the need for risk analysis to

quantify the level of risk present in each configuration of a system.

Large data processing centers started to use the Annual Loss Expectancy

(ALE) metric [FIPS31], [FIPS65]. To compute it, the set of all possible haz-

ards that could impact the system over the course of a year was enumer-

ated as H = fh1; h2; : : : ; hng. The loss associated with each hazard h� was

denoted by l(h�) and the frequency with which it was likely to occur was

denoted by f(h�). The risk was then calculated using:

ALE =
�=nX

�=1

f(h�)� l(h�) (6.1)

The utilization of the paradigm by a number of commercial tools [NIST91]

coupled with a focused research effort [CSRMMBW88], [CSRMMBW89],

[CSRMMBW90], [CSRMMBW91] resulted in a number of improvements.

The hazard construct was decomposed into threat and vulnerability com-

ponents. The likelihood of a threat being present was added as a factor,
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replacing the hazard frequency. Each vulnerability was coupled with an

associated safeguard. The loss from a hazard’s occurrence was modeled

as a set of consequences that could affect each asset under considera-

tion. Finally, risk management was formulated as the maintenance of a

set of requirements framed as constraints on the aforementioned factors

[NIST800-12].

6.3 Runtime Risk Management

The primary goal of an intrusion response system is to guard against at-

tacks. Primitives that address specific threats have been developed. How-

ever, invoking these arbitrarily may safeguard part of the system but leave

other weaker areas exposed. Thus, to effect a rational response, it is nec-

essary to weigh all the possible alternatives. A course of action must then

be chosen which will result in the least damage, while simultaneously as-

suring that cost constraints are respected. This is the very problem that

risk management addresses.

6.3.1 Risk Factors

Analyzing the risk that a system is faced with requires knowledge of a

number of factors. Below we describe each of these factors along with

its associated semantics. We define these in the context of the operating

system paradigm since our goal is host-based response.

The paradigm assumes the existence of an operating system with a

trusted reference monitor that mediates access by subjects to objects in

the system. In addition, the file system and auditing subsystem are as-
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Figure 6.1: Risk can be analyzed as a function of the threats, their
likelihood, the vulnerabilities, the safeguards, the assets and the conse-
quences. Risk can be managed by using the safeguards to control the
exposure of vulnerabilities and manipulating the assets to limit the con-
sequences.
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sumed to be trusted components in the operating system. Finally, a host-

based intrusion detection system is assumed to be present and opera-

tional.

Threats A threat is an agent that can cause harm to an asset in the sys-

tem. We define a threat to be a specific attack against any of the

application or system software that is running on the host. It is

characterized by an intrusion detection signature. The set of threats

is denoted by T = ft1; t2; : : :g, where t� 2 T is an intrusion detection

signature. Since t� is a host-based signature, it is comprised of an

ordered set of events S(t�) = fs1; s2; : : :g. If this set occurs in the or-

der recognized by the rules of the intrusion detector, it signifies the

presence of an attack.

Likelihood The likelihood of a threat is the hypothetical probability of it

occurring. If a signature has been partially matched, the extent of the

match serves as a predictor of the chance that it will subsequently

be completely matched. A function � is used to compute the likeli-

hood of threat t�. � can be threat specific and will depend on the

history of system events that are relevant to the intrusion signature.

Thus, if E = fe1; e2; : : :g denotes the ordered set of all events that have

occurred, then:

T (t�) = �(t�; E
�

\ S(t�)) (6.2)

where
�
\ yields the set of all events that occur in the same order in

each input set.

Assets An asset is an item that has value. We define the assets to be

the data stored in the system. In particular, each file is considered
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a separate object o� 2 O, where O = fo1; o2; : : :g is the set of assets.

A set of objects A(t�) � O is associated with each threat t�. Only

objects o� 2 A(t�) can be harmed if the attack that is characterized by

t� succeeds.

Consequences A consequence is a type of harm that an asset may suffer.

Three types of consequences can impact the data. These are the loss

of confidentiality, integrity and availability. If an object o� 2 A(t�) is

affected by the threat t�, then the resulting costs due to the loss of

confidentiality, integrity and availability are denoted by c(o�), i(o�),

and a(o�) respectively. Any of these values may be 0 if the attack

can not effect the relevant consequence. However, all three values

associated with a single object can not be 0 since in that case o� 2

A(t�) would not hold. Thus, the consequence of a threat t� is:

C(t�) =
X

o�2A(t�)

c(o�) + i(o�) + a(o�) (6.3)

By removing an asset from the system, the consequences it faces can

be curtailed. In the case of data availability, replication serves this

purpose, while in the case of confidentiality and integrity, crypto-

graphic operations can be used. For the purpose of estimating risk, a

consequence curtailment effectively removes the asset from the anal-

ysis.

Vulnerabilities A vulnerability is a weakness in the system. It results

from an error in the design, implementation or configuration of either

the operating system or application software. The set of vulnerabili-

ties present in the system is denoted by W = fw1; w2; : : :g. W (t�) � W
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is the set of weaknesses exploited by the threat t� to subvert the se-

curity policy.

Safeguards A safeguard is a mechanism that controls the exposure of the

system’s assets. The reference monitor’s set of permission checks

P = fp1; p2; : : :g serve as safeguards in an operating system. Since

the reference monitor mediates access to all objects, a vulnerability’s

exposure can be limited by denying the relevant permissions. The

set P (w
) � P contains all the permissions that are requested in the

process of exploiting vulnerability w
. The static configuration of a

conventional reference monitor either grants or denies access to a

permission p�. This exposure is denoted by v(p�), with the value being

either 0 or 1. The active reference monitor can reduce the exposure

of a statically granted permission to v 0(p�), a value in the range [0; 1].

This reflects the nuance that results from evaluating predicates as

auxiliary safeguards.)

Thus, if all auxiliary safeguards are utilized, the total exposure to a

threat t� is:

V(t�) =
X

p�2P̂ (t�)

v(p�)� v0(p�)

jP̂ (t�)j
(6.4)

where:

P̂ (t�) =
[

w
2W (t�)

P (w
) (6.5)

6.3.2 Risk Analysis

The risk to the host is the sum of the risks that result from each of the

threats that it faces. The risk from a single threat is the product of the
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chance that the attack will occur, the exposure of the system to the attack,

and the cost of the consequences of the attack succeeding [NIST800-12].

Thus, the cumulative risk faced by the system is:

R =
X

t�2T

T (t�)� V(t�)� C(t�) (6.6)

6.3.3 Risk Management

If the risk posed to the system is to be managed, the current level must be

continuously monitored. When the risk rises past the threshold that the

host can tolerate, the system’s security must be tightened. Similarly, when

the risk decreases, the restrictions can be relaxed to improve performance

and usability. This process is elucidated below.

The system’s risk can be reduced either by reducing the exposure of

vulnerabilities or limiting the consequences to the data in the event of

a successful attack. The former is effected through the use of auxiliary

safeguards prior granting a permission. The latter is realized by crypto-

graphically protecting threatened files. Additionally, both approaches may

be used simultaneously. Similarly, if the threat reduces, the restrictive

permission checks and data protection can be relaxed.

Managed Risk

The set of permissions P is kept partitioned into two disjoint sets, 	(P )

and 
(P ), that is 	(P ) \ 
(P ) = � and 	(P ) [ 
(P ) = P . The set 	(P ) � P

contains the permissions for which auxiliary safeguards are currently ac-

tive. The remaining permissions 
(P ) � P are handled conventionally by

the reference monitor, using only static lookups rather than evaluating as-
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sociated predicates prior to granting these permissions. Similarly, the set

of files O is kept partitioned into two disjoint sets, 	(O) and 
(O), where

	(O) \ 
(O) = � and 	(O) [ 
(O) = O. The set 	(O) � O contains the

files that are currently inaccessible and unmodifiable due to their cryp-

tographic encapsulation. The remaining files 
(O) � O are transparently

accessible and modifiable.

At any given point, when safeguards 	(P ) and curtailments 	(O) are in

use, the current risk R0 is calculated with:

R0 =
X

t�2T

T (t�)� V
0(t�)� C 0(t�) (6.7)

where:

V 0(t�) =
X

p�2P̂ (t�)\
(P )

v(p�)

jP̂ (t�)j
+

X

p�2P̂ (t�)\	(P )

v(p�)� v0(p�)

jP̂ (t�)j
(6.8)

and:

C 0(t�) =
X

o�2A(t�)\
(O)

c(o�) + i(o�) + a(o�) (6.9)

Risk Tolerance

While the risk must be monitored continuously, there is a computational

cost incurred each time it is recalculated. Therefore, the frequency with

which the risk is estimated must be minimized to the extent possible.

