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Abstract

In this thesis we propose a novel use of the temporal similarity in frames of a video

sequence. Traditionally, video compression algorithms exploit this with interframe

coding. Instead, we use the information to enhance the resolution of the video se-

quence.

We use a standard motion estimation technique followed by an analytical method

of sub-pixel motion re-estimation that we develop, on each of the blocks in a set of

temporally adjacent frames, to obtain a larger data set representing each image in

the video sequence. The extra information is then incorporated into the reference

image in a useful form by constructing a bivariate spline surface that approximates

the enlarged data set, and evaluating this at intermediate points to provide a higher

resolution frame.

An application GROW, that takes a video sequence as input and produces a

higher resolution sequence as output, was developed as proof of concept.
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Chapter 1

Introduction

1.1 Motivation

Video �lms are an important data format today. A wide range of �elds make use of

the medium to record events for further analysis than would be possible in real time.

Image sequences serve as an important scienti�c tool. Prominent areas where videos

are taken include medicine - during internal procedures such as gastroenterological

endoscopies, space exploration - during a spacecraft's visit to planets, and geograph-

ical surveys - for recording topographical imagery. In our daily life, video is used

for a variety of purposes from surveillance cameras used to monitor places such as

banks and shopping establishments, to sports events where a referee may use video

footage to assist in making di�cult decisions. The ability to enhance the resolution

of an image stream on a per frame basis could be tremendously useful in many such

situations. For example, an astronomer may be interested in obtaining more detail

than is visible from the raw video about a planet's surface, or a security o�cer may

want more detail of a thief's face than was visible from any given frame of the original

�lm. We seek to provide a means to achieve this e�ciently.

1.2 Background

Objects in the real world exist in three dimensions, but most media used for recording

and reproducing visual data represent images in two dimensions. Usually the object

space is transformed to the image space using either a parallel projection or a per-

spective projection. Technically, a projection is de�ned as mapping a single point in
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the domain to a single point in the range. Thus, projecting an object would require

the mapping of an in�nite number of points [PG89]. What occurs in practice is the

projection of only a �nite number of points on an object. This is an important fact

in the context of the development of this thesis.

A parallel projection of a point (x; y; z) in object space, a subset ofR3, is obtained

by adding the appropriate multiple of the projection vector so as to obtain a point

(x; y; 0) in object space, which is identical to the point (x; y) in image space, a subset

of R2. An orthographic projection is one in which the projection vector is normal to

the projection plane, de�ned as the plane z = 0. This class arises when the camera

is at a very great distance from the objects being �lmed. (Various classes of oblique

projections, ones where the projection vector is not parallel to the z axis, such as the

cavalier projection and the cabinet projection are of importance due to the frequency

of their occurrence.)

A perspective projection maps a point (x; y; z) in object space to a point (xp; yp; 0)

on the projection plane, such that this point lies on the line connecting (x; y; z) to

(xc; yc; zc), the center of projection, a �xed point assumed to be on the opposite side

of the projection plane from where the object is. When a camera is close to an object

the e�ect of perspective on a projection is introduced.

Each point that is mapped spatially also has a color attribute, which can be

represented as a point in a color space. For example the RGB color space can be

visualized as R3 with the x, y and z axes representing the intensity of red, green and

blue light. Without loss of generality, we work with gray scale representations of this

attribute, since the techniques developed may be applied to each of the orthogonal

components of the color attribute separately to obtain a full color generalization. We

use the YUV color space to represent the attribute color since it is most convenient

to work with the Y (intensity) component of each point in the image space.
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In the context of digital video, two further approximations occur during the

recording process. First, the image space, R2 is approximated with a representa-

tion grid in N2, which we call the approximated image space. Thus, regions in R2

are represented by a single data point, a pixel. Second, the intensity of a pixel is

not recorded with arbitrary precision, but as a level in a �xed range in N. The �rst

approximation is of particular import to the discussion.

By repeating the spatial registration process at discrete points in time, a video

sequence is formed. Recording the instant in time with a temporal index is accom-

plished by a strictly increasing monotonic mapping from R to N.

Thus, through a process of sampling at a �nite number of points in time and

space, the video coding used has been de�ned as the representation in N2 �N�N

(image space � pixel intensity � instant in time) of R3 �R3 �R (object space �

color space � instant in time).

Finally, we note that as an object moves, the set of points on it that undergoes

spatial projection will vary from frame to frame, where a frame is de�ned as a com-

plete representation of the approximated image space at a given instant in time.

Video compression algorithms rely on the fact that this variation is small and choose

to neglect it. This is e�ectively what happens by the process of quantization, (the

representation of a range of pixel intensity levels, corresponding to a set of points

close to each other in obect space, with a single intensity level representing that

area,) and dequantization, the (approximately) inverse process. We seek to use the

information in this variation, rather than ignore it, to obtain a better representation

of the original object space.
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1.3 Problem Speci�cation

Given a video sequence, we wish to e�ciently enhance the resolution of the repre-

sentation grid in approximated image space, such that the result is the equivalent of

having mapped a larger set of points, from the object space to the image space, than

actually occurred in any given frame.

1.4 Relation to Previous Work

Identifying points in object space using image sequences has been dealt with ex-

tensively in the literature on computer vision, geometric modeling, image processing,

and pattern recognition. Work has even been done on tracking objects with a moving

camera [BBH+89]. To deal with the problems of discerning rotation from translation

when the motion is small, as well the sensitivity of the measurements of depth (to

determine object shape) to noise, factorization methods that analytically separate

the motion from the object have been developed for the cases where the motion is

planar [TK90], or in R3 [TK91], as well as when the projection is either orthographic

[TK92a, TK92b], under perspective [Tom93] or the paraperspective case [PK]. The

analyses have been carried out within a framework where either there exists a �xed

model of camera or object motion, or the study seeks to identify the parameters

[WC92] that constitute the mapping M, from object space to image space.

Applying past methods would involve identifying M explicitly and computing

M�1, or at the very least determining M�1 empirically, in order to capture repre-

sentations in object space, that could then be transformed to image space, to increase

the information available, which in turn would allow a higher resolution frame to be

constructed. However, we seek to develop an e�cient algorithm for video resolution

enhancement, by which we mean that we wish to obviate the need for explicit map-
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pings back to object space. Our algorithm will achieve the extraction of extra data

points in any given frame by working directly with the frame's image space, and the

associated temporal context, the past and future frames.

1.5 Approach

X
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t

t-n

Figure 1.1: The image sequence that records the region R, registers similar but not
identical sets of points in object space.

Initially, we note that by approaching the problem using only spatial context, we can

obtain only guesses of the the intensity values that should be assigned to the newly

de�ned points (that result from the higher resolution we desire) in the approximated

image space, not data that is known to be the result of a mapping from the object

space. Numerous methods exist to do this such as linear interpolation, natural spline

interpolation, or the application of a Gaussian �lter to a region of points around the

one whose intensity is being estimated, for each of the new points.
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Surface of object

Points on surface mapped to first frame

Points on surface mapped to second frame

Points on surface mapped to third frame

Camera Registration Grid

Figure 1.2: We assume that the camera samples a di�erent set of points on the
object in each frame.

Instead we use the insight that in consecutive frames, ft; : : : ; ft+n, of the video

sequence, the same region R in the object space is captured during the recording

process, by mapping di�erent sets of points, St; : : : ; St+n, of the object space onto

the image space. Each frame is the discrete sampling of the object with the �lter

being a characteristic of the camera that is being used. Thus the sets St; : : : ; St+n,

are very close approximations of each other, but not identical, since the nature of

analogue to digital conversion is that of amany to one mapping of an uncountable set,

(one that is not countable,) onto a countable set, (one that is empty, �nite or can be

placed in one to one correspondence with N). In this case, the object space contains

a set of points with a cardinality that is large enough that it is reasonable to consider

the set uncountable. For any given video frame, we will seek to exploit the above

by retrieving information about the region in the object space R, corresponding to

the image space It under consideration, from representations of the same region R in

previous and future frames, It�n; : : : ; It�1; It+1; : : : ; It+n. With a larger set of points

mapped from the object space to the image space, we will be in a position to create

a higher resolution video frame.
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1.6 Algorithm

Each frame of the video sequence is enhanced independently in serial order. To

process a given frame, �rst a set of frames is formed by choosing several frames that

are immediately previous and several that are immediately after the frame under

consideration. The frame that is being improved is then broken up into rectangular

blocks. Extra data about each block in the frame is then extracted. For a given block,

this is done by performing a search for one block from each of the frames in the above

de�ned set that best matches it. A sub-pixel displacement that will minimize the

error between each of the contextual blocks and the block under consideration is then

analytically calculated for each of the blocks in the frame. If the data thus obtained is

viewed as a set of points of the form (x; y; z), where z is the image intensity at a point

(x; y) in the XY plane, then the result is data of the form of a set of intensities over

a scattered set of points in the XY plane. A bivariate spline surface, composed of

tensor product basis splines, that approximates this data is computed and evaluated

on a �ne grid, to produce the increased resolution frame. Since this is done for each

frame in the sequence, except the �rst and last few which do not have enough context,

a sequence of similar length is produced.
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Video Frames
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Spline Interpolation

Spline Surface Evaluation
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Scattered Data Points

Spline Surface

High Resolution Frame

Figure 1.3: Overview of algorithm.
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Chapter 2

Extraction of Temporal Context

The algorithm that we develop enhances the resolution of the video sequence by

increasing the size of the data set associated with each frame. Considering one refer-

ence frame, whose resolution we are currently improving, without loss of generality

we will consider the problem of extracting information of relevance from only one

other frame, the contextual frame. The same process may be applied to a set of

other frames immediately before and after the reference frame in the video sequence

in order to obtain the increased size data set representing the region in object space

that was mapped to the reference frame.

Ideally, whenever an object in the reference frame appears in the contextual frame,

we would like to be able to identify the exact set of pixels that correspond to the

object, extract the set and incorporate it into the representation of the object in the

reference frame. To e�ect this search, we use a technique from video compression,

called motion estimation.

2.1 Initial Motion Estimation

2.1.1 Framework

Video compression achieves higher compression ratios than still image intraframe

coding, the process of reducing spatial redundancy in a frame, by hybridization with

interframe coding, which exploits temporal correlation of data. This is done by

compensating for the motion of objects, from frame to frame, by identifying an object,

estimating its motion, and then encoding the movement as a vector representing an

a�ne transformation. Currently research on computing optical ow that would yield
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such representations exists, but for computationally e�cient solutions [BK96] that

give a good approximation, standards such as MPEG [CLL+95] and H.261 have

adopted a di�erent approach.

In the general case, we would allow for a range of motion by the object, taking into

account scaling, rotation, and warping in addition to translation. The implication

of this is that the geometry of the domain and range of the motion mapping need

not be the same. This leads to complex geometrical concerns as well as intensive

computational requirements. Standards such as MPEG deal with this by arbitrarily

decomposing a frame into blocks and working at the granularity of blocks [Gal91]

with the assumption that there is no rotation occurring. This is the equivalent of

imposing a uniform motion vector �eld on all the pixels in the block. To ensure the

correctness of the algorithm, a means of encoding the motion of the pixels that do

not have the same motion as the block is introduced in the form of a residual code,

which is the di�erence of the actual representation and that imposed on the pixel by

the block granularity motion vector.

The reference frame is broken into blocks of �xed size. (The MPEG standard

speci�es the use of 16 � 16 size blocks [Chi95]. We leave the block dimensions as a

parameter of the algorithm to determine the best dimensions for our purpose.) The

size of the block must be determined as a function of several factors that necessitate

a tradeo�:

� By using smaller blocks, the �ner granularity allows for local movements to be

better represented. The uniform motion �eld is forced on a smaller number of

pixels.

� The disadvantage is the increase in computational requirements.

� Depending on the matching criterion, smaller blocks may also result in more
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incorrect matches, since bigger blocks provide more context increasing the prob-

ability of correctly determining an object's motion vector.

For each of these blocks, a search for a block of identical dimensions is performed

in the contextual frame. A metric that associates cost inversely with the closeness of

the match is used to identify the block with the lowest cost. The vector connecting

a point on the reference block to the corresponding point of the best match block

found in the contextual frame, is determined as the initial motion estimate for that

block.

2.1.2 Matching Criteria

If a given video frame is of width Fw and height Fh, and the sequence is T frames long,

then a pixel at position (m;n) in the f th frame, is speci�ed by V S(m;n; f), where

m 2 f1; : : : ; Fwg, n 2 f1; : : : ; Fhg, and f 2 f1; : : : ; Tg. If a given block is of width

Bw and height Bh, then a block in the reference frame with its top left pixel at (x; y)

is denoted RB(x; y; t), where x 2 f1; : : : ; (Fw�Bw+1)g, y 2 f1; : : : ; (Fh�Bh+1)g,

and t is the temporal index. For a �xed reference frame block denoted by RB(x; y; t),

the block in the contextual frame that has its top left pixel located at the position

(x + a; y + b) is denoted by CB(a; b; u), where (x + a) 2 f1; : : : ; (Fw � Bw + 1)g,

(y+ b) 2 f1; : : : ; (Fh�Bh+1)g, and where the contextual frame has temporal index

(t+ u). The determination that the object, represented in the block with its top left

corner at (x; y) at time t, has been translated in exactly u frames by the vector (a; b),

is associated with a cost given by the function C(RB(x; y; t); CB(a; b; u)).

We chose to useMean Absolute Error (MAE), orMean Absolute Di�erence (MAD)

as the cost function on the basis of empirical studies in the literature on MPEG stan-

dards [Mar93, BK96] that have shown it works as e�ectively as more computationally
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intensive criteria, where

MAD(RB(x; y; t); CB(a; b; u)) = (2.1)

1

BwBh

(Bw�1)X
i=0

(Bh�1)X
j=0

jV S(x+ i; y + j; t)� V S(x + a+ i; y + b + j; t + u)j

is the speci�c cost function.

