What’s New 1in Maude 27

Sort system

Kinds replace the Error Sorts of Maude 1 and can be used in

operator and variable declarations.
op £ : [Nat] -> Nat . ***x error recovery.

Operators can be declared at the kind level to indicate
partiality.

op gamma : [Real] -> [Real]

op gamma : Real "> Real .

Rewriting can occur at kind level for error recovery.

Canonical name for a kind is its maximal sort(s), separated by

commas and enclosed in brackets.

Union sorts abolished.

Variables

e Fach sort or kind ¢ is considered to have a countable set of

variables v : t for any Maude identifier v, which do not have to
be declared.

e A variable declaration var v. : t . i1s now considered to

declare v as an alias for the variable v : t.

parse in BOOL : X:Bool .
red in BOOL : X:Bool == X:[Bool] . *%**x false

Conditions

Rather than a single equality, conditions now allow a list of

condition fragments, separated by /\.

4 types of fragments; last type is for rule conditions only:

term) = (term) equality test

term) : (sort) sort test

pattern) := (term) | assignment by matching

<
<
<
<

term) => (pattern) | rewrite proof search

Patterns may have unbound variables that are bound by

matching; regular terms are reduced upto strategy.

Failure of a fragment causes backtracking.

Statement Attributes

Statements can now take a list of attributes.
Label attribute can be given to any statement, not just rules.

Can be used with trace select feature to select statements for

tracing.

Metadata attribute can attach arbitrary string of meta-data to

a statement for meta-processing.

e X *x X - Y *xY=X+Y)x X-Y)

[label diff-sqrs metadata "lemma']

Ctor and Ditto Attributes

e Ctor attribute allows operators to be declared as constructors

— needed for I'TP and used in term coloring.

e Ditto copies all attributes other than ctor from a previous

subsort overloaded declaration of the operator.

fmod CTOR-&-DITTO-TEST is
sorts NzNat Nat Int
subsorts NzNat < Nat < Int
op 0 : —> Nat [ctor]
op s_ : Nat -> NzNat [ctor prec 14]

op s_ : Int -> Int [ditto] . *** non-ctor

op -_ : NzNat -> Int [ctor prec 14]
op —_ : Int -> Int [ditto] . *** non-ctor

endfm

Iter Attribute

e Allows efficient storage, i/o and sort computations for huge

towers of unary operator symbols.

e Main application is the efficient implementation of natural
numbers using the successor notation.
fmod ITER-TEST is
sorts Even 0dd Nat
subsorts Even 0dd < Nat
op O : -> Even .
op s_ : Even -> 0dd [iter]
op s_ : 0dd -> Even [iter]

endfm

red s_"123456789(0)
red s_"1234567890(0)

Format Attribute

e Allows control of white-space, color and style for

pretty-printing operators.

e Format words are given for each white-space position.

s space red

t tab green

+ increment indent counter blue

- decrement indent counter yellow

i indent by indent counter magenta

new line cyan

default spacing underline

original style ! bright

Format Attribute (continued)

op while _ do _ od : Bool Statement -> Statement

~

_ : Variable Expression -> Statement

op while _ do _ od : Bool Statement -> Statement

[format (nir! o r! o++ —--nir! o)]

op let _ := _ : Variable Expression -> Statement
[format (nir! o d d d)]

Natural Numbers

e Nats are constructed using successor operator and the iter

attribute.
fmod NAT is

sorts Zero NzNat Nat
subsort Zero NzNat < Nat
op O : -> Zero [ctor]
op s_ : Nat -> NzNat

[ctor iter special (...)]

endfm

e Decimal i/o by default.

e Built-in operators very efficient (use GNU GMP).

e Gcd, lem, mod exp, bitwise ops.

Natural Numbers (continued)
red in NAT : gcd(18, gcd(X:Nat, 12))

fmod COMBINATORIAL is protecting NAT .
op _! : Nat -> NzNat .
op C : Nat Nat -> Nat .

vars N M : Nat .
eq O ! s 0 .
eq (s N) ! s N x N |
eq C(N, M) =N ! quo (M ! * sd(N, M) !)

endfm

red 1000 !
red C(1000, 100)

11

Integers

e Ints are constructed from Nats using unary minus operator.
fmod INT is protecting NAT .
sorts NzInt Int
subsorts NzNat < NzInt Nat < Int
op —_ : NzNat -> NzInt
[ctor special (...)]
op -_ : NzInt -> NzInt [ditto]
op -_ : Int -> Int [ditto]

endfm

e Adds binary minus, not and abs.

e Most Nat ops extended.