Instead of calculating the risk synchronously at fixed intervals in time,

we exploit the fact that the risk level only changes when the threat to the

system is altered.

An intrusion detector is assumed to be monitoring the system’s activity.

Each time it detects an event that changes the extent to which a signature
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has been matched, it passes the event e to the intrusion response subsys-

tem. The level of risk Rb before e occurred is noted, and then the level of

risk Ra after e occurred is calculated. Thus, Ra = Rb + �, where � denotes

the change in the risk. Since the risk is recalculated only when it actually

changes, the computational cost of monitoring it is minimized.

Each time an event e occurs, either the risk decreases, stays the same

or increases. Each host is configured to tolerate risk upto a threshold,

denoted by R0. After each event e, the system’s response guarantees that

the risk will return to a level below this threshold. As a result, R b < R0

always holds. If � = 0, then no further risk management steps are required.

If � < 0, then Ra < R0 since Ra = Rb + � < Rb < R0. At this point,

the system’s security configuration is more restrictive than it needs to be.

To improve system usability and performance, the response system must

deactivate appropriate safeguards and curtailments, while ensuring that

the risk level does not rise past the threshold R0.

If � > 0 and Ra � R0, then no action needs to be taken. Even though the

risk has increased, it is below the threshold that the system can tolerate,

so no further safeguards or curtailments need to be introduced. In addi-

tion, the system will not be able to find any set of unused safeguards and

curtailments whose removal will increase the risk by less than R0�Rb� �,

since the presence of such a combination would also mean that the set

existed before e occurred. It is not possible that such a combination of

safeguards and curtailments existed before e occurred since they would

also have satisfied the condition of being less than R0�Rb and would have

been utilized before e occurred in the process of minimizing the impact on

performance in the previous step.
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If � > 0 and Ra > R0, then action is required to reduce the risk to a

level below the threshold of tolerance. The response system must search

for and implement a set of safeguards and curtailments to this end.

Recalculating Risk

When the risk is calculated the first time, Equation 6.6 is used. Therefore,

the cost is O(jT j�jP j�jOj). Since the change in the risk must be repeatedly

evaluated during real-time reconfiguration of the runtime environment, it

is imperative the cost is minimized. This is achieved by caching all the

values V 0(t�) � C 0(t�) associated with threats t� 2 T during the evaluation

of Equation 6.6. Subsequently, when an event e occurs, the change in the

risk � = Æ(R0; e) can be calculated with cost O(jT j) as described below.

The ordered set E refers to all the events that have occurred in the

system prior to the event e. The change in the likelihood of a threat t� due

to e is:

Æ(T (t�); e) = �(t�; (E [ e)
�

\ S(t�))� �(t�; E
�

\ S(t�)) (6.10)

The set of threats affected by e is denoted by �(T; e). A threat t� 2 �(T; e)

is considered to be affected by e if Æ(T (t�); e) 6= 0, that is its likelihood

changed due to the event e. The resultant change in the risk level is:

Æ(R0; e) =
X

t�2�(T;e)

Æ(T (t�); e)� V 0(t�)� C 0(t�) (6.11)

6.3.4 Cost/Benefit Analysis

After an event e occurs, if the risk level Ra increases past the threshold of

risk tolerance R0, the goal of the response engine is to reduce the risk by
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Æg � Ra�R0 to a level below the threshold. To do this, it must select a sub-

set of permissions �(
(P )) � 
(P ) and a subset of objects �(
(O)) � 
(O),

such that adding safeguards and curtailments respectively to the two sets

will reduce the risk to the desired level. By ensuring that the permissions

in �(
(P )) are granted only after relevant predicates are verified and files in

�(
(O)) are cryptographically protected, the resulting risk level is reduced

to:

R00 =
X

t�2T

T (t�)� V 00(t�)� C 00(t�) (6.12)

where the new vulnerability measure, based on Equation 6.4, is:

V 00(t�) =
X

p�2(P̂ (t�)\
(P )��(
(P )))

v(p�)

jP̂ (t�)j
+

X

p�2(P̂ (t�)\	(P )[�(
(P )))

v(p�)� v0(p�)

jP̂ (t�)j
(6.13)

and the new consequence measure, based on Equation 6.3, is:

C 00(t�) =
X

o�2(A(t�)\
(O)��(
(O)))

c(o�) + i(o�) + a(o�) (6.14)

Instead, after an event e occurs, if the risk level Ra decreases, the goal

of the response engine is to allow the risk to rise by Æg � R0 � Ra to a

level below the threshold of risk tolerance R0. To do this, it must select

a subset of permissions �(	(P )) � 	(P ) and a subset of objects �(	(O)) �

	(O), such that removing the safeguards and curtailments currently in

use for these two sets will yield the maximum improvement to runtime

performance. After the safeguards and curtailments are relaxed, the risk

level will rise to:

R00 =
X

t�2T

T (t�)� V 00(t�)� C 00(t�) (6.15)
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where the new vulnerability measure, based on Equation 6.4, is:

V 00(t�) =
X

p�2P̂ (t�)\
(P )[�(	(P ))

v(p�)

jP̂ (t�)j
+

X

p�2P̂ (t�)\	(P )��(	(P ))

v(p� � v0(p�))

jP̂ (t�)j
(6.16)

and the new consequence measure, based on Equation 6.3, is:

C 00(t�) =
X

o�2A(t�)\
(O)[�(	(O))

c(o�) + i(o�) + a(o�) (6.17)

There are O(2(jP j+jOj)) ways of choosing subsets �(
(P )) � 
(P ) and

�(
(O)) � 
(O) for risk reduction or subsets �(	(P )) � 	(P ) and �(	(O)) �

	(O) for risk relaxation. When selecting from the possibilities, the primary

constraint is the maintenance of the bound R 00 < R0, where R00 = Ra� Æg in

the case of risk reduction, and R00 = Ra + Æg in the case of risk relaxation.

The choice of safeguards and curtailments also impacts the perfor-

mance of the system. Evaluating predicates prior to granting permissions

introduces latency in system calls. Cryptographically protecting objects

decreases usability. Hence, the choice of subsets �(
(P )) and �(
(O)) or

subsets �(	(P )) and �(	(O)) is subject to the secondary goal of minimizing

the overhead introduced.

The adverse impact of a safeguard or curtailment is proportional to

the frequency with which it is utilized in the system’s workload. Given a

typical workload, we can count the frequency f(p�) with which permission

p� is requested in the workload. Similarly, we can count the frequency

f(o�) with which file o� is accessed in the workload. This can be done for

all permissions and files. The cost of utilizing subsets �(
(P )) and �(
(O))

for risk reduction can then be calculated with:

�(�(
(P )); �(
(O))) =
X

p�2�(
(P ))

f(p�) +
X

o�2�(
(O))

f(o�) (6.18)
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Similarly, if the safeguards of subset �(	(P )) and the curtailments of con-

sequences to assets in subset �(	(O)) are relaxed, the resulting reduction

in runtime cost can be calculated with:

�(�(	(P )); �(	(O))) =
X

p�2�(	(P ))

f(p�) +
X

o�2�(	(O))

f(o�) (6.19)

The ideal choice of safeguards and curtailments will minimize the safe-

guards’ and curtailments’ impact on performance, while simultaneously

ensuring that the risk remains below the threshold of tolerance. Thus, for

risk reduction we wish to find:

min �(�(
(P )); �(
(O))); R00 � R0 (6.20)

In the context of risk relaxation, we wish to find:

max �(�(	(P )); �(	(O))); R00 � R0 (6.21)

6.3.5 Complexity

We note that the semantics of risk management require that at each step

the risk must be reduced below the threshold of tolerance. This precludes

optimization strategies such as minimizing a weighted sum of risk and

runtime performance. We conclude that runtime risk management is a

0�1 integer non-linear programming problem with a linear objective func-

tion and quadratic constraint. The decision problem that corresponds to

the aforementioned optimization problem is NP-hard [Garey79] as argued

below.

Optimization Problem

Risk reduction can viewed as selecting a set of vertices in a vertex-weighted,

edge-weighted bipartite graph, such that the sum of the weights of the
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vertices selected is minimized, subject to the constraint that the sum of

the weights of the edges present in the subgraph induced by the selected

vertices is greater than a fixed threshold. The vertices in one partition

correspond to safeguards, while the vertices in the other partition cor-

respond to curtailments. The weight of each vertex is the frequency of

the corresponding permission or object in the workload. The weight of

an edge between a safeguard and a curtailment is the contribution to the

total risk that results from the exposure of the corresponding permission

and the cost of the corresponding object’s security being subverted. The

fixed threshold is the risk tolerance. Risk relaxation is similar, with the

exception that the sum of weights of the chosen vertices must be maxi-

mized, while the sum of the weights of the edges in the induced subgraph

must remain below a fixed threshold. The two optimization problems are

equivalent.