Other valid heuristics include computing the Mean Square Error (MSE), where

MSE(RB(x; y; t); CB(a; b; u)) = (2.2)

1

BwBh

(Bw�1)X
i=0

(Bh�1)X
j=0

[V S(x+ i; y + j; t)� V S(x + b+ i; y + b + j; t + u)]2

or computing the correlation between the blocks RB(x; y; t) and CB(a; b; u).

2.1.3 Algorithm for Finding the Motion Vector

2.1.3.1 Vector Determination Criterion

Given a reference blockRB(x; y; t), we wish to determine the block CB(a; b; u), that is

the best match possible in the (t+u)th frame, with the motion vector (a; b) constrained

to a �xed rectangular search space centered at (x; y). If this space's dimensions are

speci�ed as the parameters p and q of the algorithm, then a 2 f(x� p); : : : ; (x+ p)g,

and b 2 f(y�q); : : : ; (y+q)g must hold. For sequences with little motion these values

can be made small for computational e�ciency. If the motion characteristics of the

sequence are unknown, p and q may be set so that the entire frame is searched.

2.1.3.2 Full Search

The only method that can determine the best choice CB(amin; bmin; u) with proba-

bility one, such that

8a 2 f(�x + 1); : : : ; (Fw �Bw � x+ 1)g; (2.3)
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8b 2 f(�y + 1); : : : ; (Fh � Bh � y + 1)g;

C(RB(x; y; t); CB(amin; bmin; u)) � C(RB(x; y; t); CB(a; b; u))

is full search [WWY], which calculates C(RB(x; y; t); CB(a; b; u)) for all values of

a and b in the above mentioned ranges, and keeps track of the pair (a; b) that has

resulted in the lowest value of the cost function. This algorithm has complexity

O(pqBwBh) if p and q are speci�ed, and O(FwFhBwBh) if the most general form is

used.

2.1.3.3 Alternatives

For general purpose video compression, numerous other algorithms have been de-

veloped that can reduce the complexity of the search. We outline some of them

below.

Two-dimensional logarithmic search works by computing the cost at the nine

positions (a; b) where a 2 f(x � p); x; (x + p)g and b 2 f(y � q); y; (y + q)g, then

determining the point at which the cost function attained the minimum value. This

point is then used as the center and p

2
and q

2
are used in place of p and q and the

process is repeated. The recursion reduces the O(pq) aspect to O(log pq).

Parallel hierarchical one-dimensional search (PHODS) works in a similar manner.

In parallel, we �nd the value of (a; y) 2 f(x � p; y); (x; y); (x + p; y)g, and (x; b) 2

f(x; y � q); (x; y); (x; y + q)g that yields the lowest value of the cost function. Use

the determined a and b instead of x and y as the center, and repeat the process

with p

2
and q

2
used instead p and q. This improves over the logarithmic search by

creating regular data ow as the search points remain on the same axes, and allows

parallelization of the determination of a and b.

Pixel subsampling, is the process of dividing the image into geometrically identical

regions, such as square grids of pixels, and then using one representative value for

13



each region, such as the mean of the pixel intensities in the region. This division

into regions must be constrained by certain conditions so that the sub-regions are

balanced representations of the original [BK96]. Full search can be performed on

the lower resolution image, yielding a constant factor improvement in the complexity

bound.

This may be improved upon by recursing in this manner several times, then using

the vector determined on the lowest resolution image as a starting point for searching

at the next higher resolution, and repeating this till the original image is used. This

too will improve the complexity only by a constant factor, since multiple searches at

each of the various resolutions are needed and a �xed number of resolutions is used.

This is called hierarchical search.

Searching by projection of the image grid values onto a line, then searching by

comparing the cost function at various points on the line to determine the best choice

and repeating this with di�erent lines, will also yield a constant factor improvement

over full search.

2.1.3.4 Implementation Choice

The problem with the various alternatives to full search is that they do not guar-

antee that the correct best match will be returned. They will be useful to us only

when there is almost no similarity between the various possible blocks within a given

frame, minimizing the chance of incorrect motion estimation. In the case that video

compression is being performed and the motion vector is used in conjunction with a

residual code, this is not a problem since the error will be compensated for. However,

in our application we are searching for the speci�c part of image space that represents

the area of object space under consideration. We would therefore prefer to use a full

search algorithm with limits on p and q if there are computational constraints, since

this yields a more e�ective strategy for our purpose. In addition, the complexity of
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context extraction [PDG95] is signi�cantly lower than that of the context integration

stage of the algorithm, making it possible to use full search here without noticeably

a�ecting the performance of the implementation.

2.2 Re-estimation With Subpixel Accuracy

Recalling the discussion of Section 1.2, the actual motion of the object that has

occurred between frames has no correspondence with the sampling grid (that is,

the object does not move in integral pixel displacements). As a result we wish to

estimate the motion vector at a �ner resolution. Therefore, e�ectively the initial

estimate as outlined above is the �rst part of a two stage hierarchical search. We

Bw

Fw

B
h

Fh

Object in contextual block

Object in reference frame

Outline of contextual block

Outline of reference frame

Figure 2.1: During the �rst stage, the contextual block containing the object in the
reference block is determined with integral pixel accuracy.

have developed an analytical technique to estimate the motion of a block with sub-

pixel accuracy. The implementation of this completes the second part. By modeling

the cost function, MSE, as a separable function, we develop a measure for what real

valued displacements along each orthogonal axis will reduce the value of the mean

15



Bw

Fw

B
h

Fh

dx

dy

Figure 2.2: The second stage determines a sub-pixel displacement of the contextual
block such that there is an improved match with the reference area.

absolute error.

Let the function F(x; y) contain a representation of the reference frame with

temporal index t, that is

8x 2 f1; : : : ; Fwg; 8y 2 f1; : : : ; Fhg (2.4)

F(x; y) = V S(x; y; t)

and let the function G(x; y) contain a representation of the contextual block for which

we are determining the motion vector with sub-pixel accuracy. If RB(x0; y0; t) was the

reference block for which the previous stage of the algorithm found CB(amin; bmin; u)

to be the contextual block with the closest match in frame (t + u), then de�ne

xmin = x0 + amin; xmax = x0 + amin +Bw � 1 (2.5)

ymin = y0 + bmin; ymax = y0 + bmin +Bh � 1

and further note that the appropriate de�nition of G(x; y) that is required is given
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by

8x 2 fxmin; : : : ; xmaxg; 8y 2 fymin; : : : ; ymaxg (2.6)

G(x; y) = V S(x; y; u)

Instead of (amin; bmin), which is the estimate that results from the �rst stage of the

search, we seek to determine the actual motion of the object, which can be represented

by (amin+�amin; bmin+�bmin). Therefore, at this stage the vector (�amin; �bmin), which

we call the sub-pixel motion displacement, must be found.

Lemma 1 �x can be calculated in O(log (Y BwBh)) space and O(BwBh) time.

Proof This statement holds true upto the approximation that intensity values be-

tween two adjacent pixels vary linearly. Above, Y is the range of possible values of

the function (or, equivalently the range of possible values that a pixel's color can

assume).

If we estimate the sub-pixel motion displacement as (�x; �y), then the cost func-

tion is C(RB(x; y; t); CB(a + �x; b + �y; u)). Thus if we use mean square error as

our matching criterion, and we treat it as an independent function of �x and �y, we

obtain the equation

MSE(�x) =
xmaxX

x=xmin

ymaxX
y=ymin

[F(x; y)� G(x+ �x; y)]2 (2.7)

For the purpose of calculating F and G with non-integral parameters, we will use

linear interpolation. In order to perform such an estimation, the function must be

known at the closest integral valued parameters. Since we have values of the pixels

adjacent to the reference block easily available, and since this is not true for the

contextual block, we reformulate the above equation without loss of generality as

MSE(�x) =
xmaxX

x=xmin

ymaxX
y=ymin

[F(x+ �x; y)� G(x; y)]2 (2.8)
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By expanding Equation 2.8 we obtain

MSE(�x) = (2.9)

xmaxX
x=xmin

ymaxX
y=ymin

h
F2(x + �x; y) + G2(x; y)� 2F(x+ �x; y)G(x; y)

i

This is the equivalent of using a �xed grid (the contextual block) and variably dis-

placing the entire reference frame, in order to �nd the best sub-pixel displacement,

(instead of the intuitive �xing of the image frame and movement of the block whose

motion we are determining).

Assuming that the optimal sub-pixel displacement along the x axis of the con-

textual block under consideration is the �x that minimizes the function MSE(�x) in

Equation 2.9 which models C(RB(x1; y1; t); CB(a+ �x; b)), we proceed to calculate

d

d(�x)
MSE(�x) = (2.10)

xmaxX
x=xmin

ymaxX
y=ymin

"
2F(x+ �x; y)

d

d(�x)
F(x+ �x; y)� 2G(x; y)

d

d(�x)
F(x+ �x; y)

#

Since we wish to determine the minimum of MSE(�x), we will solve for �x using the

constraint

d

d(�x)
MSE(�x) = 0 (2.11)

=
xmaxX

x=xmin

ymaxX
y=ymin

"
[F(x+ �x; y)� G(x; y)]

d

d(�x)
F(x+ �x; y)

#

Since F(x; y) is a discrete function, we use linear interpolation to approximate it as

a continuous function for the purpose of representing F(x + �x; y) and computing

d
d(�x)

F(x+ �x; y).

We consider the case of a positive �x �rst.

8�x; 0 � �x � 1;
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F(x+ �x; y) = F(x; y) + �x [F(x+ 1; y)� F(x; y)] (2.12)

d

d(�x)
F(x+ �x; y) = F(x+ 1; y)� F(x; y) (2.13)

Applying Equations 2.12 and 2.13 to Equation 2.11, we obtain

f
xmaxX

x=xmin

ymaxX
y=ymin

[ [F(x+ 1; y) � F(x; y)] (2.14)

[ F(x; y) � G(x; y) + �x [F(x+ 1; y) � F(x; y)] ] ] g = 0

Further expanding, and grouping to separate terms with �x,

f
xmaxX

x=xmin

ymaxX
y=ymin

[ �x [F(x+ 1; y)� F(x; y)]2 (2.15)

+ F(x+ 1; y)F(x; y) � F2(x; y)

+ F(x; y)G(x; y) � F(x+ 1; y)G(x; y) ] g = 0

Therefore, by rearranging terms and rewriting the above, we can obtain the closed

form solution

�x = (2.16)

Pxmax
x=xmin

Pymax
y=ymin

[ [F(x+ 1; y)� F(x; y)] [F(x; y)� G(x; y)] ]Pxmax
x=xmin

Pymax
y=ymin

[F(x+ 1; y)� F(x; y)]2

Similarly an independent calculation can be performed to attempt to ascertain what

negative value of �x is optimal. The solution in the the case of a negative �x is a

minor variation of the above and is outlined below

8�x; �1 � �x � 0;

F(x+ �x; y) = F(x; y) + �x [F(x; y)� F(x� 1; y)] (2.17)

d

d(�x)
(F(x+ �x; y)) = F(x; y)� F(x� 1; y) (2.18)
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Apply Equations 2.17 and 2.18 to Equation 2.11 to obtain

f
xmaxX

x=xmin

ymaxX
y=ymin

[ [F(x; y) � F(x� 1; y)] (2.19)

[ F(x; y) � G(x; y) + �x [F(x; y) � F(x� 1; y)] ] g = 0

After algebraic manipulation, we obtain �x =

Pxmax
x=xmin

Pymax
y=ymin

[ [F(x; y)� F(x� 1; y)] [F(x; y)� G(x; y)] ]Pxmax
x=xmin

Pymax
y=ymin

[F(x; y)� F(x� 1; y)]2
(2.20)

Finally, we compute the MSE between the reference and contextual block, with each

of the two �x's. The �x that results in the lower MSE is determined to be the correct

one.

The closed form solution for each �x adds BwBh terms in both the numerator

and the denominator. Each term requires two subtractions and one multiplication.

This is followed by computing the �nal quotient of the numerator and denominator

summations. The time complexity is therefore O(BwBh). We note that computing

the MSE is possible within this bound as well. Since the function values range upto

Y , and only the running sum of the numerator and denominator need to be stored,

the space needed is O(logY BwBh). 2

Next, we note that it is possible to obtain a better representation of a block in

the reference frame by completing the analysis of sub-pixel displacements along the

orthogonal axis.

Lemma 2 The cardinality of the set of points that represents the block under con-

sideration from the reference frame is non-decreasing.

Proof After a �x has been determined, the block must be translated by a quantity

�y along the orthogonal axis. It is important to perform this calculation after the �x
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translation has been applied, since it guarantees that the MSE after both translations

is no more than the MSE after the �rst translation, ensuring the correctness of

the algorithm. We can determine the �y in a manner analogous to the one used

to determined �x, using the representation of the MSE below, with the de�nition

x0 = x+ �x:

MSE(�y) =
xmaxX

x=xmin

ymaxX
y=ymin

[F(x0; y)� G(x0; y + �y)]
2

(2.21)

This is in turn equivalent to (by the same argument provided for the �x case):

MSE(�y) =
xmaxX

x=xmin

ymaxX
y=ymin

[F(x0; y + �y)� G(x0; y)]
2

(2.22)

Solving for �y is achieved using:

8�y; 0 � �y � 1; �y = (2.23)

Pxmax
x=xmin

Pymax
y=ymin

[ [F(x0; y + 1)� F(x0; y)] [F(x0; y)� G(x0; y)] ]Pxmax
x=xmin

Pymax
y=ymin

[F(x0; y + 1)� F(x0; y)]2

8�y; �1 � �y � 0; �y = (2.24)

Pxmax
x=xmin

Pymax
y=ymin

[ [F(x0; y)� F(x0; y � 1)] [F(x0; y)� G(x0; y)] ]Pxmax
x=xmin

Pymax
y=ymin

[F(x0; y)�F(x0; y � 1)]2

If the sub-pixel displacement (�x; �y) determined results in an MSE between the con-

textual and reference blocks exceeding a given threshold, then the extra information

is not incorporated into the current set representing the reference block. This pre-

vents the contamination of the set with spurious information. It also completes the

proof that either a set of points that enhances the current set is added, or none are -

yielding a non-decreasing cardinality for the set representing the block that is being

processed. 2

By performing this analysis independently for each of the contextual blocks that

corresponds to each of the reference blocks, we obtain a scattered data set (aside from
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the uniformity of the scatter pattern within individual blocks) representing the frame

whose resolution we are enhancing. If the sampling grid had in�nite resolution, and

we inspected the values registered on it at the points we have determined above to be

in the image space, we would �nd that these data points are a good approximation.

