
The Maude LTL Model Checker

Steven Eker, SRI

José Meseguer and Ambarish Sridharanarayanan, UIUC

1

Introduction

A model checker typically supports two different levels of
specification:

1. a system specification level, in which the concurrent system to
be analyzed is formalized; and

2. a property specification level, in which the properties to be
model checked—for example, temporal logic formulae—are
specified.

Increasing the expressive power of system specification languages is
important because many potential application areas—beyond
traditional ones such as hardware and communication
protocols—can be very hard to express in current model checking
system specification languages.

2

Introduction (II)

For example, nested processes or “objects” are the natural way to
specify both rewriting logic models of cell biology, and reflective
distributed systems involving arbitrary nesting of metaobjects—the
so-called “Russian dolls” model.

All this is easy to do in Maude, but seems hard to accomplish in
other model checkers.

Furthermore, the Maude LTL checker can model check systems
whose states involve data in data types of infinite cardinality; in
fact, in any algebraic data types. The only assumption is that the
set of states reachable from a given initial state is finite.

3

Introduction (III)

The main contribution of this work is to combine Maude’s very
expressive executable system specification language with an
explicit-state on-the-fly linear temporal logic (LTL) model checker
with time and space performance comparable to that of current
high-performance model checkers of that kind such as SPIN.

The high expressive power at the system specification level has been
achieved without sacrificing performance by taking into account the
latest research developments in optimized Büchi automata
constructions and in explicit-state model checking algorithms.

4

The Maude Model Checker

Given a rewrite theory R specified in Maude by a system module,
say M, and given an initial state, say init of sort StateM, we can
model check different LTL properties beginning at this initial state
by doing the following:

• defining a new module, say CHECK-M, that includes the modules
M and MODEL-CHECKER as submodules;

5

The Maude Model Checker (II)

• giving a subsort declaration, subsort StateM < State ., where
State is one of the key sorts in the module MODEL-CHECKER

(this declaration can be omitted if StateM = State);

• defining the syntax of the state predicates we wish to use by
means of constants and operators of sort Prop (a subsort of the
sort Formula (i.e., LTL formulas) in the module
MODEL-CHECKER); we can define parameterless state predicates
as constants of sort Prop, and parameterized state predicates
by operators from the sorts of their parameters to the Prop

sort.

6

The Maude Model Checker (III)

• defining the semantics of the state predicates by means of
equations involving the operator

op _|=_ : State Prop -> Result [special ...] .

in MODEL-CHECKER. The sort Result is a supersort of Bool. We
define the semantics of each state predicate, say a
parameterized state predicate p, by giving (possibly
conditional) equations of the form:

ceq exp1 |= p(u11,...,un1) = true if C1 .

...

ceq expk |= p(u1k,...,unk) = true if Ck .

where:

– the expi, 1 ≤ i ≤ k, are patterns of sort StateM, that is,
terms, possibly with variables, and involving only

7

constructors, so that any of their instances by simplified
ground terms cannot be further simplified;

– the terms p(u1i,...,uni), 1 ≤ i ≤ k are likewise patterns
of sort Prop;

– each condition Ci, 1 ≤ i ≤ k, is a conjunction of equalities
and memberships.

8

The Maude Model Checker (IV)

Note that only the positive cases of state predicates have to be
specified; that is, if a state predicate ground expression of the form
exp |= p(w1,...,wk) cannot be simplified to true, then it is
assumed to be false.

We are then ready, given an initial state init, to model check any
LTL formula, say form; such LTL formulas are ground terms of
sort Formula in CHECK-M; we do so by giving the Maude command,

red init |= form .

assuming, as already mentioned, that the set of reachable states is
finite.

9

The Maude Model Checker (V)

Two things can then happen: if the property form holds we get the
result true; if it doesn’t, we get a counterexample, expressed with
the syntax,

op counterExample : TransitionList TransitionList -> Result [ctor] .

This is because any counterexample to an LTL formula can be
expressed as a path of transitions followed by a cycle.