Decision Problem

The decision problem for risk reduction takes as input: (i) a bipartite graph

of the form described above, (ii) a fixed threshold which is the risk toler-

ance, and (iii) the sum of the weights of the subset of vertices to be chosen,

which corresponds to the runtime cost of the primitives in a proposed re-

sponse. The output is only true if the algorithm is able to find a subset

of vertices whose weights add up to the specified total, while the sum of

the weights of the edges in the induced subgraph is at least the specified

threshold.
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NP-Hard

Given an algorithm for the risk reduction optimization problem, the de-

cision problem can be solved by checking if the target sum of vertices’

weights is less than, equal or greater than the minimum cost output by

the optimization algorithm.

Given a decision algorithm for risk reduction, we can solve the maxi-

mum edge biclique problem which takes a bipartite graph and a threshold

as inputs and outputs whether the graph includes a biclique that is the

size of the threshold or larger. The problem is known to be NP-complete

[Peeters03].

To solve the maximum edge biclique problem, we repeatedly invoke the

risk reduction decision algorithm. The number of invocations is bounded

above by the size of the vertex set in the graph. The input is the bipartite

graph (with all vertices and edges weighted 1), the threshold and a target

number of vertices that ranges during invocations from 1 to the total num-

ber of vertices in the bipartite graph. The first time the output is true , we

stop and output true for the maximum edge bliclique problem.

Since the risk reduction decision algorithm output true , the sum of

the weights of the vertices (which is equal to the number of vertices since

all the weights were set to 1) is the least possible such that the sum of

the weights of the edges (which is equal to the number of edges since the

weights of all the edges were set to 1) was at least the threshold specified.

The total number of edges in a biclique is the maximum possible for a sub-

set of vertices of the biclique’s size. Thus, the smallest subset of vertices

that will contain a specified number of edges is a biclique.
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If all the invocations of the risk reduction decision problem produced an

output of false , then the output for the maximum edge biclique problem

is also false . This completes the reduction. If the risk reduction decision

problem were tractable, then the maximum edge biclique problem would

also be tractable, but it is known to be NP-complete. Therefore, the risk

reduction (and risk relaxation since it is analogous) decision problems are

NP-hard.

6.4 Design

While JStat’s purpose was limited to intrusion detection, RheoStat’s goal

extends to automated response. Since the choice of response depends on

runtime risk estimates, a new component is required for managing this

functionality. In addition, since risk can decrease over time, RheoStat

must be augmented to model this. These two changes are described below.

6.4.1 Threat Expiration

JStat’s design was based on that of STAT, in which an intrusion is mod-

eled as the system proceeding through a series of states. In each state,

the only transition possible is to a state which is one step closer to the

final state. For the purpose of intrusion detection, where the only result

of consequence is whether the rule has entered the final state or not, this

sufficed. However, it is also possible for unrelated inoffensive processes to

coincidentally generate the requisite sequence of system states if the sys-

tem is monitored for an extended period of time. Other intrusion detectors

address this issue by requiring that the requisite events occur within a

specified temporal window.
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Figure 6.2: Two timers are associated with each signature. When the
first event in the signature occurs, the pre-match timer is activated. If
it expires before the rule enters the final state, it resets the rule to the
uninitialized configuration. The post-match timer is activated after a rule
has been matched. It serves as the delay before the system assumes the
detected threat has passed.

Pre-Match Timer

RheoStat uses the partial match information as an estimate of the current

threat level. Thus, if it is possible to determine that the partial match of a

rule was caused by innocuous system activity, the rule should be reset so

that the corresponding threat estimate can be corrected. This is achieved

by starting a timer once the first state of the rule is matched. If the timer

expires before the rule transitions to the final state, then the rule is reset

to the original configuration when no events had occurred.

Post-Match Timer

During the course of an intrusion rule being matched, RheoStat attempts

to take precautionary measures to limit the effect of the attack. Thus,

a complete signature match does not signify the system being compro-

mised, though the safeguards and curtailments instituted may signifi-
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cantly impede the system’s usability. This is particularly likely in the

case of anomaly detection rules since they are an indicator of a probable

intrusion rather than a domain specific definition of a compromise. Once

an attack has been warded off, the system can opt to withdraw the rele-

vant safeguards and curtailments. If this is done immediately, however,

an attacker is likely to attempt to reuse the same exploit. To prevent this,

a delay is introduced for the duration that the threat is likely to persist,

before the rule is reset to its original configuration.

Interval choices

When determining either the length of time that will be allowed for a sig-

nature to match completely before it is reset, or the length of time that will

be allowed to pass after a completed match before the threat is deemed to

have passed, a tradeoff is involved. The greater the length, the less likely

it is that an attacker can compromise the system since it is more likely to

have safeguards and curtailments in place. During this period, the system

usability is also decreased, so the delay before the relevant safeguards and

curtailments are withdrawn should be minimized to the extent possible.

Since the potential for harm is lower in the case of a partial match, its

value will typically be small. Similarly, the delay after an intrusion signa-

ture matches completely will be large since it brings with it the possibility

of more severe consequences.

6.4.2 Response Choice

Determining the optimal choice of safeguards and curtailments for risk

management corresponds to an NP-hard problem, as argued in Section
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6.3.5. Since the choice is to be made in real-time, we will use a heuris-

tic which guarantees that the risk threshold is maintained. The heuristic

uses the greedy strategy of picking the response primitive with the highest

benefit-to-cost ratio repeatedly till the constraint is satisfied. By main-

taining the choices in a heap data structure keyed on the benefit-to-cost

ratio, the first primitive in the response set can be chosen in O(1) time.

This is significant since implementing a single response primitive is often

sufficient for disrupting an attack in progress.

Since the benefit associated with each unutilized safeguard or curtail-

ment is the degree to which the risk will be reduced if it is used, this is

a function of other safeguards or curtailments related to the threats that

it affects. Similarly, since the loss of benefit associated with each cur-

rently utilized safeguard or curtailment is the degree to which the risk will

increase if it is used, this is also a function of the other safeguards or cur-

tailments associated with the threats that it affects. As a result, the benefit

of adding or removing each safeguard or curtailment must be recalculated

each time other safeguards or curtailments are added or removed.

Risk Reduction

We outline the algorithm for the case where the risk needs to be reduced.

The first two steps constitute pre-processing and therefore only occur dur-

ing system initialization.

Step 1 The benefit-to-cost ratio of each candidate safeguard permis-
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sion p� 2 
(P ) can be calculated by:

�(p�) =

X

t�:p�2(P̂ (t�)\
(P ))

T (t�)�
v(p�)� (1� v0(p�))

jP̂ (t�)j
� C 0(t�)

f(p�)
(6.22)

Step 2 Similarly, the benefit-to-cost ratio of protecting an object o� 2


(O) can be calculated by:

�(o�) =

(c(o�) + i(o�) + a(o�)) �
X

t�:o�2(A(t�)\
(O))

T (t�)� V
0(t�)

f(o�)

(6.23)

Step 3 The response sets are defined as empty, that is �(
(P )) =

�(
(O)) = �.

Step 4 The single risk reducing measure with the highest benefit-to-

cost can be selected, that is:

max pmax; omax where : (6.24)

pmax = max �(p�); p� 2 
(P )

omax = max �(o�); o� 2 
(O)

If it is a permission it is added to �(
(P )) and if it is an object it

can be added to �(
(O)).

Step 5 If the choice was a permission p�, then the value �(o�) must be

recalculated for all objects o� that are affected by threats which

utilize p� in the course of their attacks. Thus, each �(o�) must

be updated if:

o� 2
[

t�:p�2P̂ (t�)

A(t�) (6.25)

105



Instead, if the choice was an object o�, then the value �(p�) must

be recalculated for all permissions p� that are utilized in the

course of an attack that affects object o�. Thus, each �(p�) must

be updated if:

p� 2
[

t�:o�2A(t�)

P̂ (t�) (6.26)

Step 6 The risk before the candidate responses were utilized is Ra. If

the responses were activated the resulting risk R 00 is given by:

R00 = Ra �
X

p�2�(
(P ))

�(p�)� f(p�) �
X

o�2�(
(O))

�(o�)� f(o�) (6.27)

This is equivalent to using Equations 6.12, 6.13 and 6.14. While

the worst case complexity is the same, when few protective mea-

sures are added the cost of the above calculation is significantly

lower.