By repeating this process with a number of contextual frames for each of the reference

frames, we can extract a considerable sized set of extra data points in the image space

of the reference frame. At this stage we have theoretically enhanced the resolution

of the video frame. However, the format of scattered data is not an acceptable

format for most display media such as video monitors. Therefore we must process

this information further to make it easily usable.
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Chapter 3

Creating a Coherent Frame

3.1 Framework

We shall de�ne a uniform grid to be the set HP;k [ VQ;l of lines in R
2, where HP;k =

fx = k� j k 2 f0; 1; 2; : : : ; Pg; � 2 R; P 2 Ng speci�es a set of vertical lines and

VQ;l = fy = l� j l 2 f0; 1; 2; : : : ; Qg; � 2 R; Q 2 Ng speci�es a set of horizontal

lines. Specifying the values of P;Q; �; and � determines the uniform grid uniquely.

Given a set S of points of the form (x; y; z), where z represents the intensity of the

point (x; y) in image space, if there exist M;N; �; and � such that all the (x; y) of

the points in the set S lie on the associated uniform grid, and if every data point

(x; y) on the uniform grid has an intensity (that is a z component) associated with

it, then we call the set S a coherent frame. Each of the frames in the original video

sequence was a coherent frame. We seek to create a coherent frame from the data

set D, that we have obtained through the process described in Chapter 2, with the

constraint that the number of points in the coherent frame should be the same as

that of the data set D.

The general principle we use to e�ect the transformation from scattered data to

a coherent frame is to �rst construct a surface in R3 that passes through the input

data. By representing this surface in a functional form with the x and y coordinates

as parameters, it can then be evaluated at uniformly spaced points in the XY plane

for the production of a coherent frame.

There are numerous methods available for the purpose, the tradeo� being the

increased computational complexity needed to guarantee a greater level of accuracy

of the mapping. While the e�ciency of the procedure is important, in the light of
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our concerns in Section 1.5, we would like to make our approximation as close a �t as

possible. We note that although we will be forced to use interpolation techniques at

this stage, we are doing so with a data set that has been increased in size as described

in Chapter 2, so this is not equivalent to performing interpolation at the outset and

is certainly an improvement over that.

Linear interpolation of points yields a very fast, completely scalable algorithm

with the disadvantage that the result is optically suboptimal due the nature in which

the eye perceives images. We resort to this only in the case of data that is not

amenable, due to features like high variance, to interpolation by more sophisticated

techniques. The next option considered was the bivariate generalization of univariate

polynomial interpolation, the process of determining the (n+1) coe�cients of a n de-

gree polynomial that passes through (n+1) speci�ed points, followed by its evaluation

at the points of interest in the domain. Given a set of points f(x0; y0); : : : ; (xn; yn)g,

the unique Newton interpolating polynomial [CK94] takes the form

pn =
nX
l=0

2
4�l

x(x0; : : : ; xl)f(x)
l�1Y
j=0

(x� xj)

3
5 (3.1)

if we adopt the convention that
Q

�1
j=0 (x�xj) = 1. We also note that �0

x(x0)f(x) =

f(x0) by de�nition and that the divided di�erences obey the recursive formulation

�l
x(xi; : : : ; xi+l)f(x) = (3.2)

�l�1
x (xi+1; : : : ; xi+l)f(x) � �l�1

x (xi; : : : ; xi+l�1)f(x)

xi+l � xi

However, we are concerned with the graphical characteristics of the approximation

rather than the mathematical properties, and polynomial interpolation frequently

results in a function that takes on values that may stray considerably in the intervals

between the points that have been speci�ed. This is a property that we wish to
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avoid. The next alternative is piecewise polynomial interpolation, along with the

imposition of continuity conditions at the boundaries of the various polynomials used

to interpolate the subsets of data points, such that the transition from one polynomial

to another appears smooth visually. This brings us to the use of spline functions,

which have the following characteristics. They

1. Are de�ned on a �nite interval [a; b],

2. Have a degree k > 0, (or order k + 1),

3. Have a strictly increasing sequence of knots, �j; j 2 f0; : : : ; (g + 1)g; where

�0 = a and �g+1 = b,

4. Are speci�ed within individual knot intervals, [�j; �j+1], by polynomials of de-

gree at most k, which are denoted by s[�j ;�j+1] 2 Pk, where j 2 f0; : : : ; gg,

5. Are continuous, along with their derivatives of order up to k�1, on the interval

[a; b].

Given the above set of knots, the collection of functions that satisfy the speci�ed

properties form a vector space, denoted by �k(�0; : : : ; �g+1), in which any element

can be expressed as

pk;j(x) =
kX

i=0

ai;j(x� �j)
i (3.3)

where �j � x � �j+1; j 2 f0; : : : ; gg

subject to the conditions that

p
(l)
k;j�1(�j) = p

(l)
k;j(�j) (3.4)

where j 2 f1; : : : ; gg; l 2 f0; : : : ; k � 1g
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A simple and useful example of a spline function is the truncated power function. For

a given constant c it is de�ned as

(x� c)k+ =

(
(x� c)k if x � c

0 if x < c
(3.5)

Spline functions are most suitable for our purpose since

� Polynomials can be evaluated quickly,

� Splines are very exible as they are piecewise de�ned functions,

� Past use in graphics has con�rmed the applicability - the literature [Die93,

dBH87] on the subject contains results that can be used to make decisions

where tradeo�s are required.

3.2 General B-Spline Interpolation

At the outset, we note that the theory of splines is a very rich �eld and that the

properties of these functions are numerous. We will not attempt to cover the topic

in depth, preferring to outline only the concepts required for an understanding of the

task at hand. Consequently, subtleties that must be understood for an implementa-

tion but are not central to understanding the ideas are not introduced. This section

is included for completeness, and further details may be found in [Die93].

By representing an arbitrary spline in terms of a weighted sum of normalized basis

splines, we can perform general B-spline interpolation [dB] through the speci�ed set

of points.

3.2.1 B-Splines

A normalized B-spline of degree k with the knots �i; : : : ; �i+k+1 is de�ned as

Ni;k+1(x) = (�i+k+1 � �i)�
k+1
t (�i; : : : ; �i+k+1)(t� x)k+ (3.6)
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We note that Ni;k+1(x) = 0 if x 62 [�i; �i+k+1] and that a B-spline is always positive.

Since there are a total of gk constraints placed by Equation 3.4 on the possible values

that are acceptable for the (g + 1)� (k + 1) coe�cients ai;j in Equation 3.3,

dim(�k(�0; : : : ; �g+1)) = g + k + 1 (3.7)

Given a set of knots �0; : : : ; �g+1), and since each B-spline of the form in Equation 3.6

is determined by (k+ 1) knots, we can construct (g� k+ 1) linearly independent B-

splines. From Equation 3.7 we determine that we need 2k more linearly independent

basis functions to form a spanning set for the vector space �k. We introduce the

knots ��k; : : : ; ��1 and �g+2; : : : ; �g+k+1 with arbitrary values such that

��k < ��k+1 < � � � < ��1 < �0 = a (3.8)

b = �g+1 < �g+2 < � � � < �g+k < �g+k+1

Now we can represent any spline as

s(x) =
gX

i=�k

ciNi;k+1(x) (3.9)

where the ci are called the B-spline coe�cients of s(x). As previously mentioned the

basis is a normalized one, that is 8x 2 [a; b],

gX
i=�k

Ni;k+1(x) = 1 (3.10)

Evaluation of the spline can be performed by a direct recursive formulation due to

Carl de Boor [dBH87]. s(x) = c
[k]
j (x) where

c
[k]
j (x) =

8<
:

cj if i = 0
(x��j)c

[i�1]
j +(�j+k+1�i�x)c

[i�1]
j�1 (x)

�j+k+1�i��j
if i > 0

(3.11)
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3.2.2 Tensor Product Splines

Since our data domain is bivariate, we consider the various generalizations of the

theory of univariate splines. The most direct extension is through the use of tensor

product splines, which yield e�cient calculations. They

1. Are de�ned on R, a �nite region [a; b]� [c; d],

2. Have a degree k > 0 in x, and degree l > 0 in y,

3. Have two independent strictly increasing knot sequences:

�i; i 2 f0; : : : ; (g + 1)g; where �0 = a and �g+1 = b,

�j; j 2 f0; : : : ; (h+ 1)g; where �0 = c and �h+1 = d,

4. Are speci�ed within the subrectangle Ri;j = [�i; �i+1] � [�j; �j+1] by a poly-

nomial of degree k in x and another of degree l in y. Thus the speci�ed ten-

sor product spline is denoted by sRi;j
2 Pk � Pl, where i 2 f0; : : : ; gg and

j 2 f0; : : : ; hg,

5. Are continuous over R, along with their partial derivatives as speci�ed by

@i+js(x;y)
@xiyj

2 C(R) where i 2 f0; : : : ; (k � 1)g and j 2 f0; : : : ; (l � 1)g.

Given the above set of knots, the collection of functions that satisfy the speci�ed

properties form a vector space, denoted by �k;l(�0; : : : ; �g+1;�0; : : : ; �h+1), or �k;l.

Applying general rule for calculating the dimension of tensor product spaces, we

have

dim(�k;l) = dim(�k(�0; : : : ; �g+1)) dim(�l(�0; : : : ; �g+1)) (3.12)

= (g + k + 1)(h+ l + 1)

Therefore in analogy to the univariate case, we introduce the boundary knots

��k < ��k+1 < � � � < ��1 < �0 = a (3.13)
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Figure 3.1: A tensor product basis spline.

b = �g+1 < �g+2 < � � � < �g+k < �g+k+1

��l < ��l+1 < � � � < ��1 < �0 = c

d = �h+1 < �h+2 < � � � < �h+l < �h+l+1

so that we may represent any tensor product spline as

s(x; y) =
gX

i=�k

hX
j=�l

ci;jNi;k+1(x)Mj;l+1(y) (3.14)

where Mj;l+1(y) = (�j+l+1 � �j)�
l+1
t (�j; : : : ; �j+l+1)(t � y)l+. We also note that

Ni;k+1(x)Mj;l+1(y) = 0 if x 62 [�i; �i+k+1] or y 62 [�j; �j+l+1] and that the tensor

product spline is always positive. The basis is normalized, that is 8x 2 [a; b]; 8y 2

[c; d]

gX
i=�k

hX
j=�l

Ni;k+1(x)Mj;l+1(y) = 1 (3.15)
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To evaluate the spline at a point (x; y) 2 [�r; �r+1)� [�s; �s+1), we can use

s(x; y) =
rX

i=r�k

aiNi;k+1(x) (3.16)

where

ai =
sX

j=s�l

ci;jMj;l+1(y) (3.17)
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Figure 3.2: A surface constructed using tensor product basis splines.

3.2.3 Smoothing Criterion

Since the measurement of intensities of pixels is subject to some error, along with

the fact that the motion estimation algorithm imposes constraints of local uniform

motion �elds that do not exist in object space, resulting in some amount of error, we

must use a smoothing norm that will allow us to �nd the bivariate tensor product

spline that will best �t the arbitrary data values.
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Dierckx speci�es one possible form for the norm as

�(c) =
gX

q=1

hX
j=�l

2
4 gX
i=�k

ci;jai;q

3
5
2

+
hX

r=1

gX
i=�k

2
4 hX
j=�l

ci;jbj;r

3
5
2

(3.18)

where ai;q = N
(k)
i;k+1(�q+)�N

(k)
i;k+1(�q�); (3.19)

and bj;r = M
(l)
j;l+1(�r+)�M

(l)
j;l+1(�r�) (3.20)

Here c is the set of B-spline coe�cients of s(x; y), and ai;q is the discontinuity of kth

derivative of the B-spline Ni;k+1(x) at the knot �q, and similarly bj;r is the discontinu-

ity of lth derivative Mj;l+1(y) at the knot �r. This norm must be minimized subject

to the additional constraint �(c) � S, where

�(c) =
mX
r=1

2
4wrzr �

gX
i=�k

hX
j=�l

ci;jwrNi;k+1(xr)Mj;l+1(yr)

3
5
2

(3.21)

where (xr; yr; zr) for r 2 f1; : : : ; mg are the data values for which we are trying to

�nd an approximating surface and wr are the weights attached to the points during

splining. For the data set to be valid, the conditions 8xr; xr 2 [a; b]; 8yr; yr 2 [c; d]

must hold.

Minimizing Equation 3.18 with a constraint on Equation 3.21 is an optimization

problem that can be solved by the method of Lagrange, with the required coe�-

cients ci;j as the least squared solution of and overdetermined system. Details of the

algorithm are easily available in the literature [Die93].