10

The LTL Syntax

The model checker’s LTL syntax is defined by the following
functional module LTL imported by MODEL-CHECKER

fmod LTL is sort Formula .

*** primitive LTL operators

ops True False : -> Formula [ctor] .

op ~_ : Formula -> Formula [ctor prec 53] .

op _/_ : Formula Formula -> Formula [comm ctor gather (E e) prec 55] .

op _\/_ : Formula Formula -> Formula [comm ctor gather (E e) prec 59] .

op O_ : Formula -> Formula [ctor prec 53] .

op _U_ : Formula Formula -> Formula [ctor prec 65] .

op _R_ : Formula Formula -> Formula [ctor prec 65] .

*** defined LTL operators

op _->_ : Formula Formula -> Formula [gather (e E) prec 61] .

op _<->_ : Formula Formula -> Formula [prec 61].

op <>_ : Formula -> Formula [prec 53] .

op []_ : Formula -> Formula [prec 53] .

op _W_ : Formula Formula -> Formula [prec 65] .

op _|->_ : Formula Formula -> Formula [prec 65] . *** leads-to

vars f g : Formula .

eq f -> g = ~ f \/ g .

11

eq f <-> g = (f -> g) /\ (g -> f) .

eq <> f = True U f .

eq [] f = False R f .

eq f W g = (f U g) \/ [] f .

eq f |-> g = [](f -> (<> g)) .

*** negative normal form

eq ~ True = False .

eq ~ False = True .

eq ~ ~ f = f .

eq ~ (f \/ g) = ~ f /\ ~ g .

eq ~ (f /\ g) = ~ f \/ ~ g .

eq ~ O f = O ~ f .

eq ~(f U g) = (~ f) R (~ g) .

eq ~(f R g) = (~ f) U (~ g) .

endfm

12

The LTL Syntax (II)

Note that the equations in this module do two things:

• express all defined LTL operators in terms of the basic
operators True, False, negation, conjunction, disjunction,
next, O, until, U, and release, R

• transform the LTL formula using only those basic operators
into an equivalent one in negative nomal form, that is, the
negations are pushed all the way down into the state predicates

13

Dekker’s Mutex Algorithm

One of the earliest correct solutions to the mutual exclusion
problem was given by Dekker with his algorithm. The algorithm
assumes processes that execute concurrently on a shared memory
machine and communicate with each other through shared
variables.

There are two processes, p1 and p2. Process 1 sets a Boolean
variable c1 to 1 to indicate that it wishes to enter its critical
section. Process p2 does the same with variable c2. If one process,
after setting its variable to 1 finds that the variable of its
competitor is 0, then it enters its critical section rightaway. In case
of a tie (both variables set to 1) the tie is broken using a variable
turn that takes values in {1, 2}.

14

Dekker’s Mutex Algorithm (II)

The code of process 1 is as follows,

repeat

c1 := 1 ;

while c2 = 1 do

if turn = 2 then

c1 := 0 ;

while turn = 2 do skip od ;

c1 := 1

fi

od ;

crit ;

turn := 2 ;

c1 := 0 ;

rem

forever .

15

Dekker’s Mutex Algorithm (III)

The code of process 2 is entirely symmetric:

repeat

c2 := 1 ;

while c1 = 1 do

if turn = 1 then

c2 := 0 ;

while turn = 1 do skip od ;

c2 := 1

fi

od ;

crit ;

turn := 1 ;

c2 := 0 ;

rem

forever .

16

The Semantics of Dekker’s Algorithm

To subject Dekker’s algorithm to a model checking analysis we first
need somehow to specify precisely the semantics of the parallel
language in which it is written.

This can be done by specifying such a semantics as a rewrite theory
in Maude for a simple parallel language expressive enough to write
Dekker’s algorithm in it.

A model of the memory and the syntax of the programs used by
the processes is defined in functional modules MEMORY, TESTS, and
SEQUENTIAL. The rewriting semantics of the language is then
defined in the PARALLEL module. The DEKKER module defines the
algorithm and the state predicates (see Appendix A).