Step 7 If R00 > R0 then the system repeats the above from Step 4 on-

wards. However, if R00 � R0 then the set of safeguards �(
(P ))

and the set consequence curtailing measures �(
(O)) must be

applied. �(
(P )) should be transferred from 
(P ) to 	(P ) and

�(
(O)) should be transferred from 
(O) to 	(O). Then the re-

sponse sets should be reset so �(
(P )) = �(
(O)) = �.

The time complexity is:

O((�(
(P )) + �(
(O)))� (log jP j+ log jOj+
X

t�2T

(jP̂ (t�)j+ jA(t�)j))) (6.28)

In the worst case, this is O(jP j + jOj)2. Unless a large variety of attacks

are simultaneously launched against the target, the first factor will re-
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main small. Additionally, if there is a strong correlation between the ex-

posures and the consequences, then the second factor will also remain

small. Thus, in practice it is likely to achieve acceptable results.

Risk Relaxation

In the case of risk relaxation, the algorithm becomes:

Step 1 For p� 2 	(P ) calculate:

�(p�) =

X

t�:p�2(P̂ (t�)\	(P ))

T (t�)�
v(p�)� (1� v0(p�))

jP̂ (t�)j
� C 0(t�)

f(p�)
(6.29)

Step 2 For o� 2 	(O) calculate:

�(o�) =

(c(o�) + i(o�) + a(o�)) �
X

t�:o�2(A(t�)\	(O))

T (t�)� V
0(t�)

f(o�)

(6.30)

Step 3 Set �(	(P )) = �(	(O)) = �.

Step 4 Find the safeguard or curtailment which yields the least risk

reduction per instance of use:

min pmin; omin where : (6.31)

pmin = min �(p�); p� 2 	(P )

omin = min �(o�); o� 2 	(O)

Add it to �(	(P )) if it is a permission. Instead, add it to �(	(O))

if it is a file.
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Step 5 Update �(o�) if:

o� 2
[

t�:p�2P̂ (t�)

A(t�) (6.32)

or update �(p�) if:

p� 2
[

t�:o�2A(t�)

P̂ (t�) (6.33)

depending on whether a permission or a file was chosen in the

previous step.

Step 6 Calculate R00:

R00 = Ra +
X

p�2�(	(P ))

�(p�)� f(p�) +
X

o�2�(	(O))

�(o�)� f(o�) (6.34)

Step 7 If R00 < R0, repeat from Step 4. If R00 = R0, proceed to next

step. If R00 > R0, undo last iteration of Step 4.

Step 8 Relax all measures in �(	(P )) and �(	(O)) and transfer them

to 
(P ) and 
(O), respectively. Set �(	(P )) = �(	(O)) = �.

6.5 Implementation

We now describe how we implemented Support for Automated Host-based

Passive Intrusion Response (SAPHIRe). The prototype augments Sun’s

Java Runtime Environment (version 1.4.2) running on Redhat Linux 9

(with kernel 2.4.20). We first describe the integration of the components

and then explain how the RiskManager coordinates their activity.

6.5.1 Initialization

Security in the Java 2 model is handled by the java.security.Access-

Controller class, which in turn invokes the legacy java.lang.Security-
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Figure 6.3: The Risk Manager receives event information from the intru-
sion detector. Based on the risk level it adjusts the permissions to access
system resources, cryptographic protection of data and auditing activity.

Manager. We instrumented the latter to invoke an Initialize class where

we create and activate an instance of the state-based intrusion detection

and response engine, RheoStat and the pro-active auditing subsystem

Noscam. Shutdown hooks are also registered with the security manager

so that these two applications are terminated when the user application

exits.

When RheoStat initializes, it registers for callbacks from the SADDLE

subsystem’s AuditRegistry, which is activated independently when any

auditable activity occurs in the runtime. Audit points have been inserted

to report on classloading, filesystem and network activity.

The java.security.AccessController’s checkPermission() method is in-
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strumented to consult the ARM subsystem prior to looking up the con-

ventional access control matrix for granting a permission. ARM’s Active-

Monitor is responsible for performing auxiliary runtime checks. ARM is

activated the first time a permission check is performed.

All Java filesystem activity is routed through the java.io.FileInput-

Stream and java.io.FileOutputStream classes (except for that of the re-

cently introduced java.nio.* subsystem). These classes’ open and close

methods are instrumented to allow the RICE subsystem’s CapabilityMan-

ager the opportunity to cryptographically transform files if necessary. In

addition, when writes are performed, the same subsystem handles calcu-

lating deltas which can then be replicated to a remote node by an inde-

pendent process. RICE is activated transparently when the first filesystem

activity occurs.

6.5.2 Risk Manager

Once the SAPHIRe subsystems are active, RheoStat registers for events

from its set of intrusion detection signatures as needed. When it receives

a callback from the AuditRegistry it updates its intrusion detection sig-

natures and then passes the event to the RiskManager. Here the event is

used to update the threat level of all relevant intrusion signatures. The �

matching function, described in Section 6.3.1, is used for estimating the

threat from a partial match. We use:

�(t�; E
�

\ S(t�)) =
jE

�

\ S(t�)j

jS(t�)j
(6.35)

With the updated threat levels, the new risk level is calculated. If it crosses

a threshold, a call is made to Noscam’s setAuditLevel() method to alter its
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Figure 6.4: When the Risk Manager needs to activate a response to effect
risk reduction, it attempts to select the one which will minimize the run-
time overhead while maximizing the risk reduction. When the Risk Man-
ager needs to deactivate a response to effect risk relaxation, it attempts to
seek one which improve the runtime performance the most while main-
taining the risk below the threshold of tolerance.

current priority level, which in turn activates or deactivates auditing activ-

ity appropriately. In addition, if the risk level increases above or decreases

below the risk tolerance threshold, the following course of action occurs.

The RiskManager maintains two heap data structures. The first one

contains all the permissions for which the ActiveMonitor has predicates

but are currently unused, and ObjectGroups that can currently be trans-

parently accessed through the CapabilityManager’s transformations. The

objects are stored in the heap using the cost-to-benefit ratios as the keys.
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The second heap contains all the permissions for which the ActiveMon-

itor is currently evaluating predicates before it grants permissions, and

ObjectGroups that can not be used since the CapabilityManger has deleted

the relevant keys. The objects in this heap are keyed by the benefit-to-cost

ratios. When the risk level rises, the RiskManager extracts the minimum

value element from the first heap, and inserts it into the second heap. If

it was a permission, the corresponding predicate evaluation is activated.

If it was an ObjectGroup, a call is made to the CapabilityManager to dis-

able it. The risk level is updated. If it remains above the risk tolerance

threshold the process is repeated until the risk has reduced sufficiently.

Similarly, when an event causes the risk to drop, the RiskManager ex-

tracts the minimum element repeatedly from the second heap, inserting it

into the first heap, disabling predicate checks for permissions and activat-

ing access to ObjectGroups, while the risk remains below the threshold of

tolerance. In this manner, the system is abled to adapt its security posture

continuously.

Finally, we note that all discussions of curtailments apply at any data

granularity. Thus, the model applies when each o� is a protection group

rather than a file. The implementation operates at object group granularity

since this reduces the number of response options. The adverse effect is

that each curtailment results in a larger change in risk, potentially causing

over-corrections. In practice, this can be minimized by choosing each

object group such that its member files’ protection needs are correlated.
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6.6 Evaluation

The NIST ICAT database [ICAT] contains information on over 6; 200 vul-

nerabilities in application and operating system software from a range of

sources. These are primarily classified into seven categories. Based on

the database, we have constructed a suite of attacks, with each attack

illustrating the exploitation of a vulnerability from a different category. In

each case, the system component which includes the vulnerability is a

Java servlet that we have created and installed in the W3C’s Jigsaw web

server (version 2.2.2) [Jigsaw]. We describe below a scenario that corre-

sponds to each attack, including a description of the vulnerability that it

exploits, the intrusion signature used to detect it and the way RheoStat

responds. The global risk tolerance threshold is set at 20.

6.6.1 Access Validation Error

An access validation error is a fault in the implementation of the access

control mechanism. Although the access control has been configured cor-

rectly, it can be bypassed. In our example, the servlet implements logic

to restrict access to certain documents based on the source IP address.

However, if a non-canonical version of the path is used, the servlet fails

to implement the restriction on the source IP address. This access con-

trol implementation flaw allows the policy to be violated despite a correct

configuration.

When the following sequence of events is detected, an attack that ex-

ploits this vulnerability is deemed to have occurred. First, the web server

accepts a connection to port 8001 (the default port that Jigsaw listens on).
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Figure 6.5: Attack exploiting an access validation error.
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Second, it serves the specific HTML document which includes the form

which must be filled to request a file. Third, the server accepts another

connection. Fourth, it executes the servlet that verifies if the file can be

served to the client, based on its IP address. Fifth, the decision to deny

the request is logged. Sixth, despite the choice to deny the request, the

file is served (due to the non-canonical path not being classified correctly).