3.3 Implementation Issues

We have seen that given an arbitrary scattered data set, we can construct a coherent

frame that provides a very good approximation of the surface speci�ed by the original

data set. However, if we were to work with the entire data set at hand, our algorithm
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would not be scalable. This is due to the fact that memory requirement would exceed

that which is available on today's computer systems, even for processing a typical

MPEG sized video sequence.

Keeping in mind the fact that splines use only a �xed number of neighbouring

points, we employ the technique of decomposing the data set into spatially related

sets of �xed size. Each set contains all the points within a block in image space.

The disadvantage of working with such subsets is that visible artifacts develop at the

boundaries in the image space of these blocks. To avoid this we compose the blocks

by using data from adjacent blocks to create a border of data points around the block

in question, so that the spline surface constructed for a block is continuous with the

surfaces of the adjacent blocks. Working with a block at a time in this manner, we

construct surfaces for each region in the image space, and evaluate the surface on a

uniform grid, to obtain the representation we desire. When this is done for the entire

set, we have obtained a coherent frame.

Lemma 3 Creating a block in a coherent frame using data extracted from temporal

context requires O(BwBh�(k)T ) operations.

Proof Here T frames are incorporated, and degree k polynomial based B-spline

tensor products are used to perform the transformation from scattered to gridded

data. The complexity of splining depends on the number of points, which is BwBh,

the product of the block width and height. �(k) is the cost to perform the splining

operations per point in the data set.

Since B-splines have the property of local support, that is only a �xed number

of adjacent B-splines are required for the evaluation of any given point in the space

spanned by them (such as the surface being represented), and each B-spline can be

represented as a �xed length vector of coe�cients, the approximation of a surface

speci�ed by a set of points has time complexity that is only bound by the degree of

32



the polynomials used and the multiplicity of the knots [dB78, Sch81].

While in theory B-spline interpolation has complexity O(k log2 k), constructing a

B-spline as well as evaluating it along with all its derivatives can be done in O(k2)

operations in practice. Thus �(k) is k2. The above result follows immediately from

this. 2
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Chapter 4

Results

4.1 Complexity of Algorithm

Theorem 1 Processing an L frame video sequence using T frames of temporal con-

text to enhance the resolution of each frame, yields the higher resolution version in

O( FwFh
BwBh

L[�(Bw; Bh) +BwBh�(k)T ]) time.

Proof There are FwFh
BwBh

blocks. For each block, it takes �(Bw; Bh) time to perform

motion estimation (assuming �xed range exhaustive search) and re-estimation of the

motion with sub-pixel accuracy, by Lemma 1. Transforming the data set obtained

for a block takes O(BwBh�(k)T ) time, by Lemma 3. Finally, there are L frames to

process. The above stated time complexity bound follows from this. 2

4.2 GROW

The application software, GROW, was developed as an implementation of the al-

gorithm. It provides a exible command line interface that allows the individual

speci�cation of numerous parameters such as the horizontal and vertical dimensions

of the blocks used for motion estimation, the blocks used for spline interpolation, the

extra border used for composing blocks for spline interpolation, the degrees of the

splines used, the factors by which the output frame is scaled up from the original, the

maximum range in which to perform motion estimation, the number of previous and

later frames used to enhance any given frame, the error threshold that is acceptable

during motion estimation and that for spline interpolation.
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The parameters entered serve to guide but not enforce the algorithm. For ex-

ample, splining starts with the degree the user enters but automatically drops to

lower degrees (as less context is used) when the surface returned is not close enough

to the points it is approximating. The error threshold speci�ed for splining is used

to scale up bounds that are calculated using heuristics from the literature [Die93].

Intermediate results, such as the sub-pixel displacements, are calculated and kept in

high precision oating point format. When error thresholds are crossed, the data in

question is not used. Thus occlusion and peripheral loss of objects is dealt with by

the e�ective result of using only reference image data for the relevant region.

4.3 Experiments

The methodology employed to test the program is speci�ed below. A video sequence

was sub-sampled, on a frame by frame basis. The new lower resolution sequence was

used as data, and the output compared to the original sequence.

If G represents the high resolution video sequence, and F represents the high reso-

lution sequence obtained by running GROW on the low resolution version associated

with G, where the low resolution version was obtained through the sub-sampling of

G, then the Signal to Noise Ratio is de�ned as:

SNR = 10 log

q
1

BwBh

Pxmax
x=xmin

Pymax
y=ymin

F(x; y)

1
(BwBh)2

Pxmax
x=xmin

Pymax
y=ymin

[F(x; y)� G(x; y)]2
(4.1)

Using this metric to measure distortion, we compare the strength of the signal of the

sequence produced by GROW under various cicrumstances.

As an example, note below the parts of �ve smaller frames in Figure 4.3 that

are part of the original video sequence, garden. By using all of them as input to

GROW, the higher resolution output corresponding to the the third original frame is
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Figure 4.1: Original frames.

generated and shown. Figure 4.3 shows versions constructed with GROW as well as

with spline interpolation, along with the original frame. Artifacts that arise in the

�nal images are due to splining.

We note that the improvement over spline interpolation by the addition of data

obtained from temporal context is done at little practical cost. This is demonstrated

in the data in Figure 4.5 by the fact that the amount of time spent on this is minimal

compared to time spent on the spline construction and evaluation.

The e�ect of varying the parameters of the algorithm is an observable as well

as measurable change in the quality of the output images, as measured by the SNR

heuristic. The meaning of each of the parameters is explained in detail in Chapter 6.
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Figure 4.2: Higher reso-
lution version of the cen-
tral frame obtained using
GROW.
            

Figure 4.3: The same
frame with its resolu-
tion increased using only
spline interpolation.
            

Figure 4.4: The frame
whose resolution is being
increased.
            

Figure 4.5: Time spent broken down by splining and temporal context extraction.
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s t j k x y c d p l m n a b z u e SNR

4 4 4 4 8 8 2 2 2 2 64 64 5 5 1 0 4 30.59
8 8 4 4 8 8 2 2 2 2 64 64 5 5 1 0 4 30.40
16 16 4 4 8 8 2 2 2 2 64 64 5 5 1 0 4 28.34
16 16 8 8 8 8 2 2 2 2 64 64 5 5 1 0 4 28.39
16 16 4 4 4 4 2 2 2 2 64 64 5 5 1 0 4 28.33
16 16 4 4 16 16 2 2 2 2 64 64 5 5 1 0 4 28.32
16 16 4 4 8 8 4 4 2 2 64 64 5 5 1 0 4 27.49
16 16 4 4 8 8 2 2 0 0 64 64 5 5 1 0 4 28.39
16 16 4 4 8 8 2 2 1 1 64 64 5 5 1 0 4 28.42
16 16 4 4 8 8 2 2 3 3 64 64 5 5 1 0 4 28.39
16 16 4 4 8 8 2 2 2 2 128 128 5 5 1 0 4 28.34
16 16 4 4 8 8 2 2 2 2 64 64 3 3 1 0 4 28.45
16 16 4 4 8 8 2 2 2 2 64 64 5 5 3 0 4 28.83
16 16 4 4 8 8 2 2 2 2 64 64 5 5 1 0 8 28.35

As mentioned in the overview, certain aspects such as spline degree selection have

been automated, while others such as splining error bounds are semi-automatically

calculated, using heuristics and minimal user input. To get an optimal image se-

quence, though, it is necessary for the user to manually adjust the values fed into

the algorithm. Finally, we note that by hand tuning GROW, we can obtain a sig-

ni�cantly better result than possible by spline interpolation without using temporal

context. This can be noted from the table as the row which uses no past and future

frames e�ects this kind of spline interpolation, but does not yield as strong a signal

as the best case output of GROW.
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Chapter 5

Future Work

The goal of this thesis was to demonstrate that the use of temporal context in an

image stream can indeed provide an improvement in individual frame resolution. In

the future, advanced techniques for e�ecting this goal may be incorporated to produce

results that may be applied to real world scenarios in real time.

The currently suggested methods are primitive by comparison to what could po-

tentially be used. We restricted our work to these methods because they were com-

putationally e�cient and enough to provide a proof of concept. Some of the possible

extensions that would improve the results at a cost of much higher computational

requirements are suggested below.

During motion estimation, arbitrary blocks need not be used. Instead, by using

hierarchical clustering techniques on local motion �elds of the image stream, objects

may be identi�ed more accurately, and tracking may be performed on the exact

shape. Rather than using the simple linear translation model, one can incorporate

a model where a full range of a�ne transformations can be represented, including

rotation, scaling, and warping. During sub-pixel motion re-estimation, we ignore the

correlation between the orthogonal components. Instead, the convolution of these

could be �gured into the analytical calculations used to estimate these. Finally,

replacing the use of splines could be explored with suitable image processing �ltering

techniques.

For an implementation that operates in real time, even our application, leave

alone the proposed extensions of it, would require some high performance dedicated

hardware.
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Chapter 6

Application GROW User Manual

For the purpose of verifying the idea proposed, we created an application program

that accepts a video sequence as input, processes it and produces a higher resolution

output video sequence. It works with raw greyscale (or equivalently the Y component

�les of a YUV sequence). It was written and has been tested in the Unix environment

and is known to run under Sun's SunOS 4.x, Sun's Solaris 2.x, DEC's OSF1 3.x, IBM's

AIX 3, SGI's IRIX 6.1 with the NFS and AFS �lesystems. Since it has been written

with no device dependencies, it should be easily portable to other platforms.

Usage: grow
-f <first-frame> -g <last-frame> -h <frame-height>
-w <frame-width> -i <input-files> -o <output-files>
[-s <x-dimension-of-splining-blocks>]
[-t <y-dim-spl-blks>]
[-j <x-dim-extra-pixels-for-splining>]
[-k <y-dim-extra-pixels>]
[-x <x-dim-of-motion-estimation-blocks>]
[-y <y-dim-mot-est-blks>]
[-c <horizontal-scaling-factor>]
[-d <vertical-scaling-factor>]
[-p <number-of-previous-frames-used-as-context>]
[-l <num-later-frms>]
[-m <maximum-x-displacement-during-motion-est>]
[-n <max-y-disp>]
[-a <x-dimension-spline-degree>]
[-b <y-dimension-spline-degree>]
[-z <spline-acceptable-error-factor>]
[-u <class-of-max-accept-err>]
[-e <maximum-error-during-motion-est>]
[-v (verbose)]

Figure 6.1: Command line parameters of program GROW.

GROW makes use of Paul Dierckx's SURFIT routines, available from any Netlib

repository. These were converted from Fortran to C using F2C. Thus, if the user

40



wishes to compile the source, the appropriate library should be available to the com-

piler.

A large number of parameters of the algorithm are accessible to the user through

a command line interface. While it is not necessary for the user to supply these since

GROW will use default values in the absence of these being fed in explicitly, the

option to adjust them exists and they are therefore explained here.

-f The index number of the �rst frame where processing of the video sequence is to

begin. For example, if the entire sequence of �les frame1:Y; : : : ; frame20:Y is

to be processed then the value used as a parameter of -f would be 1.

-g The index number of the last frame to be processed. In the above example, the

parameter of -g would be 20.

-h The integer number of pixels in the vertical direction of each individual frame in

the video sequence.

-w The integer number of pixels in the horizontal direction of each individual frame

in the video sequence.

-i The string name of the input sequence of �les to be used. For example, to process

the sequence frame1:Y; : : : ; frame20:Y , the parameter frame would be used

for the -i option.

-o The string name of the output video sequence. For example, if the parameter

newframe was used for the -o option, then if there are 5 output frames, they

will be stored as newframe0:Y; : : : ; newframe4:Y .

The above options must be speci�ed for all processing. The below options may be

varied at the user's discretion. It is not necessary to use any of these. The application

has defaults built in.
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-s The integer parameter supplied is the horizontal dimension of the block size used

during spline interpolation and evaluation.

-t The integer parameter is the vertical dimension of the block size used during spline

interpolation and evaluation.

-j During spline interpolation of a block, pixels from adjacent blocks are used to sew

the blocks together. The integer parameter supplied is the horizontal width of

the border that runs parallel to the vertical axis.

-k The integer parameter supplied is the vertical width of the above border that runs

parallel to the horizontal axis.

-x The integer parameter supplied is the horizontal dimension of the block size used

during motion estimation.

-y The integer parameter is the vertical dimension of the block size used during

motion estimation.

-c The integer parameter supplied speci�es the factor by which the horizontal reso-

lution is increased when evaluating the spline surface representing the image.

-d The integer parameter supplied speci�es the factor by which the vertical resolution

is increased when evaluating the spline surface.

-p The integer parameter is the number of previous frames that are used during

temporal context extraction to add information to the data set representing

the frame that is currently being processed.

-l The integer parameter is the number of later frames that are used to add infor-

mation for the frame that is currently being processed.
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-m The integer parameter supplied is the maximum horizontal direction in which to

search for a motion vector. If this is set to 0, then a full search throughout the

entire image is performed.

-n The integer parameter supplied is the maximum vertical direction in which to

search for a motion vector. If this is set to 0, then a full search throughout the

entire image is performed.

-a The integer parameter is the maximum degree of the polynomials used in the

horizontal direction. If this yields unacceptable results, the application will

automatically try lower degree polynomials as well.

-b The integer parameter is the maximum degree of the polynomials used in the

vertical direction. If this yields unacceptable results, the application will auto-

matically try lower degree polynomials as well.

-z During spline interpolation the smoothing norm is subject to a least mean squares

constraint. The oating point parameter supplied here speci�es that value.

-u The spline routines from SURFIT provide a return value indicating what kind of

approximation was performed. The integer parameter supplied here speci�es

the level of approximation considered acceptable. This should usually be left

at 0.

-e During motion estimation, if the MAE between the reference and currently con-

sidered blocks is below the integer parameter supplied here, then an acceptable

match is considered to be found.