Rational Numbers

e Rats are constructed from Nats and Ints using division
operator.
fmod RAT is protecting INT .
sorts NzRat Rat
subsorts NzInt < NzRat Int < Rat .
op _/_ : NzInt NzNat -> NzRat
[ctor prec 31 gather (E e) special (...)]
op _/_ : NzRat NzRat -> NzRat [ditto]
op _/_ : Rat NzRat -> Rat [ditto]

endfm
e Supports usual arithmetic, comparison, abs, ceiling, floor, frac,

trunc.

e Implemented by Maude equations rather than by built-ins.

Floating Point Numbers

Floats are treated as a large set of constants - no algebraic

structure.

Underlying representation is hardware double precision floating

point numbers; IEEE 754 on recent hardware.
+ /- Infinity supported.

All usual floating points ops supported; known inconsistencies

at corner cases patched.

Character Strings

Strings are treated as a countable set of constants - no

algebraic structure.
Uses Nats for length, positions.
Underlying representation is the C++4 STL extension ropes.

Heavyweight strings that support sharing and persistence

efficiently for functional languages.

Supports concatenation, length, comparison, substrings,

find /rfind.

Conversion Functions

FiniteFloat to Rat is exact.

Rat to Float is nearest available Float; may be 4 /- Infinity.
Rat to and from String is exact; choice of representation base.
String to Float is nearest available Float; may be + /- Infinity.

Float to String has enough significant digits that converting
back finds the original Float.

Exact decimal expansion of a Float is available for fancier i/o

processing - may be huge.

LTL Model Checker

Linear Temporal Logic manipulations (simplifications and

negative normal form) are done by Maude code.

The satisfaction of (possibly parameterized) propositions are
defined in Maude.

On-the-fly model checking is done by a built-in operation
op _|=_ : State Formula “> ModelCheckResult
[special (...)]

Implementation uses state-of-the-art Buchi automaton
construction algorithm and standard double depth first search
of the synchronous product for a counterexample.

LTL Satisfiability solving and tautology checking also provided.

New Meta Level

Simpler metaterm representation:

1.0 + X:Float
is meta-represented as

> +_[’1.0.FiniteFloat, ’X:Float]

Many more descent functions such as metaXapply() (with

contexts) and metaSearch().

Descent functions return sorts of terms.
Ascent functions to inspect modules in database.

Much more sophisticated caching at module and operator level.

Search Command

Breadth first search with cycle detection.
All nodes in search graph reduce w.r.t. equations.
Optional backtracking to find more solutions.

Path to a given solution and current search graph can be
printed.
search <term> <search-type> <pattern>

such that <condition> .

exactly one rewrite

7Z€ro Or more rewrites

one or more rewrites

until no more rules apply

Profiling

e Keep track of how many times each eq/mb/rl is applied.

e For a condition, also keep track for each fragment of
Initial attempts.
Backtrack attempts.
Successes.

Failures.

set profile on .

show profile .

Term Coloring

e Color (possibly intermediate) results based on reduced flag and
constructor status to flag problems.

set print color on .

reduced, ctor not colored

reduced, non-ctor, colored below blue

reduced, non-ctor, no colored below red

unreduced, no reduced above

unreduced, reduced directly above magenta

unreduced, reduced not directly above | cyan

e Red and magenta denote likely origin of problem, blue and

cyan denote secondary damage.

Miscellaneous Features

Frozen attribute prevents arguments of an operator from being

rewritten by rules.

Position fair rewriting make bottom-up passes over the term,
applying a certain number of rule rewrites at each position.
Since rule rewriting is non-destructive, term graph is virtual

unless forced by tracing or debugging.

Break to debugger when select operators rewrite or statements
with given labels execute.

Integrated compiler for sublanguage — GNU g++ used as
backend. Speed up is typically a factor of 5-9.

Optimizations

Rules can now use greedy matching under some circumstances.

Left-to-right sharing allows reuse of matched subterms in rhs or
condition. Matched subterms themselves can be in earlier

condition fragments.

New discrimination nets allow order-sorted partial subsumption

analysis.

Substitution slot coloring used to minimize size of substitutions

by slot reuse - a win for large rhs.