The events must all occur within the pre-match timeout of the signature,

which is 1 minute.

In Figure 6.5, event 6 and events 8 � 12 correspond to this signature.

Events 1� 5 and event 7 are matches of other signatures which cause the

global system risk to rise. They occur since the events in this signature

overlap with those of other signatures. After event 12, the risk has risen

above 20, the threshold of risk tolerance. As a result, the RiskManager

searches for and finds the risk reduction measure which has the lowest

cost-benefit ratio. The measure it selects cryptographically curtails access

to the ’Documents’ object group which is data that is listed as being af-

fected as a consequence of this attack. This causes the risk to drop in

event 13.

6.6.2 Configuration Error

A configuration error introduces a vulnerability into the system due to set-

ting that are controlled by the user. Although the configuration is imple-

mented faithfully by the system, it allows the security policy to be sub-

verted. In our example, the servlet authenticates the user before granting

access to certain documents. The password used is a permutation of the

username. As a result, an attacker can guess the password after a small

115



Figure 6.6: Attack exploiting a configuration error.

number of attempts. The flaw here is the weak configuration.

When the following sequence of events is detected, an attack that ex-

ploits this vulnerability is deemed to have occurred. First, the web server

accepts a connection to port 8001. Second, it serves the specific HTML

document which includes the form which requests authentication infor-

mation as well as the desired document. Third, the server receives another

connection. Fourth, the servlet that verifies if the file can be served to

the client, based on the authentication information provided, will execute.

Fifth, the decision to deny the request is logged. If this sequence of events

repeats twice again within the pre-match timeout of the signature, which

is 1 minute, an intrusion attempt is deemed to have occurred.

In Figure 6.6, events 7 � 18 and 20 � 22 correspond to this signature.
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Events 1�6 are of other signatures that cause the risk level to rise. Event 18

causes the risk threshold to be crossed. The system responds by enabling

a predicate for the permission that controls whether the servlet can be

executed. This is event 19 and reduces the risk. The predicate checks

whether the current time is within the range of business operating hours.

It allows the permission to be granted only if it evaluates to true . During

operating hours, it is likely that the intrusion will be flagged and seen

by an administrator and it is possible that the event sequence occurred

accidentally, so the permission continues to be granted. Outside those

hours, it is likely that this is an attack attempt and no administrator is

present, so the permission is denied thereafter, till the post-match timer

expires after one hour and the threat is reset.

6.6.3 Design Error

A design error is a flaw that introduces a weakness in the system despite a

safe configuration and correct implementation. In our example, the servlet

allows a remote node to upload data to the server. The configuration spec-

ifies the maximum size file that can be uploaded. The servlet implementa-

tion ensures that each file uploaded is limited to the size specified in the

configuration. However, the design of the restriction did not account for

the fact that repeated uploads can be performed by the same remote node.

This effectively allows an attacker to launch the very denial-of-service (that

results when the disk is filled) that was being guarded against when the

upload file size was limited.

When the following sequence of events is detected, an attack that ex-

ploits this vulnerability is deemed to have occurred. First, the web server
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Figure 6.7: Attack exploiting a design error.

accepts a connection to port 8001. Second, it serves the specific HTML doc-

ument which includes the form that allows uploads. Third, the server re-

ceives another connection. Fourth, it executes the servlet that accepts the

upload and limits its size. Fifth, a file is written to the uploads directory.

If this sequence of events repeats twice again within the pre-match time-

out of the signature, which is 1 minute, an intrusion attempt is deemed to

have occurred.

In Figure 6.7, events 7 � 21 correspond to this signature. Events 1 � 6

are of other signatures that cause the risk level to rise. Event 21 causes

the risk threshold to be crossed. The system responds by enabling a pred-

icate for the permission that controls whether files can be written to the

uploads directory. This is event 22 and reduces the risk. The predicate

checks whether the current time is within the range of business operating
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hours. It allows the permission to be granted only if it evaluates to true .

During operating hours, it is likely that the denial-of-service attempt will

be flagged and seen by an administrator, so the permission continues to

be granted on the assumption that manual response will occur. Outside

those hours, it is likely that no administrator is present, so the permission

is denied thereafter, till the post-match timer expires after one hour and

the threat is reset.

6.6.4 Environment Error

An environment error is one where an assumption is made about the run-

time environment which does not hold. In our example, the servlet au-

thenticates a user, then stores the user’s directory in a cookie that is

returned to the client. Subsequent responses utilize the cookie to deter-

mine where to serve files from. The flaw here is that the server assumes

the environment of the cookie is safe, which it is not since it is exposed

to manipulation by the client. An attacker can exploit this by altering the

cookie’s value to reflect a directory that they should not have access to.

When the following sequence of events is detected, an attack that ex-

ploits this vulnerability is deemed to have occurred. First, the web server

accepts a connection to port 8001. Second, it serves the specific HTML

document which includes the form that authenticates a user. Third, the

server receives another connection. Fourth, it executes the servlet that

authenticates the user and maps users to the directories that they are al-

lowed to access. It sets a cookie which includes the directory from which

files will be retrieved for further requests. Fifth, the server receives another

connection. Sixth, it serves the specific HTML document that includes
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Figure 6.8: Attack exploiting an environment error.

the form which accepts the file request. Seventh, the server receives an-

other connection. Eighth, the servlet that processes the request, based

on the form input as well as the cookie data, is executed. Ninth, a file is

served from a directory that was not supposed to be accessible to the user.

The events must all occur within the pre-match timeout of the signature,

which is 1 minute.

In Figure 6.8, event 3, events 8 � 14 and event 16 correspond to this

signature. Events 1�2 and 4�7 are of other signatures. Event 14 causes the

risk threshold to be crossed. The system responds by enabling a predicate

for the permission that controls whether the file download servlet can be

executed. This is event 15 and reduces the risk. The predicate simply

denies the permission. As a result, the attack can not complete since no
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more files can be downloaded till the safeguard is removed when the risk

reduces at a later point in time (when a threat’s timer expires).

6.6.5 Exceptional Condition Handling Error

An exceptional condition handling error can result when the system is left

in an exposed state after an unexpected event occurs. It is due to the

failure to explicitly design the system to fall back into a safe state when

unplanned eventualities are realized. In our example, when the servlet is

authenticating the user, it checks a list of revoked accounts on another

site. If does not receive a response after multiple queries, it grants access

(on the assumption that there is an error in the revocation server’s func-

tioning). The resulting attack is mounted by first flooding the revocation

server’s network connection so as to assure that it can not respond, then

utilizing an expired account to gain access.

When the following sequence of events is detected, an attack that ex-

ploits this vulnerability is deemed to have occurred. First, the web server

accepts a connection to port 8001. Second, it serves the specific HTML

document which includes the form which requests authentication infor-

mation as well as the desired document. Third, the server receives another

connection. Fourth, it executes the servlet that checks the authentication

information provided. Next, an attempt is made to contact the revocation

server to check that the credentials have not been revoked. Since the re-

vocation server’s network connectivity is under attack, the connection to it

will timeout. After a total of three attempts, the check will fail, incorrectly

allowing access instead of denying it. This results in the fifth, sixth and

seventh events being network exceptions, while the eighth is the comple-
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Figure 6.9: Attack exploiting an exceptional condition handling error.
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tion of the file request. The events must all occur within the pre-match

timeout of the signature, which is 2 minutes.

In Figure 6.9, event 2 and events 8 � 14 correspond to this signature.

Event 1 and events 3 � 7 are of other signatures. Event 14 causes the

risk threshold to be crossed. The system searches for a risk reduction

measure and opts to cryptographically curtail access to the ’Documents’

object group which is data that is listed as being affected as a consequence

of this attack. This causes the risk to drop in event 15.

6.6.6 Input Validation Error

An input validation error is one that results from the failure to conduct

necessary checks on the data. A common example of this type of error is

the failure to check that the data passed in is of length no greater than that

off the buffer in which it is stored. The result is a buffer overflow which can

be exploited in a variety of ways. In our example, the servlet allows a file on

the server to be updated remotely. The path of the target file is parsed and

a check is performed to verify that it is in a directory that can be updated.

The file ’Password.cfg’ is used in each directory to describe which users

may access it. By uploading a file named ’Password.cfg’, an attacker can

overwrite and alter the access configuration of the directory. As a result,

they can gain unlimited access to the other data in the directory.

