
PIDGIN: Privacy-Preserving Interest and
Content Sharing in Opportunistic Networks

Abstract

Opportunistic networks have recently received consider-
able attention from both industry and researchers. These
networks can be used for many applications without the
need for a dedicated IT infrastructure. In the context of
opportunistic networks, the application to content sharing
in particular has attracted specific attention. To support
content sharing, opportunistic networks may implement a
publish-subscribe system in which users may publish their
own content and indicate interest in other content through
subscription. Using a smartphone, any user can act as a
broker by opportunistically forwarding both published con-
tent and interest within the network. Unfortunately, despite
their provision of this great flexibility, opportunistic net-
works raise serious privacy and security issues. Untrusted
brokers can not only compromise the privacy of subscribers
by learning their interest but also can gain unauthorised
access to the disseminated content. This paper addresses
the research challenges inherent to the exchange of content
and interest without: (i) compromising the privacy of sub-
scribers and (ii) providing unauthorised access to untrusted
brokers. Specifically, this paper presents an interest and
content sharing solution that addresses these security chal-
lenges and preserves privacy in opportunistic networks. We
demonstrated the feasibility and efficiency of this solution
by implementing a prototype and analysing its performance
on real smart phones.

Keywords: Secure Opportunistic Networks, Privacy-preserving
Data Sharing, Sensitive Policy Enforcement, Encrypted CP-ABE
Policies, Secure Haggle

1 Introduction

In the last few years, the usage of smartphones has grown
dramatically and is predicted to increase even more in com-
ing years [1]. Considering the pervasive nature of smart-
phones, mobile opportunistic networks could be leveraged

to share information. Several of the concepts behind oppor-
tunistic networks originate from Delay Tolerant Networks
(DTNs) that offer flexible content sharing without requir-
ing a dedicated IT infrastructure [2]. Haggle [3], an ex-
ample of such a network architecture, allows smartphones
to opportunistically share content via short-range commu-
nication [4]. To share content, opportunistic networks such
as Haggle implement a publish-subscribe system in which
nodes can publish their own content and subscribe to other
content by indicating their interest. Any node can also act as
a broker (also called a relay) that opportunistically receives
content and interest, matches them, and possibly delivers
that content to other nodes.

The opportunistic networks could be applied to the ex-
change of information in a wide range of domains from
social media to military applications. However, such net-
works also present serious privacy and security issues, par-
ticularly the need for an approach to the exchange of content
and interest that neither (i) compromises the privacy of sub-
scribers nor (ii) provides unauthorised access to untrusted
brokers.

For the regulation of access to content, cryptographic ap-
proaches such as Attribute-Based Encryption (ABE) which
include Ciphertext-Policy ABE (CP-ABE) [5] and Key-
Policy ABE (KP-ABE) [6] offer fine-grained control over
content but leak information about the policies and at-
tributes that protect that content, respectively. To protect
these policies, state-of-the-art solutions exist to enforce sen-
sitive policies in outsourced environments [7–9]. However,
such solutions assume that the outsourced server does not
collude with any client. Thus, these solutions cannot be ap-
plied in opportunistic network settings in which nodes com-
municate in a peer-to-peer fashion, i.e., serving as both a
client and a server.

This paper presents PIDGIN (Privacy-preserving Interest
anD content sharinG In opportunistic Networks), an inter-
est and content sharing scheme that preserves privacy. In
PIDGIN,

• brokers match subscriber’s interest against policies as-
sociated with content without compromising the sub-
scriber’s privacy (say, by learning attributes or inter-

1

est).

• unauthorised nodes do not gain access to content, and
authorised nodes gain access only if they satisfy fine-
grained policies specified by the publishers.

• the system provides scalable key management in
which loosely-coupled nodes communicate with each
other without any prior contact.

As a proof-of-concept, we have developed and analysed
the performance of a prototype running on real smartphones
in order to show the feasibility of our approach.

The rest of this paper is organised into the following sec-
tions. Section 2 provides a brief overview of opportunistic
networks, describes the motivating scenario, and lists some
of the major research challenges for interest and content
sharing in opportunistic networks with guaranteed preser-
vation of privacy. In Section 3, we draw the system model.
Next, we describe the proposed scheme in Section 4. Sec-
tion 5 elaborates PIDGIN’s details. In Section 6, we provide
the concrete construction. Section 7 analyses PIDGIN from
a security perspective. In Section 8, we report the outcomes
of the performance analysis. Section 9 is dedicated for dis-
cussion. Section 10 reviews the related work. Finally, we
conclude in Section 11 and highlight some directions for
future work.

2 Opportunistic Networks

In this section, we provide a brief overview of oppor-
tunistic networks, a motivating scenario, and the major re-
search challenges in opportunistic networks that we ad-
dress.

2.1 Overview

Conceptually, opportunistic networks originate from
DTNs that enable content exchange between nodes in a
publish-subscribe fashion, generally via short-range com-
munication. In a typical opportunistic network, such as
Haggle, a subscriber node subscribes interest while a pub-
lisher node publishes content to its neighbouring nodes [4].
These neighbouring nodes are intermediate nodes, known
as brokers, that epidemically disseminate interest and con-
tent within the network. A resolution takes place when a
broker node finds a match between the interest of a sub-
scriber and the tags associated with published content. As
a result of resolution, a broker forwards content to the sub-
scriber.

2.2 Motivating Scenario

Curiosity: A Military Mission: Let us consider a bat-
tlefield scenario for a mission called Curiosity in which

����������

	
���������������	
���
�

�

����� ���������

�������������	
���
�

Figure 1. An example of content sharing in an
opportunistic network.

soldiers are equipped with smartphones. During the
mission, a scout collects some sensitive information about
the enemy (for instance, an image of the enemy’s position)
using her smartphone camera. After acquiring this sensitive
information, a scout desires to share it with other soldiers.
For this reason, she may tag the image with the mission
name, i.e., Curiosity. Unfortunately, there is no Internet
connectivity on the battlefield and the only way to share
is to use the short-range communication offered by smart-
phones. Therefore, the scout would like to share the image
with other soldiers using their smartphones. We assume
that the soldiers are interested in getting information about
the mission and subscribe using their smartphones.

Haggle: A Possible Solution: To exchange information
in such scenarios, we can leverage opportunistic networks,
such as Haggle. Using Haggle, the scout publishes the
image with Curiosity as a tag. Any solider can show
interest in Curiosity by subscribing, as illustrated in Figure
1. Here, we assume that someone as a broker receives
both interest and image along with the tag. Whenever
that happens, the broker checks whether the interest of a
subscriber matches any tag associated with the image. If
so, the broker forwards the image to the subscriber(s).

Privacy and Confidentiality Issues: First of all, to pre-
serve confidentiality, the information about the Curiosity
mission should be shared only within a particular group of
soldiers. Each content item is associated with an access pol-
icy that indicates who should have access to it. For example,
information about the Curiosity mission might have a pol-
icy (P) that content is shared with either a Major or a Soldier
from the Infantry unit. Even if the content (i.e., image) is
encrypted, the policy itself could reveal sensitive informa-
tion. That is, an enemy may infer useful information from
the fact that some contents are sent to a Major or a Soldier
from the Infantry unit. Outsiders (i.e., enemies) and insid-
ers (i.e., soldiers) serving as brokers may gain unauthorised
access to contents. Furthermore, the interest of subscribers
and the tags associated with content may also reveal sensi-
tive information. Therefore, in addition to the content itself,
its associated tags, policies, and subscription information

2

(i.e., interests) should also be protected.
This scenario motivates the need to tackle the security

and privacy issues that we generally face in opportunistic
networks. In the following section, we list some major re-
search challenges inherent to these issues that we address in
this paper.