17

Model Checking Dekker’s Algorithm

We need to define two state predicates parameterized by the
process id: enterCrit, when the process is about to enter its
critical section, and exec, when the process has just executed.

mod CHECK is inc DEKKER . inc MODEL-CHECKER .

inc LTL-SIMPLIFIER . *** optional

subsort MachineState < State .

ops enterCrit exec : Pid -> Prop .

var M : Memory .

vars R : Program .

var S : Soup .

vars I J : Pid .

eq {[I, crit ; R] | S, M, J} |= enterCrit(I) = true .

eq {S, M, J} |= exec(J) = true .

endm

18

Model Checking Dekker’s Algorithm (II)

The mutual exclusion property is satisfied:

==

reduce in CHECK : initial |= []~ (enterCrit(1) /\ enterCrit(2)) .

ModelChecker: Property automaton has 2 states.

ModelSymbol: Examined 245 system states.

rewrites: 1052 in 30ms cpu (30ms real) (35066 rewrites/second)

result Bool: true

==

19

Model Checking Dekker’s Algorithm (III)

But the strong liveness property that executing infinitely often
implies entering one’s critical section infinitely often fails, as
witnessed by the counterexample (fragment)
reduce in CHECK : initial |= []<> exec(1) -> []<> enterCrit(1) .

ModelChecker: Property automaton has 3 states.

ModelSymbol: Examined 16 system states.

rewrites: 148 in 10ms cpu (10ms real) (14800 rewrites/second)

result Result: counterExample(

{{[1,repeat ’c1 := 1 ; while ’c2 = 1 do if ’turn

= 2 then ’c1 := 0 ; while ’turn = 2 do skip od ; ’c1 := 1 fi od ; crit ;

’turn := 2 ; ’c1 := 0 ; rem forever] | [2,repeat ’c2 := 1 ; while ’c1 = 1

do if ’turn = 1 then ’c2 := 0 ; while ’turn = 1 do skip od ; ’c2 := 1 fi od

; crit ; ’turn := 1 ; ’c2 := 0 ; rem forever],[’c1,0] [’c2,0] [’turn,1],0},

unlabeled}

...

20

Model Checking Dekker’s Algorithm (IV)

However, the weaker liveness property that if both p1 and p2

execute infinitely often then both enter their critical sections
infinitley often is true:
==

reduce in CHECK : initial |= []<> exec(1) /\ []<> exec(2) -> []<> enterCrit(1)

/\ []<> enterCrit(2) .

ModelChecker: Property automaton has 7 states.

ModelSymbol: Examined 245 system states.

rewrites: 1502 in 60ms cpu (60ms real) (25033 rewrites/second)

result Bool: true

21

Sat Solver

A formula ϕ ∈ LTL(AP) is satisfiable iff there is a Kripke
structure A = (A,→A, L) with L : A −→ P(AP), a state a ∈ A,
and a computation path π beginning at a such that A, a, π |=LTL ϕ.

Satisfiability of a formula ϕ ∈ LTL(AP) is a decidable property. In
Maude, the satisfiability decision procedure is supported by the
predefined functional module SAT-SOLVER.

22

Sat Solver (II)

One can define the desired atomic predicates in a module extending
SAT-SOLVER, such as, for example,

fmod TEST is

inc SAT-SOLVER .

ops a b c d e p q r : -> Prop .

endfm

The user can then decide the satisfiability of an LTL formula
involving those atomic propositions by applying the operator,

op satSolve : Formula -> [SatSolveResult] [special ...]

to the given formula and evaluating the expression. The resulting
solution of sort SatSolveResult is then either false, if no model
exists, or a finite model satisfying the formula.

23

Sat Solver (III)

Such a model is described by a pair of finite paths of states: an
initial path leading to a cycle. Each state is described by a
conjunction of atomic propositions or negated atomic propositions,
with the propositions not mentioned in the conjunction being
“don’t care” ones.