When the following sequence of events is detected, an attack that ex-

ploits this vulnerability is deemed to have occurred. First, the web server

accepts a connection to port 8001. Second, it serves the specific HTML

document which includes the form that allows uploads to selected direc-

tories. Third, the server receives another connection. Fourth, it executes

123



Figure 6.10: Attack exploiting an input validation error.

the servlet that checks that the uploaded file is going to a legal direc-

tory. Fifth, the ’Passwords.cfg’ file in the uploads directory is written to.

The events must all occur within the pre-match timeout of the signature,

which is 1 minute.

In Figure 6.10, event 1 and events 7 � 10 correspond to this signature.

Events 2� 6 are of other signatures. Event 10 causes the risk threshold to

be crossed. The system responds by enabling a predicate for the permis-

sion that controls write access to the ’Passwords.cfg’ file in the uploads

directory. This is event 11 and reduces the risk. The predicate simply de-

nies the permission. As a result, the attack can not complete since the last

step requires this permission to upload and overwrite the ’Passwords.cfg’

file. Enabling this safeguard does not affect legitimate uploads since they

do not need to write to this file.
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6.6.7 Race Condition Error

A race condition error results due to the system performing a security op-

eration in multiple steps, while assuming that the sequence is being per-

formed atomically. In our example, a servlet allows a user to create an

account by providing a username and password. The servlet creates a

writable copy of the password file in a temporary directory, to which it ap-

pends the new account information before removing write permission and

moving the file to the password file’s usual location. The design assumes

the copy, append, change permission and move operations all occur atom-

ically. An attacker uses a file upload servlet running on the same host that

has access to the temporary directory, by initiating the creation of a new

account while repeatedly uploading a spurious password file to the tem-

porary location. By continuously, repeatedly uploading the file, when the

legitimate one appears it is overwritten by the spurious one. This can be

used to grant greater privileges than they would have been allowed as a

new user having just created an account.

When the following sequence of events is detected, an attack that ex-

ploits this vulnerability is deemed to have occurred. First, the web server

accepts a connection to port 8001. Second, it serves a specific HTML docu-

ment that includes a form for checking whether a username already exists

in the system. Third, it receives another connection. Fourth, it executes

the servlet that checks whether the username is in use. Fifth, the pass-

word file is opened for copying to a temporary location. Sixth, a temporary

copy is written out. Seventh, the HTML document which includes a form

for selecting a username and password is served. Eighth, the server re-
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Figure 6.11: Attack exploiting a race condition error.

ceives a connection. Ninth, it serves the HTML document which includes a

form for uploading files. Tenth, it receives another connection. Eleventh,

it executes the servlet for uploading a file. Twelfth, the temporary pass-

word file is overwritten by the upload. Thirteenth, another connection is

accepted by the server. Fourteenth, the servlet for creating a new account

is executed. Fifteenth, it appends the new account to the temporary pass-

word file (which has been subverted at this point if the attack has not been

interfered with).

In the Figure 6.11, event 5, events 8�14, event 17, and event 20, pertain

to this signature. Events 1 � 4 and 6 � 7 relate to other signatures. Event

15 also pertains to another signature but causes the risk to exceed the

threshold of tolerance. The system responds in event 16 by activating a

predicate to deny the write permission for the password file in the uploads
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directory. Event 18 pertains to another signature but causes the risk to

exceed the threshold of tolerance. The system responds in event 19 by

activating a predicate for the permission which controls whether the file

upload servlet can execute. The predicate activated is a Chinese Wall

check which will subsequently allow access only to other files in the same

group as the servlet. Event 21 pertains to another signature but causes the

risk to exceed the threshold of tolerance. The system responds in event 22

by activating a predicate for the write permission of the temporary version

of the password file. The predicate activated is a Chinese Wall check which

will subsequently allow access only to other files in the same group. Since

another group has already been accessed in event 21, the write permission

for the temporary version of the password file will subsequently be denied.

Since the risk has not reduced below the threshold of tolerance, another

risk reduction measure is taken in event 23 in the form of limiting access

to the ’Documents’ object group. By event 24, where the attack attempts

to complete, the response measures in place prevent it from succeeding.

In particular, write access has been disabled for the temporary version of

the password file in the temporary directory where uploads are allowed,

due to event 22.

6.7 Related Work

The field of intrusion detection was created based on the premise that an

intruder’s behaviour would differ from that of a legitimate user [Anderson80],

[Denning87]. Since the systems and their users have complex behaviour,

characterizing the difference between intrusive and non-intrusive activ-

ity has been a formidable challenge and numerous approaches have been
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tried.

Most intrusion detection systems have been designed to focus on rec-

ognizing an attack and then raising an alarm, without taking any further

action. Such projects are IDES [Lunt88], MIDAS [Sebring88], Haystack

[Smaha88], Wisdom and Sense [Vaccaro89], NSM [Heberlein90], DIDS

[Snapp92], USTAT [Ilgun95], NIDES [Anderson95], Execution Monitoring

[Ko94], IDIOT [Kumar94], JiNao [Jou97], and BRO [Paxon98].

Intrusions can be limited statically through the use of sandboxing tech-

niques which specify constraints that are verified at runtime. Examples of

such systems are Java [Java] and Janus [Goldberg96].

Alternatively, the response can be dynamic. Early systems developed

limited ad-hoc responses, such as limiting access to a user’s home direc-

tory or logging the user out [Bauer88], or terminating network connec-

tions [Pooch96]. This has also been the approach of recent commercial

systems. For example, BlackICE [BlackICE] allows a network connection

to be traced, Intruder Alert [Symantec] allows an account to be locked, Net

Prowler [Symantec] can update firewall rules, NetRanger [Cisco] can reset

TCP connections and RealSecure [ISS] can terminate user processes.

Frameworks have been proposed for adding response capabilities. DCA

[Fisch96] introduced a taxonomy for response and a tool to demonstrate

the utility of the taxonomy. EMERALD’s [Porras97] design allows cus-

tomized responses to be invoked automatically, but does not define them

by default. AAIR [Carver01] describes an expert system for response based

on an extended taxonomy.

Risk analysis has been utilized to manage the security of systems for

several decades [FIPS31]. However, its use has been limited to offline
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risk computation and manual response. [SooHoo02] proposes a general

model using decision analysis to estimate computer security risk and au-

tomatically update input estimates. [Bilar03] uses reliability modeling to

analyze the risk of a distributed system. Risk is calculated as a func-

tion of the probability of faults being present in the system’s constituent

components. Risk management is framed as an integer linear program-

ming problem, aiming to find an alternate system configuration, subject

to constraints such as acceptable risk level and maximum cost for recon-

figuration.

In contrast to previous approaches, we use the risk computation to

drive changes in the operating system’s security mechanisms. This al-

lows risk management to occur in real-time and reduces the window of

exposure.

6.8 Summary

We have described a formal framework for managing the risk posed to a

host. The model calculates the risk based on the threats, exposure to

the threats and consequences of the threats. These are estimated using

augmentations to an intrusion detector, the reference monitor and the

filesystem of a host, respectively. We then described of the design and

implementation of a prototype intrusion response engine, RheoStat. Its

utility for automated response is illustrated with a set of attack scenarios

in which it manages the risk in real-time by dynamically altering the con-

figurations of the ARM reference monitor, the RICE data protection system

and the NOSCAM auditing subsystem, and thereby limits the efficacy of
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the intrusions.
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Chapter 7:

Conclusion

7.1 Lessons Learned

An underlying thread in the subsystems developed was the need for asyn-

chronous primitives in the runtime environment that could be utilized by

security applications. Current systems’ synchronous approaches suffice

when they were used in manual operations but do not scale to automated

security reconfiguration. If limited to synchronous primitives, automated

solutions must poll or periodically alter values that are of interest, rather

than being able to rely on a callback occurring when a value changes. This

introduces an artificial tradeoff between accuracy and overhead. Asyn-

chronous primitives address this.

The other issue that repeatedly surfaced was the need for finer grain

protection. The choice of granularity is subject to a tradeoff between ef-

ficacy and reduced performance. If the grain is too fine, the overhead

imposed is severe and makes the protection primitive impractical. If the

grain is too coarse, the protection mechanism is liable to allow breaches

due to unnecessary exposures. Protection primitives in use owe their de-

sign to a period when tolerance for overhead was lower and the need for

finer grain security primitives was not acute. The balance has changed on

both fronts and finer grain primitives are now needed. The ideal choice

would be a method to allow the granularity of protection to be variable,

making it possible to completely do away with the tradeoff.
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7.2 Future Directions

We constructed a prototype as a means of exploring the abstract model to

determine what runtime support would be needed. However, each subsys-

tem constructed would benefit from the extension and tuning that would

be needed when empirically derived databases of intrusion detection sig-

natures, permission predicates, lists of compromised files, and sets of

auditing commands, are used.