-v When this option is used the application sends detailed information about what

it is currently doing to the standard output.
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Appendix A

Source code of GROW

/* Grow.c - Grows the frame size of a video sequence *
* *
* Written by Ashish Gehani */

#include<stdlib.h>
#include<stdio.h>
#include<strings.h>
#include<sys/file.h>
#include<sys/time.h>
#include<time.h>
#include<math.h>
#include"f2c.h"
#include"spline.h"

#define MAX_STR_LEN 80

int XSPL=5; /* Degree of the splines in the x dimension */
int YSPL=5; /* Degree of the splines in the y dimension */
int XBL=8; /* Number of pixels in the horizontal dimension that *

* define a block */
int YBL=8; /* Number of pixels in the vertical dimension that *

* define a block */
int FFM=2; /* Number of frames ahead of the current that are to *

* be used for providing contextual information */
int BFM=2; /* Number of frames after the current one to be *

* used as context for the spline interpolated *
* construction of the current one */

int XSM=64; /* Number of pixels to search in the horizontal *
* direction when attempting to determine a motion *
* estimation vector, 0 <=> exhaustive search */

int YSM=64; /* Number of pixels to search in the vertical *
* direction when attempting to determine a motion *
* estimation vector, 0 <=> exhaustive search */

int ERMC=4; /* Maximum mean acceptable error per pixel *
* during motion estimation */

int ERSP=1; /* Acceptable error factor for spline construction */
int THR=0; /* Threshold of class of errors acceptable during splining */
int XSBL=16; /* Number of pixels in the horizontal dimension that *

* define a block for the purpose of spline interpolation *
* - fragile parameter - should preferably be a factor of the *
* horizontal dimension of the motion estimated image */

int YSBL=16; /* Number of pixels in the vertical dimension that *
* define a block for the purpose of spline interpolation *
* - fragile parameter - should preferably be a factor of the *
* vertical dimension of the motion estimated image */

int XIF=2; /* Factor by which horizontal resolution increases *
* during spline evaluation */

int YIF=2; /* Factor by which vertical resolution increases *
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* during spline evaluation */
int XBR=4; /* Number of horizontal direction extra pixels from adjacent *

* blocks used for spline construction */
int YBR=4; /* Number of vertical direction extra pixels from adjacent *

* blocks used for spline construction */

int height, hmc; /* Height of original frame, motion estimated one */
int width, wmc; /* Width of original frame, motion estimated one */
int hsp; /* Height of frame used for spline construction */
int wsp; /* Width of frame used for spline construction */
int begin; /* First frame in sequence */
int last; /* Last frame in sequence */
char input[MAX_STR_LEN], output[MAX_STR_LEN]; /* Names of file sequence */
int verbose=0; /* Set to 1 when verbose output is needed */
unsigned char **frame; /* Pointer to the array of pointers to frames */
unsigned char **mc; /* Pointer to the array of pointers to frames *

* created by motion estimation searches */
doublereal *xhr,*yhr,*zhr; /* Pointers to the coordinate arrays of *

* high resolution version of the images */
doublereal *xvhr,*yvhr,*zvhr; /* Pointers to the coordinate arrays of *

* very high resolution blocks of data *
* used for constructing spline surface */

doublereal *w; /* Pointer to array of weights used for splining */
doublereal *xf,*yf,*zf; /* Pointers to the coordinate arrays of *

* very high resolution blocks of data *
* used for evaluating spline surface */

doublereal *vhrbuf; /* Pointer to array of z coordinates of collection *
* of blocks being buffered for output to a file */

void CurrentTime(char *message)
{

time_t now; /* Current time and date */

/* Output the current time and date */

if(verbose){
now=time(NULL);
printf("%s: %s",message,ctime(&now));

}
}

void Usage(char *prog)
{

fprintf(stderr,"Usage:\t%s\n\t",prog);
fprintf(stderr,"-f <first-frame> ");
fprintf(stderr,"-g <last-frame> ");
fprintf(stderr,"-h <frame-height> ");
fprintf(stderr,"-w <frame-width>\n\t");
fprintf(stderr,"-i <input-files> ");
fprintf(stderr,"-o <output-files>\n\t");
fprintf(stderr,"[-s <x-dimension-of-splining-blocks>] ");
fprintf(stderr,"[-t <y-dim-spl-blks>]\n\t");
fprintf(stderr,"[-j <x-dim-extra-pixels-for-splining>] ");
fprintf(stderr,"[-k <y-dim-extra-pixels>]\n\t");
fprintf(stderr,"[-x <x-dim-of-motion-estimation-blocks>] ");
fprintf(stderr,"[-y <y-dim-mot-est-blks>]\n\t");
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fprintf(stderr,"[-c <horizontal-scaling-factor>] ");
fprintf(stderr,"[-d <vertical-scaling-factor>]\n\t");
fprintf(stderr,"[-p <number-of-previous-frames-used-as-context>] ");
fprintf(stderr,"[-l <num-later-frms>]\n\t");
fprintf(stderr,"[-m <maximum-x-displacement-during-motion-est>] ");
fprintf(stderr,"[-n <max-y-disp>]\n\t");
fprintf(stderr,"[-a <x-dimension-spline-degree>] ");
fprintf(stderr,"[-b <y-dimension-spline-degree>]\n\t");
fprintf(stderr,"[-z <spline-acceptable-error-factor>] ");
fprintf(stderr,"[-u <class-of-max-accept-err>]\n\t");
fprintf(stderr,"[-e <maximum-mean-error-during-motion-est>]\n\t");
fprintf(stderr,"[-v (verbose)]\n");

}

void Parse(int argc, char** argv)
{

extern char *optarg; /* Argument to an option */
int opt; /* Command line option */

/* Parse the command line options */

if(argc==1){
Usage(argv[0]);
exit(1);

}
if(strcpy(input,"") != input){

fprintf(stderr,"Error when initializing input filename\n");
exit(1);

}
if(strcpy(output,"") != output){

fprintf(stderr,"Error when initializing output filename\n");
exit(1);

}
while((opt=getopt(argc,argv,

"f:g:h:w:i:o:x:y:s:t:j:k:c:d:p:l:m:n:a:b:e:z:u:v"))!=-1){
switch(opt){

case 'f':
begin=atoi(optarg);
break;

case 'g':
last=atoi(optarg);
break;

case 'h':
height=atoi(optarg);
break;

case 'w':
width=atoi(optarg);
break;

case 'i':
strcpy(input,optarg);
break;

case 'o':
strcpy(output,optarg);
break;

case 'x':
XBL=atoi(optarg);
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break;
case 'y':

YBL=atoi(optarg);
break;

case 's':
XSBL=atoi(optarg);
break;

case 't':
YSBL=atoi(optarg);
break;

case 'j':
XBR=atoi(optarg);
break;

case 'k':
YBR=atoi(optarg);
break;

case 'c':
XIF=atoi(optarg);
break;

case 'd':
YIF=atoi(optarg);
break;

case 'p':
BFM=atoi(optarg);
break;

case 'l':
FFM=atoi(optarg);
break;

case 'm':
XSM=atoi(optarg);
break;

case 'n':
YSM=atoi(optarg);
break;

case 'a':
XSPL=atoi(optarg);
break;

case 'b':
YSPL=atoi(optarg);
break;

case 'e':
ERMC=atoi(optarg);
break;

case 'u':
THR=atoi(optarg);
break;

case 'z':
ERSP=atoi(optarg);
break;

case 'v':
verbose=1;
break;

case '?':
Usage(argv[0]);
exit(1);

default:
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fprintf(stderr,"Parse error.");
exit(1);

}
}

/* Check for input, output filenames and that enough frames specified */

if (strcmp(input,"")==0){
fprintf(stderr,"Input filename required.\n");
exit(1);

}
if (strcmp(output,"")==0){

fprintf(stderr,"Output filename required.\n");
exit(1);

}
if((FFM+BFM)>(last-begin)){

fprintf(stderr,"%d more frames needed.\n",FFM+BFM+begin-last);
exit(1);

}
if(verbose) printf("Options parsed.\n");

}

void Allocate()
{

int count;

/* Allocate memory for pointers to frames being processed */

frame=(unsigned char **) calloc(BFM+1+FFM, sizeof(unsigned char *));
if(frame==NULL){

fprintf(stderr,"Memory request for pointers to frames failed.\n");
exit(1);

}
if(verbose) printf("Allocated memory for pointers to frames.\n");

/* Allocate memory for frames */

for(count=0;count<BFM+1+FFM;count++){
frame[count]=(unsigned char*) calloc(height*width,

sizeof(unsigned char));
if(frame[count]==NULL){

fprintf(stderr,"Memory request for frame %d failed.\n",count);
exit(1);

}
}
if(verbose) printf("Allocated memory for frames.\n");

/* Allocate memory for pointers to motion estimated frames */

mc=(unsigned char **) calloc(BFM+1+FFM, sizeof(unsigned char *));
if(mc==NULL){

fprintf(stderr,"Memory request for pointers to motion ");
fprintf(stderr,"estimated frames failed.\n");
exit(1);

}
if(verbose){
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printf("Allocated space for pointers to frames created by ");
printf("motion estimation searches.\n");

}

/* Allocate memory for frames created by motion estimation searches */

hmc=(height/YBL)*YBL; /* Motion estimation is not performed on border */
wmc=(width/XBL)*XBL; /* area which has width or height less than that *

* of a single macroblock */
if(verbose){

printf("Input frame dimensions: %d x %d\n",height,width);
printf("Working with frame dimensions: %d x %d\n",hmc,wmc);

}

for(count=0;count<BFM+1+FFM;count++){
mc[count]=(unsigned char *) calloc(hmc*wmc, sizeof(unsigned char));
if(mc[count]==NULL){

fprintf(stderr,"Memory request for motion estimated frame ");
fprintf(stderr,"%d failed.\n",count);
exit(1);

}
}
if(verbose){

printf("Allocated memory for frames created by motion ");
printf("estimation searches.\n");

}

/* Allocate memory for high resolution versions of images */

xhr=(doublereal *) calloc((BFM+1+FFM)*hmc*wmc, sizeof(doublereal));
if(xhr==NULL){

fprintf(stderr,"Memory request for x coordinates of ");
fprintf(stderr,"high resolution image failed.\n");
exit(1);

}
if(verbose){

printf("Allocated memory for x coordinates of high resolution ");
printf("frames.\n");

}

yhr=(doublereal *) calloc((BFM+1+FFM)*hmc*wmc, sizeof(doublereal));
if(yhr==NULL){

fprintf(stderr,"Memory request for y coordinates of ");
fprintf(stderr,"high resolution image failed.\n");
exit(1);

}
if(verbose){

printf("Allocated memory for y coordinates of high resolution ");
printf("frames.\n");

}

zhr=(doublereal *) calloc((BFM+1+FFM)*hmc*wmc, sizeof(doublereal));
if(zhr==NULL){

fprintf(stderr,"Memory request for z coordinates of ");
fprintf(stderr,"high resolution image failed.\n");
exit(1);
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}
if(verbose){

printf("Allocated memory for z coordinates of high resolution ");
printf("frames.\n");

}

hsp=(hmc/YSBL)*YSBL; /* Spline construction is not performed on border */
wsp=(wmc/XSBL)*XSBL; /* area which has width or height less than that *

* of a single spline interpolation block */
if(verbose) printf("Spline frame dimensions: %d x %d\n",hsp,wsp);

/* Allocate memory used for representing the block as evaluated at *
* desired points on the spline surface */

xf=(doublereal *) calloc(XIF*XSBL, sizeof(doublereal));
if(xf==NULL){

fprintf(stderr,"Memory request for x coordinate very high ");
fprintf(stderr,"res block used for spline evaluation failed.\n");
exit(1);

}
if(verbose){

printf("Allocated mem for x coordinate very high res ");
printf("block used for spline eval.\n");

}

yf=(doublereal *) calloc(YIF*YSBL, sizeof(doublereal));
if(yf==NULL){

fprintf(stderr,"Memory request for y coordinate very high ");
fprintf(stderr,"res block used for spline evaluation failed.\n");
exit(1);

}
if(verbose){

printf("Allocated mem for y coordinate very high res ");
printf("block used for spline eval.\n");

}

zf=(doublereal *) calloc(XIF*XSBL*YIF*YSBL, sizeof(doublereal));
if(zf==NULL){

fprintf(stderr,"Memory request for z coordinate very high ");
fprintf(stderr,"res block used for spline evaluation failed.\n");
exit(1);

}
if(verbose){

printf("Allocated mem for z coordinate very high res ");
printf("block used for spline eval.\n");

}

/* Buffers blocks till a row of blocks have been determined, at which *
* point they may be outputted to the appropriate file */

vhrbuf=(doublereal *) calloc(XIF*YIF*wsp*YSBL,
sizeof(doublereal));

if(vhrbuf==NULL){
fprintf(stderr,"Memory request for output buffer of ");
fprintf(stderr,"very high resolution coordinates failed.\n");
exit(1);
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}
if(verbose){

printf("Allocated memory for output buffer of very high resolution ");
printf("coordinates.\n");

}
}

void ReadInit()
{

char name[MAX_STR_LEN];
FILE *stream; /* File pointer multiply used for reads and writes */
int bytes; /* Return value for number of bytes read */
int count;

/* Read initial files in */

for(count=0;count<BFM+1+FFM;count++){
sprintf(name,"%s%d.Y",input,begin+count);
stream=fopen(name,"r");
if(stream==NULL){

fprintf(stderr,"Can not open file %s\n",name);
exit(1);

}
bytes=fread(frame[count],sizeof(unsigned char),height*width,stream);
if(bytes<height*width){

fprintf(stderr,"Could not read enough data from file %s.\n", name);
exit(1);

}
fclose(stream);