For example, we can evaluate,
Maude> red satSolve(a /\ (O b) /\ (O O ((~ c)/\ [](c \/ (O c))))) .

reduce in TEST : satSolve(O O (~ c /\ [](c \/ O c)) /\ (a /\ O b)) .

rewrites: 2 in 0ms cpu (0ms real) (~ rewrites/second)

result SatSolveResult: model(a ; b, (~ c) ; c)

24

Tautology Checker

We call ϕ ∈ LTL(AP) a tautology iff A, a, π |=LTL ϕ holds for
every Kripke structure A = (A,→A, L) with L : A −→ P(AP),
every state a ∈ A, and every path π in A beginning at a. It then
follows easily that ϕ is a tautology iff ¬ϕ is unsatisfiable.

Therefore, the module SAT-SOLVER can also be used as a tautology
checker. This is accomplished by using the following operators and
equations in SAT-SOLVER:

op tautCheck : Formula -> [TautCheckResult] .

op $invert : SatSolveResult -> TautCheckResult .

var F : Formula . vars L C : FormulaList .

eq tautCheck(F) = $invert(satSolve(~ F)) .

eq $invert(false) = true .

eq $invert(model(L, C)) = counterexample(L, C) .

25

Tautology Checker (II)

The tautCheck function returns either true if the formula is a
tautology, or a finite model that does not satisfy the formula. For
example, we can evaluate:

Maude> red tautCheck((p U r) /\ (q U r) <-> ((p /\ q) U r)) .

reduce in TEST : tautCheck((p U r) /\ (q U r) <-> p /\ q U r) .

rewrites: 31 in 0ms cpu (0ms real) (~ rewrites/second)

result Bool: true

The tautology checker gives us also a decision procedure for
semantic LTL equality. Assuming a countable set
X = {x1, . . . , xn, . . .} of variables, the semantic LTL equality
relation ≡LTL is the binary relation on LTL(X) defined by,

ϕ ≡LTL ψ ⇔ ϕ↔ ψ is a tautology.

As shown in Appendix C, ≡LTL is closed under equational
deduction.

26

Implementation

On-the-fly LTL model checking consists of two major steps.

1. Construct a Büchi automaton for the negation of the temporal
logic formula that recognizes the language of counterexamples.

2. Lazily form the synchronous product of the Büchi automaton
with the Kripke structure K(R, State) associated to the rewrite
theory R, searching for an accepting cycle which is reachable
from the initial state.

We make use of Binary Decision Diagrams (BDDs) to deal with
pure propositional formulae used to label arcs in the various
automata we use.

27

LTL Formula Preprocessing

• Put ¬φ in negative normal.

• Etessami and Holzman method using notions of pure
eventuality formulae and pure universality formulae.

• Syntactic definitions that map neatly on to Maude’s sort
system.

• Method requires 8 unconditional equations; we add an extra
equation:

var pr : PureFormula .

eq O pr = pr .

where PureFormula is the intersection of PE-Formula and
PU-Formula.

• Also use the rules from Somenzi and Bloem method that are
not subsumed by Etessami and Holzman.

28

Büchi Automaton Construction

Modified Gastin and Oddoux’s algorithm:

1. Construct a very weak alternating automaton V from ψ.

2. Remove unreachable states from V

3. Convert V into a generalized Büchi automaton G with multiple
fairness conditions on arcs.

4. Iterate (combine parallel arcs, delete subsumed arcs, combine
equivalent states).

5. SCC optimizations: delete dead components, simplify fairness
conditions.

6. Repeat step (4).

7. Convert G into a regular Büchi automaton B.

8. Regular version of step (4).

29

Searching the Synchronous Product (I)

Use double depth first method (Holzmann et al.).

• First DFS looks for accepting state-pair p.

• Second DFS starts from p and looks for a state-pair on the first
DFS stack to complete an accepting cycle.

Avoids a fairness check for every cycle in product.