SADDLE could be extended to allow applications to submit entire pred-

icates to the Audit Registry. This would allow the number of callbacks

to be further decreased since another level of event filtration would occur

before the Audit Consumers are notified.

ARM predicates are activated when the exposure they guard against is

relevant to the threat at hand. Each predicate has a relative weight based

on the extent to which it reduces exposure. Defining specific predicates

and determining their weights remains an open research area.

RICE necessarily operates at file granularity when computing integrity

checks and signing deltas and closing files. This does not scale when

file size increases. Alternate schemes that provide weaker guarantees but

improved performance can be explored. One scheme would be to protect

at object granularity in object systems (such as Java). The advantage

would be that smaller pieces of data are protected and hence the latency

may be more managable. The disadvantage would be that in the presence

of many small objects, the overhead for manipulating the associated meta-

data would become dominant.

In the case of NOSCAM, the frequency with which forensic data ought
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to be gathered, the audit level at which a particular type of data ought to be

recorded and what classes of data ought to be stored, can all be optimized.

NOSCAM uses a scalar to determine threat level. This could be replaced

by a vector which separates the threat level into several components so

auditing of different classes of activity can be altered independently.

While the underlying model of RheoStat generalizes to other intrusion

detection schemes, it may be worth re-examining the models for comput-

ing risk that have been used by the information assurance community.

Temporal context can be used to dynamically modify weights of permis-

sion predicates and protected data. Non-linear predictors for modeling

signature matching may improve the correlation between observed values

and computed estimates of risk.

7.3 Final Remarks

This thesis leverages the information available in the partial matches of

the signatures that form the database of an intrusion detector. It couples

each signature with the set of resources that need to be exposed for the

attack to succeed and the set of files that will be impacted by the attack.

This information is combined to produce a composite threat level. When

this exceeds a predefined threshold, the system deduces the permissions

that must be constrained and the files that need to be protected to manage

the risk. It also pro-actively gathers forensic data to compensate for the

risk that is not modeled.

SADDLE’s Audit Registry allows application to register for callbacks

from the runtime when events of interest occur. RheoStat utilizes this
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service to maintain subscriptions for the event horizon of the signature

database. When the horizon changes, the change in risk level is computed.

If it crosses the acceptable threshold, ARM predicates are activated as

needed to reduce exposure. If risk needs to be mitigated further, the RICE

attributes for confidentiality, integrity and/or availability of the threatened

file groups are changed to limit potential damage. Based on the new risk

level, the set of forensic data gathered from the runtime by NOSCAM is

enlarged as needed. Similarly, when RheoStat partial signature matches

time out and the risk level decreases, the ARM permission constraints,

RICE attributes and NOSCAM auditing level, are all made less restrictive.

In this manner, the system is able to continuously respond to threats and

manage the risk that they pose while minimizing the impact the security

measures have on performance and usability.
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Appendix A:

Configuration

A.1 NOSCAM Audit Configuration
# noscam_audit.cfg
#
# NOSCAM configuration file. Comments must begin with #. Blanks lines are
# ignored. One line should specify the MySQL password. Another line can
# optionally specify the frequency of mirroring. All other lines
# should specify events to be audited.
# -----------------------------------------------------------------------------
# Format: password <MySQL NOSCAM Password>
#
# <MySQL NOSCAM Password> should be a string. It will be used to connect
# to the database for inserting and selecting
# audit data.
#
# Example:
#
# password noscam
# -----------------------------------------------------------------------------
# Format: update <Mirror Frequency>
#
# <Mirror Frequency> should be an integer. This is the number of seconds
# that pass before new database records are replicated
# for mirroring to a safe location/immutable medium.
#
# Example:
#
# update 600
# -----------------------------------------------------------------------------
# Format: <Frequency> <Priority> <Immutable> <Category> <Delta> <Command> <Options>
#
# <Frequency> should be a positive integer. This is the number of seconds
# between invocations of the command.
#
# <Priority> should be an integer. If noscam_audit is running at a level above
# and including this one, the command will be invoked.
#
# <Immutable> should be either 0 or 1. If it is 1, the records will be
# periodically committed to an immutable medium.
#
# <Category> should be an alphabetical string. It serves as a classifier.
# Typical values are "file", "net", "cpu".
#
# <Delta> should be either 0 or 1. If it is 1, the output from an invocation
# will be compared to that of the initial invocation, and only the
# difference is stored. This is useful when the output is large but
# does not vary much.
#
# <Command> should be a string. This is an executable (binary or script) in
# the runtime path from where noscam_audit is invoked. Its output
# will be recorded by noscam_audit.
#
# <Options> should be a string. These are the parameters to be passed to
# to the command.
#
# Example:
#
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# 300 5 1 net 0 netstat --protocol=inet
#
# This causes noscam_audit to run ‘netstat --protocol=inet’ every
# 5 minutes (300 seconds) if the current priority level is 5 or lower.
# It labels the output as being in the class ‘net’ so queries for ‘net’
# activity by noscam_run will show its output. Since <Delta> is 0, the
# output will be stored (as opposed to storing the difference from the
# previous invocation). Periodically the output is committed to the
# immutable format.
# -----------------------------------------------------------------------------

Example
# -----------------------------------------------------------------------------
# Format: password <MySQL NOSCAM Password>
# Format: update <Mirror Frequency>
# Format: <Frequency> <Priority> <Immutable> <Category> <Delta> <Command> <Options>
# -----------------------------------------------------------------------------

password noscam
update 300

60 5 0 cpu 1 lastcomm
60 7 0 cpu 0 ps auxw
600 9 0 net 1 last
14400 9 0 file 0 stat /etc/passwd
600 3 0 file 0 ls -l /tmp
14400 9 0 file 1 strings /bin/login
120 7 0 net 0 netstat -a -A inet
14400 1 0 file 0 md5sum /root/.ssh2/authorization
300 7 0 net 0 route
600 5 0 net 0 arp
3600 5 0 cpu 0 dmesg
3600 5 0 cpu 1 ksyms
3600 5 0 cpu 1 sysctl -a
300 5 0 cpu 1 lsof -U
600 6 0 file 0 lsof
14400 4 0 hw 1 lspci
14400 4 0 hw 1 lsusb
14400 6 0 hw 1 lsdev
14400 6 0 cpu 1 lsmod
14400 4 0 cpu 1 procinfo
14400 4 0 cpu 1 rpm -qa
14400 6 0 hw 1 cdrecord -scanbus
300 6 0 net 1 findsmb
300 6 0 file 1 mount
14400 3 0 net 1 ifconfig
3600 4 0 net 1 iwconfig
300 4 0 file 1 df
3600 6 0 file 1 du -hs /tmp
900 6 0 net 1 ipchains -L
14400 4 0 file 0 find / -name core
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A.2 ARM Predicates
# predicates.cfg
#
# Predicate configuration file. Comments must begin with #. Blanks lines
# are ignored. Each permission which can utilize a predicate to reduce
# exposure must be listed here.
#
#--------------------------------------------------------------------------------
# Format:
#
# Permission: <Permission>
# Target: <Target>
# Action: <Action>
# Predicate: <Predicate>
# Timeout: <Timeout>
# Exposure: <Exposure>
# Frequency: <Frequency>
#
# <Permission> must be the class name of the permission to which the predicate
# is being associated.
#
# <Target> must be the object for whose access permission is being requested.
#
# <Action> must be the type of access which is being requested.
#
# <Predicate> must be the class name of the predicate which will be evaluated
# to reduce the exposure if needed when granting this permission.
#
# <Timeout> must be a positive integer. This is the number of milliseconds
# that the predicate is allowed to evaluate for. After this time,
# if the predicate has not completed, it is terminated and the
# permission is denied.
#
# <Exposure> must be a floating point number in the range 0 to 1. If the
# predicate is evaluated, this is the residual exposure after its
# evaluation.
#
# <Frequency> is a positive floating point number indicating the relative
# frequency of the permission in the workload.
#
# Example:
#
# Permission: java.io.FilePermission
# Target: /data/employees/salaries.doc
# Action: read
# Predicate: edu.duke.cs.saphir.examples.OperationalHours
# Timeout: 1000
# Exposure: 0.5
# Frequency: 10
#
# When a request for ’read’ access to the file ’/data/employees/salaries.doc’
# occurs, the predicate ’edu.duke.cs.saphir.examples.OperationalHours’ is
# executed in designated active. If it evaluates ’true’, then the static
# permission check can proceed. If it evaluates ’false’ or does not
# complete in 1000 milliseconds, then the permission is denied. When the
# Risk Manager chooses a response to a threat, it weighs the fact the
# permission’s relative frequency in the workload is 10 and that it reduces
# exposure by 0.5 when deciding whether to activate the use of the predicate.
#--------------------------------------------------------------------------------
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A.3 RICE Group Manager
Usage:

To add a file to or remove a file from a group:

java -Dmode=<Mode> -Dpassword=<Password> -Dfile=<Group File Location>
-Dgroup=<Group Name> edu.duke.cs.saphir.GroupManager
<File to be added to or removed from group>

<Mode>=add : Add file to group, <Mode>=remove : Remove file from group

To list all files in a group:

java -Dmode=<Mode> -Dpassword=<Password> -Dfile=<Group File Location>
-Dgroup=<Group Name> edu.duke.cs.saphir.GroupManager

<Mode>=list : List all files in group <Group Name>

To list all groups:

java -Dmode=<Mode> -Dpassword=<Password> -Dfile=<Group File Location>
edu.duke.cs.saphir.GroupManager

<Mode>=list : List all groups

To generate a group file without password protection (for runtime use):

java -Dmode=<Mode> -Dpassword=<Password> -Dfile=<Group File Location>
-Doutput=<Runtime File Location> edu.duke.cs.saphir.GroupManager

<Mode>=output : Write group file without password protection to
<Runtime File Location>

To generate a password protected group file from an unprotected one:

java -Dmode=<Mode> -Dpassword=<Password> -Dfile=<Group File Location>
-Dinput=<Unprotected File Location> edu.duke.cs.saphir.GroupManager

<Mode>=input : Read group file without password protection from
<Unprotected File Location>
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A.4 RICE Group Costs
# groups.cfg
#
# The consequence of compromising the security of each ObjectGroup is listed
# here. The cost associated with each group’s confidentiality, integrity and
# availability are listed, followed by the relative frequency with which
# members of the group are accessed by a typical workload.
#
#--------------------------------------------------------------------------------
# Format:
#
# <ObjectGroup name>
# <Confidentiality cost> <Integrity cost> <Availability cost> <Workload frequency>
#
# <ObjectGroup name> is the name of the RICE Object Group.
#
# <Confidentiality cost> must be a positive floating point that represents the
# cost of a compromise of the confidentiality of the group.
#
# <Integrity cost> must be a positive floating point that represents the cost of
# a compromise of the integrity of the group.
#
# <Availability cost> must be a positive floating point that represents the cost
# of a compromise of the availability of the group.
#
# <Workload frequency> must be a positive floating point number that specifies
# the relative frequency of the object group’s members
# occurrence in a typical workload.
#
# Example:
#
# system
# 10 100 10 1000
#
# The cost of loss of confidentiality of ’system’ files is 10. This is lower than
# the cost of loss of integrity which could allow the security policy to be
# subverted. Since the ’system’ files typically do not change much, they are
# likely available in backups and the significance of their availability after
# an attack is therefore lower. Finally, ’system’ files are used frequently in
# a typical workload and hence have a high frequency.
#--------------------------------------------------------------------------------
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A.5 RheoStat Signatures
# signatures.cfg
#
# Signature configuration file. Comments must begin with #. Blanks lines
# are ignored. Each signature either corresponds to an intrusion or a privileged
# predicate. The sequence of RheoStat states must be immediately listed after
# the signature name. Each state event is composed of the subject, event type,
# and object.
#
#--------------------------------------------------------------------------------
# Format:
#
# <Signature name>
# <Subject> <Event> <Object>
#
# <Subject> should be the class name that is causing the event to occur. The
# wildcard * can be used to match all subjects.
#
# <Event> should be an auditable event, that is one for which appropriate
# instrumentation is present in the runtime such that it is reported to
# to the Audit Registry.
#
# <Object> should be the target of the event. Its specific form will depend on the
# type of event. The wildcard * can be used to match all objects.
#
# Example:
#
# A check is done to ensure upload rights for the directory but no check
# is done to ensure that the file being uploaded is not the authentication
# ’Passwords.cfg’ file, allowing the attacker to add themselves to the
# users that can read the upload directory.
#
# Input Validation Error
# java.lang.Thread ACCEPT_LOCAL_PORT 8001
# org.w3c.util.CachedThread OPEN_READ /WWW/saphir/LimitedUploadLocations.html
# java.lang.Thread ACCEPT_LOCAL_PORT 8001
# org.w3c.util.CachedThread LOAD LimitedDirectoriesUpload.class
# org.w3c.util.CachedThread OPEN_WRITE /WWW/saphir/uploads/Passwords.cfg
#--------------------------------------------------------------------------------
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A.6 RheoStat Threat Timeouts
# timeouts.cfg
#
# Threat timeout configuration file. Comments must begin with #. Blanks lines
# are ignored. Each signature from signatures.cfg that corresponds to an
# intrusion must have associated with it two time out values whose units are
# seconds.
#
#--------------------------------------------------------------------------------
# Format:
#
# <Signature name>
# <Pre-match Timeout> <Post-match timeout>
#
# <Pre-match timeout> should be a positive integer. This is the time in which a
# signature must match completely. If it does not match in
# the specified time, it will be reset to a state that is the
# equivalent of no matching event having occurred. This value
# is typically small.
#
# <Post-match timeout> should be a positive integer. This is the time that will
# be allowed to pass after a signature has been matched
# completely before the threat is deemed likely to no longer
# be present. When this amount of time passes after an
# intrusion occurs, the signature will be reset to its
# original state, on the assumption that corrective action
# would have been taken in the interim. This value is
# typically large.
#
# Example:
#
# Access Validation Error
# 60 3600
#
# If the signature ’Access Validation Error’ is not completely matched within
# 60 seconds from the occurrence of its first event, it is reset. If it is
# matched, then an hour (3600 seconds) is allowed to pass before its threat
# is reset to 0.
#--------------------------------------------------------------------------------
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A.7 Risk Manager Threats
# threats.cfg
#
# Threat list. Each intrusion signature listed in signatures.cfg can either be
# an intrusion detection signature, a privileged predicate or both. If a
# signature is a corresponds to an intrusion, it must be listed here.
#
#--------------------------------------------------------------------------------
# Format:
#
# <Signature name>
#
# <Signature name> should be one of the signatures listed in signatures.cfg.
#
# Example:
#
# Access Validation Error
#
# The ’Access Validation Error’ signature will be monitored as a threat and
# the risk level will be dynamically adjusted according to the extent to which
# it is matched.
#--------------------------------------------------------------------------------
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A.8 Risk Manager Exposures
# exposures.cfg
#
# Exposures configuration file. Comments must begin with #. Blanks lines
# are ignored. Each exposure consists of the threat which it pertains to
# followed by the permission whose granting creates the exposure.
#
#--------------------------------------------------------------------------------
# Format:
#
# Threat: <Threat>
# Permission: <Permission>
# Target: <Target>
# Action: <Action>
#
# <Threat> must be one of the threats listed in threats.cfg.
#
# <Permission> must be the class name of the permission which the threat
# utilizes in the course of its completion.
#
# <Target> must be the object for whose access permission is requested.
#
# <Action> must be the type of access which is being requested.
#
# Example:
#
# Threat: Access Validation Error
# Permission: java.io.FilePermission
# Target: /data/employees/salaries.doc
# Action: read
#
# The intrusion signature ’Access Validation Error’ requires ’read’
# access to the file ’/data/employees/salaries.doc’ in order for the
# attack to successfully complete.
#--------------------------------------------------------------------------------
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A.9 Risk Manager Consequences
# consequences.cfg
#
# The consequences of successful intrusions is specified by the data that may
# be affected. Each intrusion signature is followed by a sequence of RICE
# Object Group’s whose members may be impacted by the attack.
#
#--------------------------------------------------------------------------------
# Format:
#
# <Signature name>
# <ObjectGroup name>
#
# <Signature name> is the name of the intrusion and must be listed in
# signatures.cfg.
#
# <ObjectGroup name> is the name of the RICE Object Group that is affected.
#
# Example:
#
# Access Control Validation
# system
#
# If the ’Access Control Validation’ intrusion occurs, it can compromise
# the security of the data in the RICE Object Group ’system’.
#--------------------------------------------------------------------------------
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A.10 Risk Manager Threshold
# threshold.cfg
#
# The risk threshold below which the system must remain. If the system’s
# risk rises above it, then the Risk Manager will act to reduce the risk.
#
#--------------------------------------------------------------------------------
# Format:
#
# <Threshold>
#
# <Threshold> must be a floating point number which acts as the risk threshold.
#
# Example:
#
# 1000
#
# If the risk rises over 1000, the system will tighten permissions and reduce
# data access. When the risk drops below this, the previous steps are reversed.
#--------------------------------------------------------------------------------
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