}
if(verbose) printf("Read initial files %s%d-%d in.\n",

input,begin,begin+BFM+FFM);
}

int CumAbsErr(int xs, int ys, int xb, int yb, int count)
{

int x,y;
int error; /* Reused for calcultaing motion estimated block errors */
unsigned char *orig,*xtra; /* Pointers to the original frame (whose *

* resolution we are improving), & the one *
* from which more data is being obtained */

/* Use cumulative absolute error to determine match closeness */

orig=frame[BFM];
xtra=frame[count];
error=0;
for(y=0;y<YBL;y++){

for(x=0;x<XBL;x++){
error+=
abs(orig[((yb+y)*width)+(xb+x)]-xtra[((ys+y)*width)+(xs+x)]);

}
}
return error;

}
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void UpdateBlock(int xs, int ys, int xb, int yb, int src, int dest)
{

int x,y;
unsigned char *xtra,*new; /* Pointers to the frame from which more data *

* is being obtained and the one being *
* constructed */

/* Used when motion estimated block has less than maximum *
* acceptable error, this routine copies the block */

xtra=frame[src];
new=mc[dest];
for(y=0;y<YBL;y++){

for(x=0;x<XBL;x++){
new[((yb+y)*wmc)+(xb+x)]=xtra[((ys+y)*width)+(xs+x)];

}
}
if(verbose){

printf("Using block (%d,%d) as motion estimated block",xs,ys);
printf("(%d,%d) in frame %d.\n",xb,yb,dest);

}
}

void FindRange(int xb, int yb, int *left, int *right, int *top, int *bottom)
{

/* Specify the range for motion estimation searches */

if(!XSM){ /* No horizontal range specified so do exhaustive search */
*left=0;
*right=wmc-XBL;

} else { /* Range specified - check that image boundaries are not *
* crossed */

if((xb-XSM)<0){
*left=0;

} else {
*left=xb-XSM;

}
if((xb+XSM)>(wmc-XBL)){

*right=wmc-XBL;
} else {

*right=xb+XSM;
}

}

if(!YSM){ /* No vertical range specified so do exhaustive search */
*top=0;
*bottom=hmc-YBL;

} else { /* Range specified - check that image boundaries are not *
* crossed */

if((yb-YSM)<0){
*top=0;

} else {
*top=yb-YSM;

}
if((yb+YSM)>(hmc-YBL)){

*bottom=hmc-YBL;
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} else {
*bottom=yb+YSM;

}
}
if(verbose){

printf("Search range for block at (%d,%d) is (%d,%d) to (%d,%d).\n",
xb,yb,*left,*top,*right,*bottom);

}
}

void FindBlock(int count, int xb, int yb,
int left, int right, int top, int bottom)

{
int ermin; /* Reused for keeping track of current best match (min error) */
int error; /* Reused for calcultaing motion estimated block errors */
int xs,ys; /* Coordinates of block currently being tried in search */
int xf,yf; /* Current estimate for final match */

ermin=ERMC*XBL*YBL; /* Set initial current error to maximum acceptable */

/* Compare the block under consideration to all possible blocks *
* in search range to determine best match */

for(ys=top;ys<=bottom;ys++){
for(xs=left;xs<=right;xs++){

error=CumAbsErr(xs,ys,xb,yb,count);
if(error<ermin){

xf=xs;
yf=ys;
ermin=error;

}
} /* End of search for best motion estimated match */

} /* for current block */
if(ermin<ERMC*XBL*YBL){ /* Found acceptable match */

UpdateBlock(xf,yf,xb,yb,count,count);
} else { /* Forced to used data from reference frame */

UpdateBlock(xb,yb,xb,yb,BFM,count);
}
if(verbose) printf("Search for block (%d,%d) in frame %d completed.\n",

xb,yb,count);
}

void CopyOrigFrame()
{

int x,y;
unsigned char *new, *orig; /* Pointer to the frame that is being *

* constructed and the original one */

/* Copy the original frame without motion estimation */

orig=frame[BFM];
new=mc[BFM];
for(y=0;y<hmc;y++){

for(x=0;x<wmc;x++){
new[(y*wmc)+x]=orig[(y*width)+x];

}
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}
if(verbose) printf("Original frame %d copied to new one.\n",BFM);

}

void FillBlocks(int count)
{

int xb,yb,left,right,top,bottom; /* Boundaries for motion search */

/* Fill each block of the currently being constructed motion *
* estimated frame */

for(yb=0;yb<hmc;yb+=YBL){
for(xb=0;xb<wmc;xb+=XBL){

FindRange(xb,yb,&left,&right,&top,&bottom);
FindBlock(count,xb,yb,left,right,top,bottom);

}
} /* End of construction of pixel granularity motion estimated frame */
if(verbose) printf("Motion estimated blocks determined for frame %d.\n",

count);
}

void FillHighResXBlock(int xb, int yb, int count, doublereal dx)
{

int x,y;

/* Increase the precision of x coordinates */

for(y=yb;y<yb+YBL;y++){
for(x=xb;x<xb+XBL;x++){ /* vvvvv- bytes in a line */

xhr[(count*hmc*wmc) + (y*wmc)+x]=x+dx;
} /* ^^^^^^^^^^^^^- bytes in a frame */

}
if(verbose){

printf("Precision of x coords in block (%d,%d) in frame %d updated.\n",
xb,yb,count);

}
}

void FillHighResYBlock(int xb, int yb, int count, doublereal dy)
{

int x,y;

/* Increase the precision of y coordinates */

for(y=yb;y<yb+YBL;y++){
for(x=xb;x<xb+XBL;x++){

yhr[(count*hmc*wmc)+(y*wmc)+x]=y+dy;
}

}
if(verbose){

printf("Precision of y coords in block (%d,%d) in frame %d updated.\n",
xb,yb,count);

}
}

void CopyHighResZFrame(int count)
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{
int x,y;
unsigned char *new; /* Pointer to the frame from which data is being *

* obtained */

/* Increase the precision of z coordinates from integer to doublereal */

new=mc[count];
for(y=0;y<hmc;y++){

for(x=0;x<wmc;x++){
zhr[(count*hmc*wmc)+(y*wmc)+x]=new[(y*wmc)+x];

}
}
if(verbose){

printf("Precision of z coordinates of frame %d increased.\n",count);
}

}

doublereal FindOptimalDx(doublereal dxp, doublereal dxn,
int xb, int yb, int count)

{
int x,y;
doublereal caep,caen,error; /* Cumulative absolute error */
doublereal fxy,fx1y,fxdxy,gxy; /* Function values fxy=f(x,y) *

* fx1y=f(x+-1,y) fxdxy=f(x+-dx,y) */

/* Use cumulative absolute error to determine match closeness */

caep=0;
for(y=yb;y<yb+YBL;y++){

for(x=xb;x<xb+XBL;x++){
gxy=zhr[(count*hmc*wmc)+(y*wmc)+x];
fxy=zhr[(BFM*hmc*wmc)+(y*wmc)+x];
if(x+1<wmc){

fx1y=zhr[(BFM*hmc*wmc)+(y*wmc)+x+1];
} else {

fx1y=zhr[(BFM*hmc*wmc)+(y*wmc)+x];
}
fxdxy=fxy+(dxp*(fx1y-fxy));
caep+=abs(fxdxy-gxy);

}
}

caen=0;
for(y=yb;y<yb+YBL;y++){

for(x=xb;x<xb+XBL;x++){
gxy=zhr[(count*hmc*wmc)+(y*wmc)+x];
fxy=zhr[(BFM*hmc*wmc)+(y*wmc)+x];
if(x-1>=0){

fx1y=zhr[(BFM*hmc*wmc)+(y*wmc)+x-1];
} else {

fx1y=zhr[(BFM*hmc*wmc)+(y*wmc)+x];
}
fxdxy=fxy+(dxn*(fxy-fx1y));
caen+=abs(fxdxy-gxy);

}
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}

if(caep>caen){ /* Use the subpixel displacement that yields a lower *
* cumulative absolute error */

error=dxn;
} else {

error=dxp;
}

/* Disallow subpixel estimates of magnitude 1 or greater */

if(abs(dxp)>=1 && abs(dxn)>=1){
error=0;

}
if(abs(dxp)>=1 && abs(dxn)<1){

error=dxn;
}
if(abs(dxp)<1 && abs(dxn)>=1){

error=dxp;
}

return error;
}

doublereal FindOptimalDy(doublereal dyp, doublereal dyn,
int xb, int yb, int count)

{
int x,y;
doublereal caep,caen,error; /* Cumulative absolute error */
doublereal fxy,fxy1,fxdxy,fxydy,gxy; /* Function values fxy=f(x,y) *

* fxy1=f(x,y+-1) fxdxy=f(x+dx,y) *
* fxydy=f(x,y+-dy) */

/* Use cumulative absolute error to determine match closeness */

caep=0;
for(y=yb;y<yb+YBL;y++){

for(x=xb;x<xb+XBL;x++){
gxy=zhr[(count*hmc*wmc)+(y*wmc)+x];
fxy=zhr[(BFM*hmc*wmc)+(y*wmc)+x];
if(y+1<hmc){

fxy1=zhr[(BFM*hmc*wmc)+((y+1)*wmc)+x];
} else {

fxy1=zhr[(BFM*hmc*wmc)+(y*wmc)+x];
}
fxydy=fxy+(dyp*(fxy1-fxy));
caep+=abs(fxdxy-gxy);

}
}

caen=0;
for(y=yb;y<yb+YBL;y++){

for(x=xb;x<xb+XBL;x++){
gxy=zhr[(count*hmc*wmc)+(y*wmc)+x];
fxy=zhr[(BFM*hmc*wmc)+(y*wmc)+x];
if(y-1>=0){
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fxy1=zhr[(BFM*hmc*wmc)+((y-1)*wmc)+x];
} else {

fxy1=zhr[(BFM*hmc*wmc)+(y*wmc)+x];
}
fxydy=fxy+(dyn*(fxy-fxy1));
caen+=abs(fxydy-gxy);

}
}

if(caep>caen){ /* Use the subpixel displacement that yields a lower *
* cumulative absolute error */

error=dyn;
} else {

error=dyp;
}

/* Disallow subpixel estimates of magnitude 1 or greater */

if(abs(dyp)>=1 && abs(dyn)>=1){
error=0;

}
if(abs(dyp)>=1 && abs(dyn)<1){

error=dyn;
}
if(abs(dyp)<1 && abs(dyn)>=1){

error=dyp;
}

return error;
}

doublereal FindDx(int xb, int yb, int count)
{

int x,y;
doublereal coeff,cnst,dxp,dxn,dx;
doublereal fxy,fx1y,gxy; /* Function values - fxy=f(x,y) fx1y=f(x+1,y) */

/* Assuming dx and dy are independent, determine best dx for block *
* with (coeff x dx) + cnst = 0 */

coeff=0;
cnst=0;
for(y=yb;y<yb+YBL;y++){

for(x=xb;x<xb+XBL;x++){
gxy=zhr[(count*hmc*wmc)+(y*wmc)+x];
fxy=zhr[(BFM*hmc*wmc)+(y*wmc)+x];
if(x+1<wmc){

fx1y=zhr[(BFM*hmc*wmc)+(y*wmc)+x+1];
} else {

fx1y=zhr[(BFM*hmc*wmc)+(y*wmc)+x];
}
cnst+=(fxy-gxy)*(fx1y-fxy);
coeff+=((fx1y-fxy)*(fx1y-fxy));

}
}
if(coeff==0){
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dxp=1; /* dxp=1 indicates no optimal positive displacement found */
} else {

dxp=abs(cnst/coeff);
}

coeff=0;
cnst=0;
for(y=yb;y<yb+YBL;y++){

for(x=xb;x<xb+XBL;x++){
gxy=zhr[(count*hmc*wmc)+(y*wmc)+x];
fxy=zhr[(BFM*hmc*wmc)+(y*wmc)+x];
if(x-1>=0){

fx1y=zhr[(BFM*hmc*wmc)+(y*wmc)+x-1];
} else {

fx1y=zhr[(BFM*hmc*wmc)+(y*wmc)+x];
}
cnst+=(fxy-gxy)*(fx1y-fxy);
coeff+=((fx1y-fxy)*(fx1y-fxy));

}
}
if(coeff==0){

dxn=-1; /* dxn=-1 indicates no optimal negative displacement found */
} else {

dxn=-1*(abs(cnst/coeff));
}

dx=FindOptimalDx(dxp,dxn,xb,yb,count);

if(verbose) printf("dx=%.3f returned for block at (%d,%d) in frame %d.\n",
dx,xb,yb,count);

return dx;
}

doublereal FindDy(doublereal dx, int xb, int yb, int count)
{

int x,y;
doublereal coeff,cnst,dyp,dyn,dy;
doublereal fxy,fxy1,fx1y,fx1y1,fxdxy,fxdxy1,gxy;

/* Function values - fxy=f(x,y) fx1y=f(x+1,y) fxy1=f(x,y+1) *
* fx1y1=f(x+1,y+1) fxdxy=f(x+dx,y) fxdxy1=f(x+dx,y+1) */

/* Assuming the optimal dx is known, determine best dy for block *
* with (coeff x dy) + cnst = 0 */

/* Determine what positive y subpixel displacement gives least error */

coeff=0;
cnst=0;
for(y=yb;y<yb+YBL;y++){

for(x=xb;x<xb+XBL;x++){

/* Determine g(x,y), f(x,y), f(x,y+1) */

gxy=zhr[(count*hmc*wmc)+(y*wmc)+x];
fxy=zhr[(BFM*hmc*wmc)+(y*wmc)+x];
if(y+1<hmc){
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fxy1=zhr[(BFM*hmc*wmc)+((y+1)*wmc)+x];
} else {

fxy1=zhr[(BFM*hmc*wmc)+(y*wmc)+x];
}

/* Determine f(x+-dx,y), f(x+-dx,y+1) */

if(dx==0){
fxdxy=fxy;
fxdxy1=fxy1;

