
A Cryptographic Protocol Example

We can illustrate the power of this model checking technique for
safety properties of infinite state systems by showing how it can be
used to find subtle attacks for cryptographic protocols, including
some that have been used extensively and have been considered
secure for a long time.

One such protocol is the 1978 Needham-Schroeder authentication
protocol (NSPK) for which a subtle “man-in-the-middle” attack
was found by G. Lowe in 1996 using model checking.

The goal of the NSPK Protocol is to provide authentication of two
agents who want to be assured of each other’s identity before they
exchange safety-critical data.

1

A Cryptographic Protocol Example (II)

That is, an intruder should not be allowed to impersonate another
agent. For this purpose, initiator and responder of a
communication mutually authenticate each other.

NSPK uses public key cryptography, i.e., each agent has a public
key which can be accessed by all agents, and a secret key which is
the inverse of the public key.

Moreover, nonces are used in the protocol. Nonces are freshly
generated, unguessable random numbers to be used in a single run
of the protocol.

2

A Cryptographic Protocol Example (III)

Here is a textbook-style simplified description of NSPK:

Message 1 A→ B : A.B.{Na, A}PK(B)

Message 2 B → A : B.A.{Na.Nb}PK(A)

Message 3 A→ B : A.B.{Nb}PK(B)

This level of description is ambiguous, in that a fair amount of
implicit assumptions are left unspecified. An object-oriented
rewriting logic specification of the protocol (developed in joint work
with G. Denker and C. Talcott) makes these assumptions explicit,
and allows model checking.

3

Maude Specification of NSPK

We first specify key algebraic properties of the cryptographic
infrastructure in a functional module.

fmod DATATYPES is

sorts Key Field Nonce Principal Run Role EstabComm .

subsort Nonce Principal Key < Field .

op keypair : Key Key -> Bool [comm] .

op ped : Key Field -> Field . *** encryption function

op n : Principal Nat -> Nonce .

ceq ped(sk,ped(pk,f)) = f if keypair(sk,pk) .

...

endfm

The protocol itself, as well as the actions of an attacker, are
specified as follows (fragment):

4

Maude Specification of NSPK (II)

class Agent | e com: EstabCom, sec key: Key, role i: Run, role r: Run,

d com: FieldSet cnt: Nat .

msg from to send : Principal Principal Field -> Message .

vars A B P : Principal . vars RI RR : Run . vars NI : Nonce

rl [BeginRun] :

< A : Agent | role i: RI, d com: B U S, cnt: J >

=> < A : Agent | role i: RI U (n(A,J),B,mtfield), d com: S, cnt: J + 1 >

from(A)to(B)send(ped(pk(B),n(A,J),A)) .

crl [Message1Rec] :

< B : Agent | sec key: SKB, role i: RI, role r: RR, cnt: J >

from(A)to(B)send(ped(PKB,F,A))

=> < B : Agent | role r: RR U (n(B,J),A,F), cnt: J + 1 >

from(B)to(A)send(ped(pk(A),F.n(B,J)))

if keypair(SKB,PKB) and not(F in RR) .

5

Maude Specification of NSPK (III)

crl [Message2RecCorrect] :

< A : Agent | sec key: SKA, role i: RI U (NI,P,mtfield), e com: C >

from(B)to(A)send(ped(PKA,F))

=> < A : Agent | role i: RI, ECom: C U (i,NI,B,rest(F)) >

from(A)to(B)send(ped(pk(B),rest(F)))

if keypair(SKA,PKA) and (B == P) and (NI == first(F)) .

crl [Message2RecIncorrect] :

< A : Agent | sec key: SKA, role i: RI U (NI,P,mtfield) >

from(B)to(A)send(ped(PKA,F))

=> < A : Agent | role i: RI >

if keypair(SKA, PKA) and (NI == first(F)) and (B =/= P) .

6

Maude Specification of the Intruder

class Intruder | e_com: EstabCom sec_key: Key ncs: FieldSet,

msgs: FieldSet agents: FieldSet role_i: Run,

role_r: Run d_com: Field cnt: Nat.

crl [IntruderFakeMessage] :

< I : Intruder | ncs: N U F, agents: S U A U B >

=> < I : Intruder | ncs: N U F > from(A)to(B)send(ped(pk(B),F))

if B =/= I .

similar: IntruderInterceptMessage, IntruderOverhearMessage,

IntruderReplayMessage

7

The State Predicate of an Attack

In a topmost version of the specification, the situation where
authentication information has been compromised is specified by
the following state predicate:

op attack? : Configuration -> Prop .

ceq attack?(boundary(

< INTR : Intruder | ecom : EC, rolei : RI, roler : RR,

ncs : fset+(fset+(FSET1, N1), N2) >

< A : NSPKAgent | ecom : ecom+(EC2, ecom(ROLE,N1,B,N2)) >

Conf)) = true

if (not(inEstabCom(ecom(r,N2,A,N1),EC))

and not(inEstabCom(ecom(i,N2,A,N1), EC))

and not(in(N1,RI)) and not(in(N1,RR))

and not(in(N2,RI)) and not(in(N2,RR))

and B =/= INTR) == true .

8

Finding an Attack

The relevant safety property is that no such attack is possible
under reasonable initial conditions. For example, we can consider a
simple scenario with two agents and an attacker given by an initial
state cf2Agents1Intruder equationally defined in the obvious
manner. Then the desired safety property is P → 2Q with:

P = (S = cf2Agents1Intruder)

Q = ¬(attack?(S) = true).

Maude’s search command finds Lowe’s countarexample to such a
property:

9

Finding an Attack (II)

Maude> search [1] cf2Agents1Intruder =>+ C:Configuration s.t.

attack?(C:Configuration) = true .

search [1] in NSPK : cf2Agents1Intruder =>+ C:Configuration such that

attack?(C:Configuration) = true .

Solution 1 (state 37826)

states: 37827 in 25350ms cpu (44300ms real)

C:Configuration -->

boundary(< alice : NSPKAgent | cnt : 2,dcom : mtfset,roler

: mtrun,rolei : mtrun,seckey : skalice,ecom : ecom(i, n(alice, 1), mrx, n(

bob, 1)) > < bob : NSPKAgent | cnt : 2,dcom : mtfield,roler : mtrun,rolei :

mtrun,seckey : skbob,ecom : ecom(r, n(bob, 1), alice, n(alice, 1)) > < mrx

: Intruder | cnt : 1,dcom : mtfield,roler : mtrun,rolei : mtrun,seckey :

skmrx,ecom : mtecom,agents : fset+(alice, bob, mrx),ncs : fset+(mtfset, n(

alice, 1), n(bob, 1)),msgs : fset+(mtfset, ped(pkalice, cat(n(alice, 1), n(

bob, 1)))) >)

10

Finding an Attack (III)

We can find the actual sequence of rewrites leading to the attack
by giving to Maude the command show path 37826 . A detailed
trace is then shown, corresponding to the sequence of rewrite rule
applications:
[BeginRun];[IntruderAcceptEveryMessage1];[IntruderFakeMessage1];

[Message1Rec];[IntruderInterceptMessage2];[IntruderReplayMessage];

[Message2Rec];[IntruderAcceptEveryMessage3];

[IntruderFakeMessage3];[Message3Rec]

11