2.3 Research Challenges

To guarantee the preservation of privacy for interest and
content sharing in opportunistic networks, the following
major research challenges related to both (i) privacy and
confidentiality (i.e., C1-C3) and (ii) functionality (i.e., C4-
C5) need to be addressed:

C1 In the presence of unauthorised brokers, how do we reg-
ulate access to disseminated content and preserve con-
fidentiality?

C2 In the presence of curious brokers, how does the net-
work exchange content without compromising the pri-
vacy of its subscribers?

C3 How can a subscriber subscribe to content without ex-
posing her interest to untrusted brokers?

C4 In order to minimise the flood of unnecessary traffic on
the communication network, how do we ensure that a
subscriber receives content if and only if authorised to
decrypt?

C5 Assuming the loosely-coupled nature of the publish-
subscribe model, how do we address the challenges
above (i.e., C1-C4) without sharing any keys between
the subscriber, publisher and broker nodes?

3 System Model

Before presenting our threat model and assumptions, we
identify the entities involved in the system:

A Publisher is a node that can publish the content.

A Subscriber is a node that can subscribe interest.

A Broker is a node that may receive and disseminate both
content and interest. It evaluates whether any content
matches known interest. On successful evaluation, it
forwards content to the subscribers.

Trusted Key Management Authority (TKMA) is an of-
fline trusted entity that distributes keying material (in-
cluding private keys and/or public parameters) to all
nodes out of the band (usually once in the lifetime of a
node, typically when the node is initialised).

Threat Model. We assume that brokers are honest-but-
curious, i.e., they honestly follow the protocol, but remain
curious to learn about content and interest. Also, we as-
sume that brokers may collude. Furthermore, we consider
that the TKMA is fully trusted and plays a role at the time
of system initialisation. Last but not least, we assume only
passive adversaries and do not consider active adversaries
that can manipulate the exchanged information.

4 Approach

In this section, we describe the proposed scheme for pre-
serving privacy during interest and content sharing in oppor-
tunistic networks. As a starting point, we consider some ba-
sic schemes that partially address research challenges listed
in Section 2.3. Next, we gradually address all research chal-
lenges and finally describe the proposed scheme.

����������

	
���������������	
���
�
��

�

���	�

�

�	����� ��������

�

������
���������������������	
���
��� �

Figure 2. Regulation of access on contents
using CP-ABE policies.

4.1 Scheme I: Regulate Access on Content

To preserve the confidentiality of content, a publisher
might specify who can gain access. A possible approach for
the publisher could be to regulate access on content by em-
ploying ABE, such as CP-ABE [5] or KP-ABE [6]. ABE of-
fers fine-grained policies for content access. In this scheme,
we consider CP-ABE because it enables a publisher to ex-
ert control over access to content, as described in the use
case scenario. In contrast, in KP-ABE, a key generation au-
thority exerts control over who can access content. Figure
2 illustrates this scheme in which the image is encrypted
according to the policy: either a Major or a Solider from
the Infantry unit can get access. The policy is expressed
as a tree whose leaf nodes represent the attributes; non-leaf
nodes denote the AND, OR and threshold gates. In this
scheme, a broker forwards content to the subscribers if a
subscriber’s interest matches with any tag associated with
the content.

This approach preserves the confidentiality of dissem-
inated contents without providing access to unauthorised
brokers. This scheme, however, has a drawback. A broker
might send content to subscribers who might not be able to
decrypt it. In fact, a broker’s role is merely to match the

3

interest of subscribers against tags associated with content
without checking whether a subscriber has access authori-
sation. For instance, consider a subscriber who is a soldier
but neither a Major nor a member of the Infantry unit.

In summary, this scheme resolves the access control
problem (C1) while raising the problem of a communica-
tion network flooded with unnecessary traffic (C4).

4.2 Scheme II: Perform an Authorisation Check

This scheme extends Scheme I and resolves the flood-
ing problem C4. In this scheme, a subscriber may send
attributes and interest to brokers so that a broker can per-
form an authorisation check prior to forwarding the con-
tents. To perform the authorisation check, a broker matches
leaf nodes in the policy tree with the subscriber’s attributes.
If there is a match, a leaf node will be marked as satisfied.
After evaluating leaf nodes, a broker evaluates intermediate
nodes (including AND, OR and threshold) in the policy. A
broker will forward encrypted content to subscriber if and
only if (i) the root node of the policy is marked as satisfied
and (ii) the interest matches to the tags.

This scheme targets both the access control problem (C1)
and the flooding problem (C4). However, it still raises some
privacy issues. First, both the cleartext attributes of sub-
scribers and the cleartext CP-ABE policies can compromise
the privacy of subscribers, i.e, C2. For example, the enemy
may learn from policies that there is some information in-
tended for a Major. Second, the cleartext interest of a sub-
scriber may also leak information, i.e., C3. For instance, the
enemy may learn that this content or interest concerns the
Curiosity mission.

����������

	
���������������	
��

����

���

�

�������	��

�

�������
�	�� ��������
	���

�

������
���������������������	
��

�����

���������������������
�	���

��������
	����

�

� ��

Figure 3. Private information is hidden
through replacement of leaf nodes in the CP-
ABE policy, tags, attributes and interest items
with their corresponding hashes.

4.3 Scheme III: Hide Private Information Using a
Hash

In order to partially overcome the issue of subscriber
privacy (C2), a subscriber and a publisher may hash both
attributes and leaf nodes in the policy tree, respectively.

Similarly, a subscriber’s interest could be protected by cal-
culating the hash values of interest items and tags associ-
ated with contents. In this scheme, a broker forwards en-
crypted content to subscribers if and only if (i) the hash
value of the interest matches the hash value of the tag
(i.e., h(‘Curiosity’)) and (ii) hash values of attributes (i.e.,
{h(‘Soldier’), h(‘Infantry’)}) satisfy the policy P ′ whose
leaf nodes are also hashed, as shown in Figure 3.

Unfortunately, this scheme is vulnerable to a pre-
computed dictionary attack. That is, the enemy may pre-
calculate a list of hashes for possible attributes (and leaf
nodes in the policy tree) and a list of hashes for potential
interest items (and tags). The pre-calculated list of hashes
may easily reveal the original attributes (and leaf nodes in
the policy tree) and interest (and tags).

����������

�������	
��� ���

�����	
��

�����������
�	���

�����	
��

������������
	����

���

�

�����	
��

�����
�����	��

�

�����	
��

������
�����
�	��

�����	
��

�����
������
	���

�

������
��������

� ��

Figure 4. Hardening against a pre-computed
dictionary attack through concatenation a
pair of (i) a leaf node in the CP-ABE policy and
a tag (ii) an attribute and an interest item, then
calculation of the hash on the final string.

4.4 Scheme IV: Hardening Against a Pre-
Computed Dictionary Attack

To harden against the pre-computed dictionary attack,
a publisher may replace each leaf node in the policy with
a hash of a concatenated pair of a tag and an attribute.
Similarly, a subscriber may subscribe using the hash of a
concatenated pair of an interest item and an attribute (i.e.,
{H(‘Curiosity’ || ‘Soldier’), H(‘Curiosity’ || ‘Infantry’)}) as
illustrated in Figure 4. In this scheme, a broker just needs
to check whether the items in a subscription satisfy the
hashed policy P ′. Upon successful evaluation, the broker
will forward the content to subscribers. The advantage of
this scheme is that it not only hardens against pre-computed
dictionary attacks but also decreases the number of compar-
isons performed at the broker’s end as compared to Scheme
III. This is because a broker performs integrated checks that
cover both authorisation and interest matching simultane-
ously in contrast to Scheme III in which a broker performs
two different checks: one to check the authorisation and
one to match the interest. Though it enlarges the key space
(which could be computationally extensive), this scheme is
still vulnerable to a pre-computed dictionary attack.