}
if(dx>0){

if(x+1<wmc){
fx1y=zhr[(BFM*hmc*wmc)+(y*wmc)+x+1];
if(y+1<hmc){

fx1y1=zhr[(BFM*hmc*wmc)+((y+1)*wmc)+x+1];
} else {

fx1y1=zhr[(BFM*hmc*wmc)+(y*wmc)+x+1];
}

} else {
fx1y=zhr[(BFM*hmc*wmc)+(y*wmc)+x];
if(y+1<hmc){

fx1y1=zhr[(BFM*hmc*wmc)+((y+1)*wmc)+x];
} else {

fx1y1=zhr[(BFM*hmc*wmc)+(y*wmc)+x];
}

}
fxdxy=fxy+(dx*(fx1y-fxy));
fxdxy1=fxy1+(dx*(fx1y1-fxy1));

}
if(dx<0){

if(x-1>=0){
fx1y=zhr[(BFM*hmc*wmc)+(y*wmc)+x-1];
if(y+1<hmc){

fx1y1=zhr[(BFM*hmc*wmc)+((y+1)*wmc)+x-1];
} else {

fx1y1=zhr[(BFM*hmc*wmc)+(y*wmc)+x-1];
}

} else {
fx1y=zhr[(BFM*hmc*wmc)+(y*wmc)+x];
if(y+1<hmc){

fx1y1=zhr[(BFM*hmc*wmc)+((y+1)*wmc)+x];
} else {

fx1y1=zhr[(BFM*hmc*wmc)+(y*wmc)+x];
}

}
fxdxy=fxy+(dx*(fxy-fx1y));
fxdxy1=fxy1+(dx*(fxy1-fx1y1));

}

cnst+=(fxdxy-gxy)*(fxdxy1-fxdxy);
coeff+=((fxdxy1-fxdxy)*(fxdxy1-fxdxy));

}
}
if(coeff==0){

dyp=1; /* dyp=1 indicates no optimal positive displacement found */
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} else {
dyp=abs(cnst/coeff);

}

/* Determine what negative y subpixel displacement gives least error */

coeff=0;
cnst=0;
for(y=yb;y<yb+YBL;y++){

for(x=xb;x<xb+XBL;x++){

/* Determine g(x,y), f(x,y), f(x,y-1) */

gxy=zhr[(count*hmc*wmc)+(y*wmc)+x];
fxy=zhr[(BFM*hmc*wmc)+(y*wmc)+x];
if(y-1>=0){

fxy1=zhr[(BFM*hmc*wmc)+((y-1)*wmc)+x];
} else {

fxy1=zhr[(BFM*hmc*wmc)+(y*wmc)+x];
}

/* Determine f(x+-dx,y), f(x+-dx,y-1) */

if(dx==0){
fxdxy=fxy;
fxdxy1=fxy1;

}
if(dx>0){

if(x+1<wmc){
fx1y=zhr[(BFM*hmc*wmc)+(y*wmc)+x+1];
if(y-1>=0){

fx1y1=zhr[(BFM*hmc*wmc)+((y-1)*wmc)+x+1];
} else {

fx1y1=zhr[(BFM*hmc*wmc)+(y*wmc)+x+1];
}

} else {
fx1y=zhr[(BFM*hmc*wmc)+(y*wmc)+x];
if(y-1>=0){

fx1y1=zhr[(BFM*hmc*wmc)+((y-1)*wmc)+x];
} else {

fx1y1=zhr[(BFM*hmc*wmc)+(y*wmc)+x];
}

}
fxdxy=fxy+(dx*(fx1y-fxy));
fxdxy1=fxy1+(dx*(fx1y1-fxy1));

}
if(dx<0){

if(x-1>=0){
fx1y=zhr[(BFM*hmc*wmc)+(y*wmc)+x-1];
if(y-1>=0){

fx1y1=zhr[(BFM*hmc*wmc)+((y-1)*wmc)+x-1];
} else {

fx1y1=zhr[(BFM*hmc*wmc)+(y*wmc)+x-1];
}

} else {
fx1y=zhr[(BFM*hmc*wmc)+(y*wmc)+x];
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if(y-1>=0){
fx1y1=zhr[(BFM*hmc*wmc)+((y-1)*wmc)+x];

} else {
fx1y1=zhr[(BFM*hmc*wmc)+(y*wmc)+x];

}
}
fxdxy=fxy+(dx*(fxy-fx1y));
fxdxy1=fxy1+(dx*(fxy1-fx1y1));

}

cnst+=(fxdxy-gxy)*(fxdxy-fxdxy1);
coeff+=((fxdxy-fxdxy1)*(fxdxy-fxdxy1));

}
}
if(coeff==0){

dyn=-1; /* dyn=-1 indicates no optimal negative displacement found */
} else {

dyn=-1*(abs(cnst/coeff));
}

dy=FindOptimalDy(dyp,dyn,xb,yb,count);

if(verbose) printf("dy=%.3f returned for block at (%d,%d) in frame %d.\n",
dy,xb,yb,count);

return dy;
}

void SubPixel(int count)
{

int xb,yb;
doublereal dx,dy; /* Sub-pixel motion re-estimation differences */

/* Place the pixel granularity motion estimated image in *
* high resolution z coordinate array */

CopyHighResZFrame(count);

/* Perform sub-pixel granularity motion estimation re-estimation */

for(yb=0;yb<hmc;yb+=YBL){
for(xb=0;xb<wmc;xb+=XBL){

dx=FindDx(xb,yb,count);
dy=FindDy(dx,xb,yb,count);
FillHighResXBlock(xb,yb,count,dx);
FillHighResYBlock(xb,yb,count,dy);

}
}
if(verbose){

printf("Sub-pixel motion re-estimation for frame %d done.\n",count);
}

}

void ConstructRef()
{

int xb,yb;
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/* Construct reference (original) frame in motion estimated *
* as well as high resolution arrays */

CopyOrigFrame();
for(yb=0;yb<hmc;yb+=YBL){

for(xb=0;xb<wmc;xb+=XBL){
FillHighResXBlock(xb,yb,BFM,0);
FillHighResYBlock(xb,yb,BFM,0);

}
}
CopyHighResZFrame(BFM);
if(verbose) printf("Constructed high resolution reference frame.\n");

}

void ExtractTemporalContext(int done)
{

int count;

/* Loop through once for each motion estimated frame constructed */

ConstructRef();
for(count=0;count<BFM+1+FFM;count++){

if (count != BFM){ /* Do pixel and sub-pixel motion estimation *
* only if this is not the original frame */

FillBlocks(count);
SubPixel(count);

}
} /* End of construction of set of frames */
if(verbose){

printf("All motion estimated frames for high resolution ");
printf("version of frame %d created.\n",(BFM+done));

}
}

void SplineRange(integer line, integer block,
integer *left, integer *right, integer *top, integer *bottom)

{
/* Given the spline block position, figure out the edges of the range *
* to be used for spline construction - needed due to extra border */

if((block-XBR)<0){
*left=0;

} else {
*left=block-XBR;

}
if((block+XSBL+XBR)>wmc){

*right=wmc;
} else {

*right=block+XSBL+XBR;
}

if((line-YBR)<0){
*top=0;

} else {
*top=line-YBR;

}
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if((line+YSBL+YBR)>hmc){
*bottom=hmc;

} else {
*bottom=line+YSBL+YBR;

}

if(verbose){
printf("Spline range for block at (%d,%d) determined.\n",block,line);
printf("Boundaries - left: %d, right: %d, top: %d, bottom: %d\n",

*left,*right,*top,*bottom);
}

}

void SplineAllocate(integer start, integer end,
integer left, integer right, integer top, integer bottom)

{
/* Allocate memory to hold data set used to construct spline surface */

xvhr=(doublereal *) calloc((end-start)*(right-left)*(bottom-top),
sizeof(doublereal));

if(xvhr==NULL){
fprintf(stderr,"Memory request for x coordinate very high ");
fprintf(stderr,"res block used for spline construction failed.\n");
exit(1);

}
if(verbose){

printf("Allocated mem for x coord very hi res ");
printf("block used for spline construction.\n");

}

yvhr=(doublereal *) calloc((end-start)*(right-left)*(bottom-top),
sizeof(doublereal));

if(yvhr==NULL){
fprintf(stderr,"Memory request for y coordinate very high ");
fprintf(stderr,"res block used for spline construction failed.\n");
exit(1);

}
if(verbose){

printf("Allocated mem for y coord very hi res ");
printf("block used for spline construction.\n");

}

zvhr=(doublereal *) calloc((end-start)*(right-left)*(bottom-top),
sizeof(doublereal));

if(zvhr==NULL){
fprintf(stderr,"Memory request for z coordinate very high ");
fprintf(stderr,"res block used for spline construction failed.\n");
exit(1);

}
if(verbose){

printf("Allocated mem for z coord very hi res ");
printf("block used for spline construction.\n");

}

/* Allocate array to contain weights of points used in spline *
* construction */
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w=(doublereal *) calloc((end-start)*(right-left)*(bottom-top),
sizeof(doublereal));

if(w==NULL){
fprintf(stderr,"Memory request for array of weights for surface ");
fprintf(stderr,"fitting failed.\n");
exit(1);

}
if(verbose){

printf("Allocated mem for weights used for spline construction.\n");
}

}

void SplineDataFill(integer line, integer block, integer start, integer end,
integer left, integer right, integer top, integer bottom)

{
integer count,x,y;

/* Fill in weights for splining */

for(count=0;count<(end-start)*(right-left)*(bottom-top);count++)
w[count]=1;

if(verbose){
printf("Allocated the weights for splining block at (%d,%d)\n",

block,line);
}

/* Fill in the data used for constructing spline surface */

for(count=0;count<(end-start);count++){
for(y=top;y<bottom;y++){

for(x=left;x<right;x++){
xvhr[(count*(right-left)*(bottom-top))+

((y-top)*(right-left))+(x-left)]
=xhr[((start+count)*hmc*wmc)+(y*wmc)+x];

yvhr[(count*(right-left)*(bottom-top))+
((y-top)*(right-left))+(x-left)]
=yhr[((start+count)*hmc*wmc)+(y*wmc)+x];

zvhr[(count*(right-left)*(bottom-top))+
((y-top)*(right-left))+(x-left)]
=zhr[((start+count)*hmc*wmc)+(y*wmc)+x];

}
}

}
if(verbose){

printf("Copied data for splining block at (%d,%d).\n",
block,line);

}
}

doublereal SplineBlockMSE(integer line, integer block, integer start,
integer end, integer left, integer right, integer top, integer bottom)

{
integer count,x,y;
doublereal total=0,mean,mse;
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/* Compute the mean */

for(count=0;count<(end-start);count++){
for(y=top;y<bottom;y++){

for(x=left;x<right;x++){
total+=zvhr[(count*(right-left)*(bottom-top))+

((y-top)*(right-left))+(x-left)];
}

}
}

mean=total/((end-start)*(bottom-top)*(right-left));

/* Compute the MSE */

total=0;

for(count=0;count<(end-start);count++){
for(y=top;y<bottom;y++){

for(x=left;x<right;x++){
total+=pow((zvhr[(count*(right-left)*(bottom-top))+

((y-top)*(right-left))+(x-left)]-mean),2.0);
}

}
}

mse=total/((end-start)*(bottom-top)*(right-left));

if(verbose){
printf("MSE for block at (%d,%d) is %.3f.\n",block,line,mse);

}

return mse;
}

void Spline(int line, int block)
{

integer temporal=1; /* This indicates that temporal context is used */

integer count,km,ne,b1,b2,left,right,top,bottom,thrsh;

integer iopt,m;
doublereal xb,xe,yb,ye;
integer kx,ky;
doublereal s;
integer nxest,nyest,nmax;
doublereal epspar1,epspar2,eps;
integer nx,ny;
doublereal *tx,*ty,*c,fp,*wrk1,*wrk2;
integer lwrk1,lwrk2,*iwrk,kwrk,ier;

integer mx,my;
integer lwrkev,kwrkev,*iwrkev;
doublereal *wrkev;

doublereal num,den;
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/* Set up the error tolerance for spline construction */

epspar1=10;
epspar2=-20;
eps=pow(epspar1,epspar2);

/* Set knot determination to be done automatically */

iopt=0;

/* Figure out edges of spline being constructed */

SplineRange(line,block,&left,&right,&top,&bottom);

xb=left-0.5;
xe=right+0.5;
yb=top-0.5;
ye=bottom+0.5;

/* Allocate memory for very high resolution version of block used for *
* constructing spline surface */

SplineAllocate(0,(BFM+1+FFM),left,right,top,bottom);

/* Set up parameters independent of spline degree, for constructing *
* the spline surface */

thrsh=THR+1;
m=(BFM+1+FFM)*(right-left)*(bottom-top);

c=(doublereal *) calloc(m, sizeof(doublereal));
if(c==NULL){

fprintf(stderr,"Memory request for array of spline coefficients ");
fprintf(stderr,"failed.\n");
exit(1);

}

kx=XSPL;
ky=YSPL;

while((kx>0) && (ky>0) && (thrsh>THR)){

/* Copy data used to construct the spline surface at (block,line) */

SplineDataFill(line,block,0,(BFM+1+FFM),left,right,top,bottom);