30

Searching the Synchronous Product (II)

Store the Kripke structure as it is generated with extra 5 bit
vectors per state.

• Propositions tested in state.

• Propositions true in state.

• Product pairs (with automaton states) seen by first DFS.

• Product pairs currently on first DFS stack.

• Product pairs seen by second DFS.

Synchronous product search code manipulates abtract state indices
and is Maude-independent.

31

LTL Satisfiability Solving

Satifiability is decided by SCC optimization phase of Büchi
automaton construction. A formula is satisfiable iff there is a fair
SCC reachable from initial state in its generalized Büchi
automtaton. In positive case construct a witness:

1. Find shortest path from initial state to a state s in a fair SCC.

2. Iterate(find shortest path that satifies at least additional
fairness condition).

3. Find a shortest path back to s.

4. Shorten path from initial state to s by folding it into cycle if
formulae allow.

5. For each arc in initial path and fair cycle, extract a prime
implicant from the BDD representation of its formula.

32

Performance Comparisons with SPIN

We have compared the performance of the SPIN and Maude model
checkers as follows. Given a system specified in PROMELA, we
specify it in Maude, and then compare, for a given model checking
problem, the running times as well as memory consumptions of
SPIN and of the Maude LTL model checker on the respective
specifications.

Only properties satisfied by the corresponding systems were model
checked to force the exploration of the entire search space.

Except where stated, the default settings for SPIN were used
everywhere. The analyses were carried out on a dual 1GHz
Pentium III machine with 1GB RAM running Red Hat Linux 7.1
and on a single 1.13 GHz Pentium III machine with 384MB RAM.

33

Average time Average memory

Sizea taken (ms.) usage (MB)

Spin Maude Spin Maude

2 16 10 1.49 4.14

3 201 550 2.67 6.37

4 155,737 72,860 214.80 176.18

Table 1: Peterson’s algorithm

aWith the default settings, the Spin model checker ran out of memory for

size 4. The size 4 benchmark was obtained after turning on the Spin option

-DCOLLAPSE.

34

Average time Average memory

Size taken (ms.) usage (MB)

Spin Maude Spin Maude

5 17 250 1.49 4.74

10 28 580 1.49 5.56

50 770 2,020 13.11 26.27

100 5,702 14,500 104.86 227.33

Table 2: Leader election - property 1

35

Average time Average memory

Size taken (ms.) usage (MB)

Spin Maude Spin Maude

5 18 260 1.49 4.73

10 26 590 1.49 5.56

50 734 2,010 13.11 26.35

100 5,409 14,400 104.86 223.65

Table 3: Leader election - property 2

36

Average time Average memory

Size taken (ms.) usage (MB)

Spin Maude Spin Maude

5 21 290 1.49 4.75

10 36 600 1.60 5.58

50 1,706 2,510 22.94 43.46

100 12,811 20,420 209.72 320.72

Table 4: Leader election - property 3

37

Average time Average memory

Size taken (ms.) usage (MB)

Spin Maude Spin Maude

5 20 260 1.49 4.73

10 35 590 1.60 5.57

50 1,193 2,310 22.94 37.96

100 9,088 19,440 209.72 265.12

Table 5: Leader election - property 4

38

Average time Average memory

Property taken (ms.) usage (MB)

Spin Maude Spin Maude

Literal model : Safety 137 520 2.21 3.56

Simplified model : Safety 39 120 1.60 3.56

Literal model : Progress 90 200 1.49 3.56

Simplified model : Progress 26 90 1.49 3.56

Table 6: Mobile handoff

39

Conclusions and Future Directions

We have presented the Maude LTL model checker and its LTL
satisfiability and tautology checkers. A number of research issues
should be explored in the future, including:

• further improvements in the Büchi automata constructions;

• special treatment of fairness properties, instead of expressing
them as LTL formulae;

• model checking of properties restricting the set of computation
paths by means of suitable strategy expressions;

• development of general abstraction techniques for rewrite
theories, and theorem proving support for proving such
abstractions correct.

40