4

����������

�������	
��� ����

�����		�
��
��	�����������������

�����		�
��
��	���������	
�	��
��

���

�

����
��
��	������
�������

�

����
��
��	�������
���������

����
��
��	������
��	
�	��
�

�

������
��������

� ��

Figure 5. The PIDGIN scheme protects the
content, the policy, the tags associated with
content, and the subscriber’s interest and at-
tributes.

4.5 PIDGIN: The Proposed Scheme

Our proposed scheme, PIDGIN, aims at addressing all
research challenges (i.e., C1-C5) listed in Section 2.3. The
main idea behind PIDGIN is regulation of access to con-
tent using CP-ABE and extension of cleartext CP-ABE poli-
cies with the Public-key Encryption with Keyword Search
(PEKS) scheme [10] to protect attributes, interest, tags and
leaf nodes in the policy tree. The PEKS scheme consists of
four basic functions including Keygen, Etag1, Trapdoor
and Test. For each attribute, we run Keygen to calculate
a key pair consisting of both public (i.e., hSoldier) and pri-
vate (i.e., xSoldier) keys corresponding to a given attribute
(i.e., Soldier). To protect policies and tags, a publisher can
replace each leaf node in the policy tree with the Etag func-
tion of the PEKS scheme, which takes as input a tag (i.e.,
Curiosity) and the public key of the attribute as shown in
Figure 5. A subscriber protects attributes and interest by
replacing each interest item in the subscription list with a
Trapdoor function which takes as input an interest item
(i.e., Curiosity) and the private key (i.e., generated by the
PEKS scheme) corresponding to the attribute.

A broker performs encrypted matching between en-
crypted policies and encrypted subscriptions. It runs the
Test function, a building block that matches a trapdoor to
an encrypted tag. If an encrypted tag in the policy tree P ′

matches with any encrypted trapdoor in the subscription list,
the tree node is marked as satisfied. The broker evaluates all
nodes in the policy tree starting from leaf nodes to root. If
the root is satisfied, the broker will forward content along
with the encrypted policy to the subscribers.

5 Details of PIDGIN

5.1 Initialisation and Key Generation Phases

During the initialisation phase, the system is set up to ini-
tialise both CP-ABE and PEKS schemes. In PIDGIN, the

1The Etag function is called PEKS in [10].

TKMA generates and distributes keys during the key gener-
ation phase. The TKMA generates a private set of attributes
(i.e., CP-ABE private key) and sends it securely to the sub-
scriber out of the band. The TKMA publishes the public
part of attributes (i.e., CP-ABE public key) to all publishers.
Since the attributes are protected using the PEKS scheme,
the TKMA also generates a pair of keys corresponding to
each attribute. Similar to the CP-ABE key distribution, the
TKMA sends the private and public parts of the PEKS key
pair to the subscriber and publishers, respectively. The ma-
jor difference between the CP-ABE private key set and the
PEKS private key set is that the former is unique for each
user, while the latter is not.

5.2 Publisher’s Encryption Phase

To protect the content and preserve the privacy of sub-
scribers, a publisher encrypts content with CP-ABE policies
and protects those policies as well. The contents could be
encrypted with a symmetric key, such as Advanced Encryp-
tion Standard (AES), which is further encrypted with the
CP-ABE policy. Since the CP-ABE policy may compro-
mise the privacy of subscribers, the CP-ABE policies are
encrypted using PEKS. While encrypting CP-ABE policies
using PEKS, PIDGIN also incorporates tags that are associ-
ated with content.

�

�������	�
���

�������

��������	�������

�������

�

�������	�
���
�
�����	
��

��������	�������
�
�����	
��

�

�������	�
���

���
������

��������	�������

���
������

�

�

Figure 6. The extended CP-ABE policy with
two tags, i.e., ‘Curiosity’ and ‘Urgent’.

To extend CP-ABE policies for PEKS, a publisher con-
siders each leaf node in the policy tree as well as number
of tags that are associated with contents. If there is only a
single tag then a publisher replaces the leaf node with the
Etag function as already illustrated in Figure 5. The Etag
function takes a tag keyword to be encrypted and the public
key corresponding to the leaf node under consideration. Af-
ter running the Etag function, a publisher gets an encrypted
tag. The Etag function does not leak information about the
tags or leaf nodes in the policy tree. In the case that there is
more than one tag then a publisher runs the Etag function
for each tag item and encrypts it with the public key cor-
responding to the leaf node under consideration. Finally,
the leaf node attribute is replaced with the subtree where all
newly generated Etags corresponding to tags are disjuncted

5

using OR. Figure 6 illustrates an example of the policy in-
volving two tags, i.e., ‘Curiosity’ and ‘Urgent’.

5.3 Subscriber’s Encryption Phase

In order to protect the interest of a subscriber and its at-
tributes, a subscriber encrypts each interest item using the
private key (i.e., generated by the PEKS scheme) corre-
sponding to the attribute. PIDGIN considers that a sub-
scriber might have multiple attributes and interest items.
Generally, each interest item is encrypted with each private
key (i.e., generated by the PEKS scheme) that corresponds
to the attribute. Figure 5 describes the case in which a sub-
scriber holds two attributes and subscribes with a single in-
terest item. Let us assume that a subscriber has two interest
items, say ‘Curiosity’ and ‘Urgent’, while holding attributes
Solider and Infantry. The subscription list would con-
tain four items including Trapdoor(‘Curiosity’, xSoldier),
Trapdoor(‘Curiosity’, xInfantry), Trapdoor(‘Urgent’,
xSoldier) and Trapdoor(‘Urgent’, xInfantry). The trap-
door representation does not leak information about the in-
terest item and the attribute.

5.4 Broker’s Matching Phase

A broker opportunistically exchanges both content and
subscriptions. Once a broker receives both the encrypted
subscription and the encrypted content along with the en-
crypted policies, it evaluates whether the encrypted sub-
scription satisfies the encrypted policy. For this evaluation,
the broker runs a matching function that recursively evalu-
ates the encrypted policy tree. The Test function matches
each encrypted leaf node in the policy against the encrypted
interest item in the subscription.

The Test function returns either TRUE or FALSE, indi-
cating whether the encrypted tag is matched with the trap-
door or not, respectively. By running the Test function,
a broker does not learn about the tag or the interest item
because both are encrypted and they are matched in an
encrypted manner. If an encrypted tag in the policy tree
matches with any trapdoor in the subscription list, that node
is marked as satisfied. After evaluating leaf nodes, a broker
can evaluate intermediate AND, OR and threshold nodes in
the policy tree to finally identify whether the root node of
the policy tree is satisfied or not. If the root node is satisfied,
the broker will forward content along with the encrypted
policy to the subscriber.

5.5 Subscriber’s Decryption Phase

Once a subscriber receives the encrypted content along
with the encrypted policy, it first recovers the original CP-
ABE policy. For this recovery, either leaf node (if a single

tag, see Figure 2) or a subtree of tags (if more than one
tag, see Figure 6) is replaced with their corresponding at-
tribute. Before sharing the encrypted interest, a subscriber
builds the subscription history as a lookup table containing
an attribute and its corresponding trapdoor. If the trapdoor
is matched with any encrypted tag in the leaf node of the
policy, the subscription history will be looked up to find
the attribute corresponding to the matched trapdoor. Next,
a leaf node (if a single tag) or a subtree of tags (if more
than one tag) will be replaced with the found attribute. If
no match is found, then a dummy attribute will be placed.
This recovers the original CP-ABE policy (i.e., one shown
in Figure 2) that can finally be used by the CP-ABE decryp-
tion function to get the symmetric key that is required for
decryption of the contents.

6 Concrete Construction

In this section, we provide some definitions and details
of core functions used in different phases of the PIDGIN
lifecycle.