/* Scale the smoothing factor according to the variation in the data */

s=ERSP*m*SplineBlockMSE(line,block,BFM,BFM+1,left,right,top,bottom)/16;
if(verbose){
printf("Using smoothing constraint of %.3f for block at (%d,%d).\n",

s,block,line);
}

/* Set up parameters dependent on spline degree */
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nxest=kx+1+sqrt(m);
nyest=ky+1+sqrt(m);
nmax=nxest+nyest;
nx=kx*(right-left);
ny=ky*(bottom-top);
tx=(doublereal *) calloc(nmax, sizeof(doublereal));
if(tx==NULL){

fprintf(stderr,"Memory request for array of x dimension knots ");
fprintf(stderr,"failed.\n");
exit(1);

}
ty=(doublereal *) calloc(nmax, sizeof(doublereal));
if(ty==NULL){

fprintf(stderr,"Memory request for array of y dimension knots ");
fprintf(stderr,"failed.\n");
exit(1);

}
if((kx*nyest+ky)>(ky*nxest+kx)){

b1=ky*nxest+kx+1;
b2=b1+nxest;

} else {
b1=kx*nyest+ky+1;
b2=b1+nyest;

}
km=kx+ky+1;
ne=nxest+nyest;
lwrk1=(nxest*nyest*(2+b1+b2))+(2*(nxest+nyest+km*(m+ne)+ne))+b2+1;
wrk1=(doublereal *) calloc(lwrk1, sizeof(doublereal));
if(wrk1==NULL){

fprintf(stderr,"Memory request for first real workspace array ");
fprintf(stderr,"failed in spline interpolation.\n");
exit(1);

}
lwrk2=(nxest*nyest*(b2+1))+b2;
wrk2=(doublereal *) calloc(lwrk2, sizeof(doublereal));
if(wrk2==NULL){

fprintf(stderr,"Memory request for second real workspace array ");
fprintf(stderr,"failed in spline interpolation.\n");
exit(1);

}
kwrk=m+(nxest*nyest);
iwrk=(integer *) calloc(kwrk, sizeof(integer));
if(iwrk==NULL){

fprintf(stderr,"Memory request for integer workspace array ");
fprintf(stderr,"failed in spline interpolation.\n");
exit(1);

}

surfit_(&iopt,&m,xvhr,yvhr,zvhr,w,&xb,&xe,&yb,&ye,&kx,&ky,&s,&nxest,
&nyest,&nmax,&eps,&nx,tx,&ny,ty,c,&fp,wrk1,&lwrk1,wrk2,
&lwrk2,iwrk,&kwrk,&ier);

if(verbose){
printf("Surface fit at (%d,%d) done with splines of deg (%d,%d). ",

block,line,kx,ky);
printf("Return value: %d\n",ier);
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}

if(ier>0){
fprintf(stderr,"Error when constructing spline surface - ");
fprintf(stderr,"fp: %.2e, s: %.2e\n",fp,s);

}
thrsh=ier;

/* Free the temporarily used arrays */

free(wrk1);
free(wrk2);
free(iwrk);

/* Free these arrays if another pass is needed */

if(thrsh>THR){
free(tx);
free(ty);

}

/* Use lower order splines */

kx-=2;
ky-=2;

}

if(thrsh>THR){

temporal=0; /* Temporal context is no longer being used */

/* Free these arrays so they may be used for spline surface *
* construction using only the reference frame data */

free(xvhr);
free(yvhr);
free(zvhr);

free(w);
free(c);

/* Allocate memory for very high resolution version of block used for *
* constructing spline surface */

SplineAllocate(BFM,BFM+1,left,right,top,bottom);

/* Set up parameters independent of spline degree, for constructing *
* the spline surface */

thrsh=THR+1;
m=(right-left)*(bottom-top);

c=(doublereal *) calloc(m, sizeof(doublereal));
if(c==NULL){

fprintf(stderr,"Memory request for array of interpolation ");
fprintf(stderr,"coefficients failed.\n");
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exit(1);
}

kx=XSPL;
ky=YSPL;

while((kx>0) && (ky>0) && (thrsh>THR)){

/* Copy data used to construct the spline surface at (block,line) */

SplineDataFill(line,block,BFM,BFM+1,left,right,top,bottom);

/* Scale the smoothing factor according to variation in data */

s=ERSP*m*
SplineBlockMSE(line,block,BFM,BFM+1,left,right,top,bottom)/16;

if(verbose){
printf("Using smoothing const of %.3f for block at (%d,%d).\n",

s,block,line);
}

/* Set up parameters dependent on spline degree */

nxest=kx+1+sqrt(m);
nyest=ky+1+sqrt(m);
nmax=nxest+nyest;
nx=kx*(right-left);
ny=ky*(bottom-top);
tx=(doublereal *) calloc(nmax, sizeof(doublereal));
if(tx==NULL){

fprintf(stderr,"Memory request for array of x dimension ");
fprintf(stderr,"interpolation knots failed.\n");
exit(1);

}
ty=(doublereal *) calloc(nmax, sizeof(doublereal));
if(ty==NULL){

fprintf(stderr,"Memory request for array of y dimension ");
fprintf(stderr,"interpolation knots failed.\n");
exit(1);

}
if((kx*nyest+ky)>(ky*nxest+kx)){

b1=ky*nxest+kx+1;
b2=b1+nxest;

} else {
b1=kx*nyest+ky+1;
b2=b1+nyest;

}
km=kx+ky+1;
ne=nxest+nyest;
lwrk1=(nxest*nyest*(2+b1+b2))+(2*(nxest+nyest+km*(m+ne)+ne))+b2+1;
wrk1=(doublereal *) calloc(lwrk1, sizeof(doublereal));
if(wrk1==NULL){

fprintf(stderr,"Memory request for first real workspace array ");
fprintf(stderr,"failed in interpolation.\n");
exit(1);

}
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lwrk2=(nxest*nyest*(b2+1))+b2;
wrk2=(doublereal *) calloc(lwrk2, sizeof(doublereal));
if(wrk2==NULL){

fprintf(stderr,"Memory request for second real workspace ");
fprintf(stderr,"array failed in interpolation.\n");
exit(1);

}
kwrk=m+(nxest*nyest);
iwrk=(integer *) calloc(kwrk, sizeof(integer));
if(iwrk==NULL){

fprintf(stderr,"Memory request for integer workspace array ");
fprintf(stderr,"failed in interpolation.\n");
exit(1);

}

surfit_(&iopt,&m,xvhr,yvhr,zvhr,w,&xb,&xe,&yb,&ye,&kx,&ky,&s,&nxest,
&nyest,&nmax,&eps,&nx,tx,&ny,ty,c,&fp,wrk1,&lwrk1,wrk2,
&lwrk2,iwrk,&kwrk,&ier);

if(verbose){
printf("Surf fit at (%d,%d) done with interpol of deg (%d,%d). ",

block,line,kx,ky);
printf("Return value: %d\n",ier);

}

if(ier>0){
fprintf(stderr,"Error when constructing interpol surf - ");
fprintf(stderr,"fp: %.2e, s: %.2e\n",fp,s);

}
thrsh=ier;

/* Free the temporarily used arrays */

free(wrk1);
free(wrk2);
free(iwrk);

/* Free these arrays if another pass is needed */

if(thrsh>THR){
free(tx);
free(ty);

}

/* Use lower order splines */

kx-=2;
ky-=2;

}
}

/* In case of unrecoverable splining error, zero out the block */

if(thrsh>THR){
for(count=0;count<XIF*YIF*XSBL*YSBL;count++){

zf[count]=0;
}
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}

/* Spline surface routine exits with kx,ky set to 2 below *
* the degree that the last construction was performed at */

kx+=2;
ky+=2;

if(thrsh<=THR){

/* Set up the parameters for evaluating the spline surface */

den=XIF;
for(count=0;count<XIF*XSBL;count++){

num=count;
xf[count]=block+(num/den);

}
den=YIF;
for(count=0;count<YIF*YSBL;count++){

num=count;
yf[count]=line+(num/den);

}
if(verbose){

printf("Created very high res x-y grid for block at (%d,%d).\n",
block,line);

}

mx=XIF*XSBL;
my=YIF*YSBL;
lwrkev=2*(mx*(kx+1)+my*(ky+1));
wrkev=(doublereal *) calloc(lwrkev, sizeof(doublereal));
if(wrkev==NULL){

fprintf(stderr,"Memory request for real workspace array ");
fprintf(stderr,"failed in spline evaluation.\n");
exit(1);

}
kwrkev=2*(mx+my);
iwrkev=(integer *) calloc(kwrkev, sizeof(integer));
if(iwrkev==NULL){

fprintf(stderr,"Memory request for integer workspace array ");
fprintf(stderr,"failed in spline evaluation.\n");
exit(1);

}

/* Evaluate the spline surface */

bispev_(tx,&nx,ty,&ny,c,&kx,&ky,xf,&mx,yf,&my,zf,wrkev,&lwrkev,
iwrkev,&kwrkev,&ier);

if(verbose){
printf("Very hi res evaluation for block at (%d,%d) done. ",

block,line);
printf("Return value: %d\n",ier);

}
if(ier>0){

fprintf(stderr,"Error when evaluating spline surface.\n");
}
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/* Free the temporarily used arrays */

free(tx);
free(ty);

free(wrkev);
free(iwrkev);

}

/* Cross out diagonal to show no temporal context used */

if(!temporal){
for(count=0;count<(YIF*YSBL);count++){

if(count<(XIF*XSBL)){
zf[(count*YIF*YSBL)+count]=0;

}
}

}

free(xvhr);
free(yvhr);
free(zvhr);

free(w);
free(c);

}

void ConstructBuf(int line)
{

int block,x,y;

for(block=0;block<wsp;block+=XSBL){
Spline(line,block);

/* Copy the high resolution evaluation of spline surface into buffer *
* and flip x and y coordinates back since bispev_ gives data with *
* coordinates switched */

for(y=0;y<YIF*YSBL;y++){
for(x=0;x<XIF*XSBL;x++){

vhrbuf[(block*XIF*YIF*YSBL)+(x*YIF*YSBL)+y]=zf[(y*XIF*XSBL)+x];
}

}
}

}

void GenerateFrame(int done)
{

char name[MAX_STR_LEN];
FILE *stream; /* File pointer multiply used for reads and writes */
int bytes; /* Return value for number of bytes read */
int line,count,base,x,y;
unsigned char *lrbuf;

sprintf(name,"%s%d.Y",output,done);
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lrbuf=(unsigned char *) calloc(XIF*YIF*wsp*YSBL, sizeof(unsigned char));
if(lrbuf==NULL){

fprintf(stderr,"Memory allocation for low resolution buffer of ");
fprintf(stderr,"frames used to create output file %s failed.\n",name);
exit(1);

}

/* Output the final high resolution frame */

stream=fopen(name, "w");
if(stream==NULL){

fprintf(stderr,"Can not write to file %s\n",name);
exit(1);

}

for(line=0;line<hsp;line+=YSBL){
ConstructBuf(line);
count=0;
for(y=0;y<YIF*YSBL;y++){

for(base=y*XIF*XSBL;base<XIF*YIF*wsp*YSBL;base+=XIF*YIF*XSBL*YSBL){
for(x=0;x<XIF*XSBL;x++){

lrbuf[count]=vhrbuf[base+x];
count++;

}
}

}
bytes=fwrite(lrbuf,sizeof(unsigned char),XIF*YIF*wsp*YSBL,stream);
if(bytes<XIF*YIF*wsp*YSBL){

fprintf(stderr,"Error when writing to file %s.\n", name);
exit(1);

}
fflush(stream);

}
fclose(stream);
if(verbose) printf("Wrote file %s.\n",name);
free(lrbuf);

}

void ReadFile(int done)
{

char name[MAX_STR_LEN];
FILE *stream; /* File pointer multiply used for reads and writes */
int bytes; /* Return value for number of bytes read */
int count;

/* Skip this section when the last input file is reached - since there *
* is no new data to be loaded - otherwise load new file */

if(done<(last-begin-FFM-BFM)){

sprintf(name,"%s%d.Y",input,begin+BFM+1+FFM+done);

/* Shift the pointers so that the oldest frame is thrown out */

free(frame[0]);
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for(count=0;count<BFM+FFM;count++){
frame[count]=frame[count+1];

}
frame[BFM+FFM+1]=(unsigned char *) calloc(height*width,

sizeof(unsigned char));
if(frame[BFM+FFM+1]==NULL){

fprintf(stderr,"Memory request for new frame being read in ");
fprintf(stderr,"from file %s failed.\n",name);
exit(1);

}
if(verbose) printf("Frame pointers updated.\n");

/* Read in the next input file */

stream=fopen(name, "r");
if(stream==NULL){

fprintf(stderr,"Can not open file %s\n",name);
exit(1);

}
bytes=fread(frame[BFM+FFM+1],

sizeof(unsigned char),height*width,stream);
if(bytes<height*width){

fprintf(stderr,"Could not read enough data from file %s.\n", name);
exit(1);

}
fclose(stream);
if(verbose) printf("Read file %s.\n",name);

}
}

void OutputFrames()
{

int done; /* Number of higher resolution frames that have been outputted */
char message[MAX_STR_LEN];

/* Loop through once for each high resolution frame created */

for(done=0;done<(last-begin-FFM-BFM+1);done++){
sprintf(message,"Temporal context extraction of frame %d starting at",

done);
CurrentTime(message);
ExtractTemporalContext(done);
sprintf(message,"Temporal context extraction of frame %d ending at",

done);
CurrentTime(message);
sprintf(message,"Spline generation of frame %d starting at",done);
CurrentTime(message);
GenerateFrame(done);
sprintf(message,"Spline generation of frame %d ending at",done);
CurrentTime(message);
ReadFile(done);

}
}

void main(int argc, char** argv)
{
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char message_start[]="Video sequence processing starting at";
char message_end[]="Video sequence processing ending at";

Parse(argc, argv);
CurrentTime(message_start);
Allocate();
ReadInit();
OutputFrames();
CurrentTime(message_end);

}
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