6.1 Definitions

Policy Structure P . We assume a policy tree P that rep-
resents an access structure. Each non-leaf node represents
an AND, an OR or a threshold gate. Let us consider that
numx denotes number of children of a node x and kx
represents the threshold value. For OR and AND gates,
kx is 1 and numx, respectively. For the threshold gate,
the value of kx is: 0 < kx ≤ numx. Let us consider that
parent(x) represents the parent of a node x, att(x) denotes
the attributes associated with leaf node x, and index(x)
returns the number associated with a node x, with nodes
numbered from 1 to num.

Bilinear Maps. Let G1 and G2 be two multiplicative
cyclic groups of prime order p. Let g be a generator of G1

and e : G1 × G1 → G2 be a bilinear map. The bilinear
map e satisfies the following properties:

• Computability: given g, h ∈ G1, there is a polynomial
time algorithm to compute e(g, h) ∈ G2.

• Bilinearity: ∀u, v ∈ G1 and a, b ∈ Zp, we have
e(ua, vb) = e(u, v)ab.

• Non-degeneracy: if g is a generator of G1 then e(g, g)
is a generator of G2, where e(g, g) 6= 1.

Notice that the bilinear map e is symmetric since
e(ga, gb) = e(g, g)ab = e(gb, ga).

Hash Functions. We consider the hash functions

6

H1 : {0, 1}∗ → G1 and H2 : G2 → {0, 1}log p.

Lagrange Coefficient. We define the Lagrange coef-
ficient ∆i,A for i ∈ Zp and a set A of elements in Zp:
∆i,A(x) =

∏
j∈A,j 6=i

x−j
i−j .

6.2 Construction Details

Init(1K). The init algorithm takes as input the security
parameter k that determines the size of p. It randomly
picks two exponents α, β ∈ Zp and outputs the public
key PK = (G1, g, h = gβ , e(g, g)α) and the master key
MK = (β, gα). The public key PK is published while the
master key MK is kept securely by the TKMA. Moreover,
two stores, the Search Key Secret Store (SKSS) and the
Search Key Public Store (SKPS), which are managed by
the TKMA, are initialised as:

SKSS ← φ

SKPS ← φ

KeyGen(MK,A). The key generation algorithm is run by
the TKMA. It takes as input a list of attributesA and outputs
a CP-ABE decryption key and a set of search key pairs. To
generate the decryption key, it first chooses a random r ∈
Zp and then a random rj ∈ Zp for each attribute j ∈ A.
Next, it computes the decryption key as:

DK = (D = g(α+r)/β ,

∀ ∈ A : Dj = gr ·H1(j)rj , D′j = grj)

Before the generation of a search key pair for an attribute
j ∈ A, a search key store (either SKSS or SKPS) can
be looked up. If the search key pair already exists, then the
public and private keys will be collected from SKPS or
SKSS, respectively. Otherwise, the algorithm chooses a
random xj ∈ Z∗p, calculates hj = gxj , and updates both
private and public key stores as:

SKSS ← SKSS ∪ (j, xj)

SKPS ← SKPS ∪ (j, hj)

Next, it computes the search key secret as:
SKS = (∀ ∈ A : xj). Finally, the SKPS is publi-
cised while the decryption key DK and the search key
secret SKS are securely transmitted to the subscriber.

Etag(PK, hi, t). The Etag algorithm encrypts a given
tag t with hi. It chooses a random r ∈ Z∗p and com-
putes z = e(H1(t), hr). Next, it computes A = gr

and B = H2(z) and outputs the encrypted tag as:
ET = (A,B).

Pub-Enc(PK,SKPS,C, P, T). The publisher en-
cryption algorithm encrypts content C under the access
policy P with a list of tags T . It also encrypts P . In reality,
it randomly generates a symmetric key K and encrypts C
as {C}K and then encrypts K under P . To encrypt K
under P , it chooses a polynomial qx for each node x in
a top-down manner, starting from the root R, such that
it sets degree dx one less than the threshold value kx,
i.e., dx = kx − 1. Starting from the root R, it chooses
a random s ∈ Zp, sets qR(0) = s and chooses other
dR points randomly. For any other non-root node x, it
sets qR(0) = qparent(x)(index(x)) and chooses other dx
points randomly. Let Y be the set of leaf nodes in P . The
ciphertext is computed as:

CT = (Ẽ = Ke(g, g)αs, E = hs,

∀y ∈ Y : Ey = gqy(0), E′y = H1(att(y))qy(0))

Next, the policy P is encrypted as follows. For each leaf
node i, it looks up the corresponding private secret key
hi from the SKPS. Then, it runs Etag(hi, t) for each
tag t ∈ T and combines all encrypted tags corresponding
to an attribute to form an OR subtree. The original leaf
node attribute is replaced with this OR subtree. If only
one tag exists in T , the original attribute is replaced with
the output of the Etag function. This basically generates
the encrypted policy P ′. Finally, this algorithm returns
PE = (P ′, CT, {C}K).

Trapdoor(xi, t). The Trapdoor algorithm encrypts
interest item t using xi. It returns the encrypted interest
item TD = H1(t)xi .

Sub-Enc(I, SKS). The subscriber encryption algo-
rithm encrypts interest I using the attributes SKS. For
each interest item t ∈ I , it runs Trapdoor(xi, t) using
search key secret xi corresponding to each attribute
i ∈ SKS. A subscriber also maintains a history of
subscription HS to keep track of all trapdoors belonging to
a subscription. HS is initialised as HS ← φ and updated
as:

∀i ∈ SKS : HS ← HS ∪ (i, TDi)

HS maintains each trapdoor with its correspond-
ing attribute. Finally, this algorithm publicises
SE = (TD1, TD2, . . . , TD|I|.|SKS|) and keeps HS
securely.

Test(ET, TD). The Test algorithm takes the encrypted tag
and trapdoor and returns TRUE if H2(e(TD,A)

?
= B is

TRUE and FALSE otherwise.

Bro-Match(P ′, SE). This algorithm takes the publisher

7

encrypted policy P ′ and the subscriber encrypted interest
SE and returns TRUE if they match and FALSE otherwise.
To perform the match, a broker runs Test(ETi, TDj) for
each leaf node i in P ′ and trapdoor TDj ∈ SE. If an
encrypted leaf node matches with any trapdoor, it is marked
as satisfied (i.e., TRUE). After evaluating leaf nodes, the
algorithm evaluates intermediate nodes (AND, OR and
threshold). After this evaluation, if the root node of the
encrypted policy P ′ is satisfied, that is, TRUE, then this
algorithm returns TRUE and FALSE otherwise.

Sub-Dec(PE,HS,DK) This algorithm decrypts the
policy P ′ and then decrypts the encrypted contents PE.
First, it matches encrypted leaf nodes with a trapdoor in
HS by running Test. If a match is found, the corresponding
attribute is selected from HS. The leaf node (if a single
tag) or a subtree of encrypted tags conjuncted with OR (if
more tags) will be replaced with the selected attribute. If
no match is found, then a dummy attribute will be placed.
This recovers the original policy, which will be used to
decrypt the symmetric key: if node x is a leaf node then we
assume i = att(x) and run the following function if i ∈ A:

DecryptNode(CT,DK, x) =
e(Di, Ex)

e(D′i, E
′
x)

=
e(gr.H(i)ri , gqx(0))

e(gri , H(i)qx(0))

= e(g, g)rqx(0)

If i 6∈ A then DecryptNode(CT,DK, x) = ⊥. For a non-
leaf node x, the algorithm runsDecryptNode(CT,DK, z)
for each child z of x and stores output as Fz . Let Ax be an
arbitrary kx-sized set of child nodes z such that Fz 6= ⊥.
If no such set exists then the node was not satisfied and the
function returns ⊥. Otherwise, it computes:

Fx =
∏
z∈Ax

F
∆i,A′

x(0)

z

(where i = index(z) and A′x = index(z) : z ∈ Ax)

=
∏
z∈Ax

(e(g, g)r.qz(0))∆i,S′
x

(0)

=
∏
z∈Ax

(e(g, g)r.qparent(z)(index(z)))∆i,A′
x

(0)

(by construction)

=
∏
z∈Ax

(e(g, g)r.qx(0))∆i,A′
x

(0)

= (e(g, g)r.qx(0)

(using polynomial interpolation)

If the tree is satisfied by A, we set

G = DecryptNode(CT,DK,R)

= e(g, g)rqR(0)

= e(g, g)rs

The symmetric key is decrypted by computing:
Ẽ/(e(E,D)/G) = Ẽ/(e(hs, g(α+r)/β)/e(g, g)rs) = K.

Finally, K is used to decrypt {C}K in order to access
contents C.

7 Security Analysis

In PIDGIN, the contents are encrypted using a symmet-
ric key, which is encrypted with the CP-ABE policy. The
leaf nodes in the policy tree are further encrypted using
Etag as proposed in PEKS by Boneh et al. [10]. The PEKS
is semantically secure against a chosen keyword attack in
the random oracle model, assuming that the Bilinear Diffie-
Hellman Problem (BDH) is hard (for proof, see Theorem
3.1 in [10]). However, the CP-ABE policy structure is not
protected and leaks information about number of attributes
or tags used. This leak could partially be tackled by inclu-
sion of some dummy attributes at the cost of an increase
in complexity. In PIDGIN, brokers may collude but they
cannot gain access to contents, policies or subscriptions. If
a broker colludes with a subscriber, they together learn no
more information than is already available to the subscriber
alone. In the case that two subscribers collude to receive
content that each of them alone cannot get otherwise, our
scheme prevents such collusion attacks because each sub-
scriber’s (CP-ABE) decryption key includes a randomness
value that will prevent access to the content.

8 Performance Evaluation

As a proof-of-concept, we have developed a prototype of
PIDGIN. The prototype is based on an extension of the open
source libfenc2 library written in the C language, a library of
functional encryption that includes CP-ABE. Since we pro-
posed to extend CP-ABE with PEKS, we have implemented
PEKS in C using the PBC3 library, which is an underly-
ing library also required by the libfenc library. After ex-
tending the CP-ABE with PEKS (on the x86 architecture),

2https://code.google.com/p/libfenc/
3http://crypto.stanford.edu/pbc/

8

https://code.google.com/p/libfenc/
http://crypto.stanford.edu/pbc/

 0

 300

 600

 900

 1200

 1500

 2 4 6 8 10

P
u

b
lis

h
e
r’
s
 e

n
c
.
ti
m

e
 (

in
 m

s
)

Number of tags

Encryption with policy
Extending policy with tags

(a)

 0

 300

 600

 900

 1200

 1500

 2 4 6 8 10

P
u

b
lis

h
e
r’
s
 e

n
c
.
ti
m

e
 (

in
 m

s
)

Number of attributes

Encryption with policy
Extending policy with tags

(b)

 0

 300

 600

 900

 1200

 1500

 2 4 6 8 10

P
u

b
lis

h
e
r’
s
 e

n
c
.
ti
m

e
 (

in
 m

s
)

Number of attributes and tags

Encryption with policy
Extending policy with tags

(c)

Figure 9. Effect of (a) tags, (b) attributes and (c) both tags and attributes on publisher’s encryption
time.

 0

 200

 400

 600

 800

 6 12 18 24 30K
e
y
 g

e
n
e
ra

ti
o
n
 t
im

e
 (

in
 m

s
)

Number of attributes

Search key
Decryption key

Figure 7. Effect of attributes on the key gen-
eration time.

 0

 0.25

 0.5

 0.75

 1

 10 20 30 40A
E

S
 e

n
c
./
d
e
c
.
ti
m

e
 (

in
 m

s
)

Content size (in KB)

AES encryption
AES decryption

Figure 8. Effect of content size on AES en-
cryption/decryption time.

we cross-compiled it for the ARM architecture to test our
prototype on a Samsung Galaxy SIII smartphone (Android
version 4.1.2, kernel version 3.0.31, 1 GB RAM, and the
ARMv7 processor). For the deployment of this prototype,
we cross-compiled both GMP4 (the GNU Multiple Preci-
sion arithmetic library required by PBC) and PBC libraries
for the ARM architecture and installed both on the smart-
phone. The presented results are averaged over 20 runs.

8.1 Initialisation and Key Generation Phases

During the initialisation phase, the system-level keying
material is generated. During the key generation phase,
both search and decryption keys are generated for a given
set of attributes. Both phases could be run on a PC because
keys are distributed out of the band. However, we consider
running both phases on a smartphone (with specifications
already described above). The initialisation phase takes
108.5 milliseconds (ms). The generation time of search
keys grows linearly with increase in number of attributes
as illustrated in Figure 7, where 30 search keys take 300 ms
(i.e., an average of 10 ms per attribute). Similarly, the key
generation time of decryption keys also grows linearly with
increase in number of attributes, where 30 decryption keys
take approximately 877 ms (i.e., an average of 29.25 ms per
attribute). Asymptotically, the complexity of the key gener-
ation is Θ(|A|), where |A| indicates number of attributes in
list A.

8.2 Publisher’s Encryption Phase

In this phase, a publisher encrypts content with a ran-
domly generated symmetric key. In our prototype we use
AES keys. The symmetric key is encrypted with the CP-
ABE policy. The the CP-ABE policy is extended with tags

4http://gmplib.org/

9

http://gmplib.org/

 0

 200

 400

 600

 800

 1000

 2 4 6 8 10

S
u
b
s
c
ri
b
e
r’
s
 e

n
c
.
ti
m

e
 (

in
 m

s
)

Number of attributes/interest items

Interest items only
Attributes only
Both attributes and interest items

(a)

 0

 200

 400

 600

 800

 1000

 2 4 6 8 10

S
u
b
s
c
ri
b
e
r’
s
 d

e
c
.
ti
m

e
 (

in
 m

s
)

Number of attributes

Removing tags from OR policy
Decryption with OR policy
Removing tags from AND policy
Decryption with AND policy

(b)

 0

 200

 400

 600

 800

 1000

 2 4 6 8 10

S
u
b
s
c
ri
b
e
r’
s
 d

e
c
.
ti
m

e
 (

in
 m

s
)

Number of interest items

Removing tags from OR policy
Decryption with OR policy
Removing tags from AND policy
Decryption with AND policy

(c)

Figure 10. Effect of (a) attributes/interest items on subscriber’s encryption time and effect of (b)
attributes and (c) tags on subscriber’s decryption time.

that are also encrypted. Figure 8 shows the symmetric en-
cryption time, which grows linearly with the increase in
content size (C). Encryption of a piece of content of size
40 Kilobyte (KB) takes 0.105 ms (i.e., an average of 0.026
ms per KB). To measure the performance overhead for the
encryption time, we varied the numbers of tags and/or at-
tributes (A∗P), as shown in Figure 9. In Figure 9(a) and
Figure 9(b), we observe the effect of tags and attributes on
publisher’s encryption time, respectively. In Figure 9(a), we
observe effect of tags (ranging from 2 to 10) while keeping
the number of attributes constant (i.e., 2 attributes - the min-
imum attributes required to make AND/OR policy). As we
can expect, the time to extend a policy with tags grows lin-
early with increase in number of tags. In Figure 9(b), we
observe the effect of attributes (ranging from 2 to 10) in a
policy while considering a single tag. The time for encryp-
tion of the symmetric key with the policy grows linearly
with increase in number of attributes. Since the number of
attributes increases, it also linearly increases the time to ex-
tend the policy with tags. In Figure 9(c), we show the most
complex case in which we increase both attributes and tags
simultaneously. The growth of the time needed to extend a
policy with tags is quadratic, depending on the number of
attributes and the number of tags. In our experimentation,
we considered the number of tags as equal to the number of
attributes. In a policy with 2 attributes each with 2 tags, it
takes approximately 120 ms to extend the policy tags, while
in a policy with 10 attributes with 10 tags each, it takes ap-
proximately 1632 ms. Generally, the asymptotic complex-
ity of publisher’s encryption is Θ(|A∗P | · |T |+ |C|).

8.3 Subscriber’s Encryption Phase

Figure 10 shows the performance overhead incurred dur-
ing the encryption (see Figure 10(a)) and decryption phases
(see Figure 10(b) and Figure 10(c)). In the subscriber’s
encryption phase, a subscriber encrypts the subscription,
which is based on the number of interest items (I) and at-

tributes (A∗S). In our experimentations, we observed the
effect of how different values for the number of attributes
and interest separately and together affect the subscription’s
encryption time. To observe the effect of the number of
attributes, we increased the attributes from 2 to 10 while
keeping interest items constant (i.e., 1 interest item). Gen-
eration of trapdoors for 10 attributes with a single interest
item each took approximately 106 ms. Second, we observed
the effect of number of interest items on the subscription’s
time by increasing interest items from 2 to 10 while keeping
attributes constant (i.e., 2 attributes conjuncted with either
AND or OR). The subscriber took approximately 284 ms
to encrypt an interest containing 10 items. As illustrated in
Figure 10(a), attributes alone or interest items alone linearly
affect the subscriber’s encryption time. However, we also
consider the case when we see effects of both attributes and
interest items together. For this purpose, we assumed that
number of attributes is equal to that of interest items; that
is, if there are two attributes, it means there are two inter-
est items per attribute. Similarly, we assumed 10 attributes
with 10 interest items each, which took 1063 ms. The com-
bined effect of attributes and interest items indicates that its
growth has quadratic effect on the subscriber’s encryption
time as shown in Figure 10(a). The asymptotic complexity
of the subscriber’s encryption is: Θ(|A∗S | · |I|).

8.4 Broker’s Matching Phase

This is the key phase in the lifecycle of PIDGIN. Dur-
ing this phase, a broker matches the encrypted subscription
against the encrypted policy associated with the encrypted
content. In our analysis, we observe the effect of the num-
bers of tags and interest items separately and together while
keeping the number of attributes constant (i.e., 2 attributes,
necessary to have OR or AND policy). Furthermore, we
consider the matching case with both OR and AND poli-
cies, as well as a zero match case which is the worst case
situation. Figure 11 shows the performance analysis of this

10

 0

 300

 600

 900

 1200

 1 2 3 4 5

B
ro

k
e
r’
s
 m

a
tc

h
in

g
 t
im

e
 (

in
 m

s
)

Number of tags

Matching case with OR policy
Matching case with AND policy
No matching with worst case

(a)

 0

 300

 600

 900

 1200

 1 2 3 4 5

B
ro

k
e
r’
s
 m

a
tc

h
in

g
 t
im

e
 (

in
 m

s
)

Number of interest items

Matching case with OR policy
Matching case with AND policy
No matching with worst case

(b)

 0

 300

 600

 900

 1200

 1 2 3 4 5

B
ro

k
e
r’
s
 m

a
tc

h
in

g
 t
im

e
 (

in
 m

s
)

Number of tags and interest iterms

Matching case with OR policy
Matching case with AND policy
No matching with worst case

(c)

Figure 11. Effect of (a) tags, (b) interest items and (c) both tags and interest items on broker’s
encrypted matching time.

Table 1. Description of frequently used
symbols.

Symbol Description
A A list of attributes
A∗

P A list of attributes used to encrypt content
A∗

S A list of attributes used to encrypt interest
C Content
I A list of keywords a subscriber is interested in
T A list of search tags associated with content

Table 2. Summary of complexity of each
phase in the lifecycle of PIDGIN.

Phase Name Best Case Worst Case
Key generation Θ(|A|)
Publisher encryption Θ(|A∗

P | · |T |+ |C|)
Subscriber encryption Θ(|A∗

S | · |I|)
Broker matching Ω(1) O(|A∗

P | · |T | · |A∗
S | · |I|)

Subscriber decryption Ω(|C|) O(|A∗
P | · |T | · |A∗

S | · |I|+ |C|)

phase. In Figure 11(a), we observe the effect of number
of tags on the matching time while keeping the number of
interest items as constant, i.e., 1. As the graph shows, the
matching time increases linearly with the increase in num-
ber of tags. Similarly, we measure the effect of the number
of interest items on the matching time while keeping the
number of tags constant, i.e., 1. As Figure 11(b) indicates,
the matching time grows linearly with the increase in the
number of interest items. In both Figure 11(a) and Figure
11(b), the OR policy takes less time as compared to that of
the AND policy when we consider the matching case be-
cause we use a short circuit evaluation (explained in Sec-
tion 9.1) to evaluate both OR and AND gates. Finally, we
consider the most complex case in which we increase the
number of tags and the number of interest items together
(equally) with 2 attributes. Similar to Figure 11(a) and Fig-
ure 11(b), it takes less time to evaluate the OR policy as
compared to that of the AND policy. Next, we consider the
worst case in which there are 5 tags and 5 interest items with
a 2-attribute policy conjuncted using OR. Since there are 2
attributes in the policy tree with 5 tags each, there will be 10
leaf nodes in the encrypted policy. Furthermore, 2 attributes
with 5 interest items each will make 10 trapdoors in the sub-
scription list. The broker checks whether any encrypted leaf
node in the policy matches with any trapdoor in the sub-
scription list. In this worst case, the broker runs the Test

function 100 times, thus taking approximately 1324 ms. In
addition to this experiment, we measured the overhead for
running the Test function and discovered that it takes 13.28
ms. This implies that the real overhead comes from the Test
function, that is, in fact, a bilinear pairing operation. Hence,
the matching operation is dependent on how efficient the
bilinear pairing is. The best and worst case complexities of
this phase are Ω(1) andO(|A∗P |·|T |·|A∗S |·|I|), respectively.

8.5 Subscriber’s Decryption Phase

A subscriber receives the encrypted content (along with
the encrypted policy) from the broker if the encrypted in-
terest satisfies the encrypted policy associated with the en-
crypted content. During the decryption phase, first a sub-
scriber strips off the tags from the policy and then performs
decryption with the policy to recover the symmetric key,
which is finally used to decrypt the contents. Figure 10(b)
and Figure 10(c) show the effect of the number of attributes
and interest items, respectively, on the subscriber’s decryp-
tion time. In Figure 10(b), where we increase attributes
from 2 to 10 while keeping the number of interest items
constant i.e., 1, we consider both OR and AND policies
to see the effect of attributes on the stripping of tags from
the policy. Also, we show the performance overhead for
the decryption that recovers the symmetric key. In Figure

11

10(c), we describe the case in which the number of inter-
est items are increased from 2 to 10 (but attributes are kept
constant i.e., 2), assuming the matching case, i.e., both the
publisher and the subscriber are using the same tags and
interest items, respectively. Here, the overhead does not
increase with the increase in the number of interest items
because we have implemented the short circuit evaluation
to evaluate AND, OR and threshold gates. In fact, the
trapdoor in the subscription matches interest items against
tags in the policy, thus making policy evaluation successful
without requiring further matches. Finally, the encrypted
contents are decrypted using the symmetric key, which is
recovered after we perform the CP-ABE decryption. Fig-
ure 8 shows the time required for decryption of the content
using the AES key. Decryption of a piece of content of
size 40 KB takes 0.87 ms (i.e., an average of 0.22 ms per
KB). Overall, the complexity of subscriber’s decryption is:
O(|A∗P | · |T | · |A∗S | · |I|+ |C|) in the worst case and Ω(|C|)
in the best case.

Table 2 summarises the complexity of each phase in the
lifecycle of PIDGIN while Table 1 describes the most fre-
quently symbols used.

9 Discussion

9.1 Optimisation and Scalability

Optimisation using Short Circuit Evaluation. The
real bottleneck is matching at brokers a set of encrypted
policies against encrypted subscriptions. The large scale
matching requires efficiency and some optimisations. One
of the optimisations at brokers is implementation of short
circuit evaluation for evaluating internal (i.e., non-leaf)
nodes of the encrypted policy tree including OR and AND
gates. That is, if the node is an OR gate then a broker
can stop its evaluation and mark it satisfied once a single
child node is satisfied, without performing further matches.
Similarly, a broker can mark an AND gate unsatisfied when
a single child node is marked unsatisfied. The short circuit
evaluation can significantly reduce number of encrypted
matches at brokers. This might be useful for the large
policies involving a number of children in the policy tree.
However, this might not speed up the performance when
the set of policies or the number of subscriptions is very
large.

Scalability. For matching a large set of encrypted
policies against a large number of encrypted subscriptions,
PIDGIN can take into account additional information that
can drastically improve the overall performance. That is,
a publisher can specify the content creation date while a
broker can log time when the content was received. A
subscriber can take advantage of this extra information

by expressing additional constraints in subscription. For
instance, a subscriber can express her subscription as:
all pieces of content matching with my interest, where
the content is created or received in last two hours. The
content creation date and the content received time may
help brokers to check whether subscriptions satisfy the
published contents, without requiring encrypted matching.
Furthermore, a publisher can publish content with Time To
Live (TTL), meaning brokers should remove that particular
piece of content after expiration of TTL. Similarly, sub-
scribers also can include TTL with subscriptions to indicate
that brokers can remove subscriptions from the network
after expiration of TTL. The inclusion of TTL, in both the
content and the subscription, will reduce both computation
and storage needs.

9.2 Key Management

Deployment in Practical Scenarios. There are various
options to setup the TKMA, an offline trusted entity that
distributes keying material. It mainly depends on the
scenario for which PIDGIN is deployed. For instance,
for the military scenarios, it can be administrated by a
military headquarter; similarly, in organisations, the admin
department can manage it. However, it is challenging to
setup the TKMA for various civilian applications. For
those kinds of applications, the town or city administration
could be one option. For emerging scenarios, such as social
events, the organising authorities (such as event organisers)
might own the TKMA.

Distributed TKMA. Without loss of generality, we
can make the TKMA distributed. There are two main types
of keys that are generated by the TKMA, the CP-ABE and
the search keys. There are alraedy solutions for setting
up multi-authority ABE [11, 12], where the CP-ABE key
authorities can be distributed. Whereas, the key authority
for generating the search keys is inherently distributed.

10 Related Work

The problem of encrypted matching in opportunistic net-
works is an instance of the wider problem of a search over
encrypted data. Song et al. [13] propose a search scheme
over encrypted data based on symmetric keys. The sym-
metric nature of the scheme rules out its applicability where
mobile nodes communicate with each other without any
prior contacts. The PEKS scheme [10] supports a search on
encrypted data in the public key setting. In PIDGIN, we use
the PEKS scheme as a building block; moreover, its usage
in isolation does not solve privacy and confidentiality issues
in opportunistic networks because it lacks the ability to reg-
ulate access on content while providing collusion-resistant

12

decryption keys.
The ABE schemes can regulate access to content while

guaranteeing collusion resistance. However, both variants
of ABE including CP-ABE [5] and KP-ABE [6] do not
protect the policies and attributes associated with content,
respectively. In PIDGIN, we use CP-ABE [5] as a build-
ing block but only after we protect the policies because the
original CP-ABE scheme does not specifically protect them.
The complimentary KP-ABE [6] scheme does not protect
attributes. While, Goyal et al. leave the problem of en-
crypted attributes as open [6], we address this challenging
issue in this paper.

ESPOON [8] can protect security policies in out-
sourced environments. In [7], Asghar et al. propose
ESPOONERBAC that extends ESPOON with Encrypted
Role-Based Access Control (ERBAC) that is deployable in
outsourced environments. However, these solutions [7–9]
assume no collusion between a user and a server. Thus,
none of these solutions [7–9] are applicable to opportunis-
tic networks in which each node can serve as all three roles
including publisher, broker and subscriber.

There are schemes that preserve predicate privacy [14,
15] and assume that the predicate is evaluated at the re-
ceiver’s end. Furthermore, schemes offering hidden cre-
dentials [16] and hidden policies [17] assume direct inter-
action between the sender and the receiving parties. Unfor-
tunately, all such schemes cannot work in opportunistic net-
works where policy enforcement is delegated to untrusted
brokers.

Shikfa et al. [18] propose a method that provides pri-
vacy and confidentiality in the context-based forwarding.
However, their method is a different dimension of work
than ours. In fact, their proposed scheme disseminates in-
formation in one direction, i.e., from publishers, without
taking into account whether a subscriber is interested or
not. In other words, it does not provide opportunity for a
subscriber to subscribe. Moreover, our proposed scheme
regulates access to content while offering more expressive
and fine-grained policies as compared to the one proposed
in [18].

Nabeel et al. [19] provide a solution for preserving pri-
vacy in content based publish-subscribe systems. In their
approach, brokers in outsourced environments make rout-
ing decisions without knowing the content. However, they
assume that subscribers get registered with publishers prior
to any communication and publishers share the symmetric
key with subscribers. This solution cannot work in oppor-
tunistic network settings where loosely-coupled publishers
and subscribers do not require any registration or key shar-
ing with each other.

In the context of publish-subscribe systems, there many
solutions that address privacy and security issues [20–22].
However, the state-of-the-art techniques are mainly based

on centralised solutions that cannot be applied to oppor-
tunistic networks, where each node may serve as a pub-
lisher, a broker and a subscriber.

11 Conclusion and Future Work

This paper presents PIDGIN, a privacy-preserving inter-
est and content sharing scheme for opportunistic networks
that does not leak information to untrusted parties. To show
the feasibility of our approach, we implemented PIDGIN
and evaluated its performance by measuring the overhead
incurred by cryptographic operations when run on a smart-
phone.

As evident from the performance evaluation, the real bot-
tleneck is the overhead incurred by pairing operations at the
brokers. In fact, an efficient pairing implementation would
drastically improve the performance of the system. As fu-
ture work, we would investigate possible optimisations and
the use of an efficient pairing implementation, such as one
proposed in [23].

References

[1] Emarketer, “Smartphones, tablets drive faster
growth in ecommerce sales - mobile will take a
greater percentage of total ecommerce retail sales,”
http://goo.gl/48Mbp, April 2013, last accessed:
August 7, 2013.

[2] L. Pelusi, A. Passarella, and M. Conti, “Opportunistic
networking: data forwarding in disconnected mobile
ad hoc networks,” Communications Magazine, IEEE,
vol. 44, no. 11, pp. 134–141, 2006.

[3] “Haggle: An eu funded project,” http://www.
haggleproject.org/, June 2010, last accessed: August
7, 2013.

[4] E. Nordström, P. Gunningberg, and C. Rohner, “A
search-based network architecture for mobile de-
vices,” Department of Information Technology, Upp-
sala University, Tech. Rep., 2009.

[5] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-
policy attribute-based encryption,” in Security and
Privacy, 2007. SP ’07. IEEE Symposium on, may
2007, pp. 321 –334.

[6] V. Goyal, O. Pandey, A. Sahai, and B. Waters,
“Attribute-based encryption for fine-grained access
control of encrypted data,” in Proceedings of the 13th
ACM conference on Computer and communications
security, ser. CCS ’06. New York, NY, USA:
ACM, 2006, pp. 89–98. [Online]. Available: http:
//doi.acm.org/10.1145/1180405.1180418

13

http://www.emarketer.com/Article/Smartphones-Tablets-Drive-Faster-Growth-Ecommerce-Sales/1009835
http://www.haggleproject.org/
http://www.haggleproject.org/
http://doi.acm.org/10.1145/1180405.1180418
http://doi.acm.org/10.1145/1180405.1180418

[7] M. R. Asghar, M. Ion, G. Russello, and B. Crispo,
“ESPOONERBAC : Enforcing security policies in
outsourced environments,” Elsevier Computers &
Security (COSE), vol. 35, pp. 2–24, 2013, special
Issue of the International Conference on Availability,
Reliability and Security (ARES). [Online]. Avail-
able: http://www.sciencedirect.com/science/article/
pii/S0167404812001824

[8] ——, “ESPOON: Enforcing Encrypted Security Poli-
cies in Outsourced Environments,” in The Sixth In-
ternational Conference on Availability, Reliability and
Security, ser. ARES’11. IEEE Computer Society, Au-
gust 2011, pp. 99–108.

[9] A. Kapadia, P. P. Tsang, and S. W. Smith, “Attribute-
based publishing with hidden credentials and hidden
policies,” in NDSS. The Internet Society, 2007.

[10] D. Boneh, G. Crescenzo, R. Ostrovsky, and G. Per-
siano, “Public key encryption with keyword search,”
in Advances in Cryptology - EUROCRYPT 2004,
ser. Lecture Notes in Computer Science, C. Cachin
and J. Camenisch, Eds. Springer Berlin Heidelberg,
2004, vol. 3027, pp. 506–522. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-24676-3 30

[11] M. Chase and S. S. Chow, “Improving privacy
and security in multi-authority attribute-based en-
cryption,” in Proceedings of the 16th ACM
conference on Computer and communications se-
curity, ser. CCS ’09. New York, NY, USA:
ACM, 2009, pp. 121–130. [Online]. Available:
http://doi.acm.org/10.1145/1653662.1653678

[12] M. Chase, “Multi-authority attribute based en-
cryption,” in Theory of Cryptography, ser.
Lecture Notes in Computer Science, S. Vad-
han, Ed. Springer Berlin Heidelberg, 2007,
vol. 4392, pp. 515–534. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-70936-7 28

[13] D. X. Song, D. Wagner, and A. Perrig, “Practical tech-
niques for searches on encrypted data,” in Security
and Privacy, 2000. S P 2000. Proceedings. 2000 IEEE
Symposium on, 2000, pp. 44–55.

[14] E. Shen, E. Shi, and B. Waters, “Predicate privacy
in encryption systems,” in Theory of Cryptography,
ser. Lecture Notes in Computer Science, O. Reingold,
Ed. Springer Berlin Heidelberg, 2009, vol. 5444,
pp. 457–473. [Online]. Available: http://dx.doi.org/
10.1007/978-3-642-00457-5 27

[15] J. Katz, A. Sahai, and B. Waters, “Predicate encryp-
tion supporting disjunctions, polynomial equations,

and inner products,” in Advances in Cryptology
EUROCRYPT 2008, ser. Lecture Notes in Computer
Science, N. Smart, Ed. Springer Berlin Heidelberg,
2008, vol. 4965, pp. 146–162. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-78967-3 9

[16] J. E. Holt, R. W. Bradshaw, K. E. Seamons, and
H. Orman, “Hidden credentials,” in Proceedings
of the 2003 ACM workshop on Privacy in the
electronic society, ser. WPES ’03. New York, NY,
USA: ACM, 2003, pp. 1–8. [Online]. Available:
http://doi.acm.org/10.1145/1005140.1005142

[17] K. Frikken, M. Atallah, and J. Li, “Attribute-based
access control with hidden policies and hidden cre-
dentials,” Computers, IEEE Transactions on, vol. 55,
no. 10, pp. 1259–1270, 2006.

[18] A. Shikfa, M. Önen, and R. Molva, “Privacy
and confidentiality in context-based and epidemic
forwarding,” Computer Communications, vol. 33,
no. 13, pp. 1493 – 1504, 2010. [Online]. Avail-
able: http://www.sciencedirect.com/science/article/
pii/S0140366410002136

[19] M. Nabeel, N. Shang, and E. Bertino, “Efficient
privacy preserving content based publish subscribe
systems,” in Proceedings of the 17th ACM symposium
on Access Control Models and Technologies, ser.
SACMAT ’12. New York, NY, USA: ACM,
2012, pp. 133–144. [Online]. Available: http:
//doi.acm.org/10.1145/2295136.2295164

[20] S. Choi, G. Ghinita, and E. Bertino, “A privacy-
enhancing content-based publish/subscribe system
using scalar product preserving transformations,”
in Database and Expert Systems Applications, ser.
Lecture Notes in Computer Science, P. Bringas,
A. Hameurlain, and G. Quirchmayr, Eds. Springer
Berlin Heidelberg, 2010, vol. 6261, pp. 368–
384. [Online]. Available: http://dx.doi.org/10.1007/
978-3-642-15364-8 32

[21] N. Shang, M. Nabeel, F. Paci, and E. Bertino, “A
privacy-preserving approach to policy-based content
dissemination,” in Data Engineering (ICDE), 2010
IEEE 26th International Conference on, 2010, pp.
944–955.

[22] M. Srivatsa and L. Liu, “Secure event dissemination
in publish-subscribe networks,” in Distributed Com-
puting Systems, 2007. ICDCS ’07. 27th International
Conference on, 2007, pp. 22–22.

[23] G. Grewal, R. Azarderakhsh, P. Longa, S. Hu,
and D. Jao, “Efficient implementation of bilinear

14

http://www.sciencedirect.com/science/article/pii/S0167404812001824
http://www.sciencedirect.com/science/article/pii/S0167404812001824
http://dx.doi.org/10.1007/978-3-540-24676-3_30
http://doi.acm.org/10.1145/1653662.1653678
http://dx.doi.org/10.1007/978-3-540-70936-7_28
http://dx.doi.org/10.1007/978-3-642-00457-5_27
http://dx.doi.org/10.1007/978-3-642-00457-5_27
http://dx.doi.org/10.1007/978-3-540-78967-3_9
http://doi.acm.org/10.1145/1005140.1005142
http://www.sciencedirect.com/science/article/pii/S0140366410002136
http://www.sciencedirect.com/science/article/pii/S0140366410002136
http://doi.acm.org/10.1145/2295136.2295164
http://doi.acm.org/10.1145/2295136.2295164
http://dx.doi.org/10.1007/978-3-642-15364-8_32
http://dx.doi.org/10.1007/978-3-642-15364-8_32

pairings on arm processors,” in Selected Areas
in Cryptography, ser. Lecture Notes in Computer
Science, L. Knudsen and H. Wu, Eds. Springer
Berlin Heidelberg, 2013, vol. 7707, pp. 149–
165. [Online]. Available: http://dx.doi.org/10.1007/
978-3-642-35999-6 11

15

http://dx.doi.org/10.1007/978-3-642-35999-6_11
http://dx.doi.org/10.1007/978-3-642-35999-6_11

	Introduction
	Opportunistic Networks
	Overview
	Motivating Scenario
	Research Challenges

	System Model
	Approach
	Scheme I: Regulate Access on Content
	Scheme II: Perform an Authorisation Check
	Scheme III: Hide Private Information Using a Hash
	Scheme IV: Hardening Against a Pre-Computed Dictionary Attack
	PIDGIN: The Proposed Scheme

	Details of PIDGIN
	Initialisation and Key Generation Phases
	Publisher's Encryption Phase
	Subscriber's Encryption Phase
	Broker's Matching Phase
	Subscriber's Decryption Phase

	Concrete Construction
	Definitions
	Construction Details

	Security Analysis
	Performance Evaluation
	Initialisation and Key Generation Phases
	Publisher's Encryption Phase
	Subscriber's Encryption Phase
	Broker's Matching Phase
	Subscriber's Decryption Phase

	Discussion
	Optimisation and Scalability
	Key Management

	Related Work
	Conclusion and Future Work

