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Abstract. As the systems we have to specify and verify become larger
and more complex, there is a mounting need to combine different tools
and decision procedures to accomplish large proof tasks. The problem,
then, is how to be sure that we can trust heterogeneous proofs produced
by different tools based on different formalisms. In this work we focus on
certification and synthesis of equational proofs, that are pervasive in most
proof tasks and for which many tools are poorly equipped. Fortunately,
equational proof engines like ELAN and Maude can perform millions
of equational proof steps per second which, if properly certified, can
be trusted by other tools. We present a general method to certify and
synthesize proofs in membership equational logic, where the synthesis
may involve generating full proofs from proof traces modulo combinations
of associativity, commutativity, and identity axioms. We propose a simple
representation for proof objects and give algorithms that can synthesize
space-efficient, machine-checkable proof objects from proof traces.

1 Introduction

As the systems we have to specify and verify become larger and more com-
plex, there is a mounting need to use specialized high-performance proof engines
and efficient decision procedures, because general-purpose single-formalism ap-
proaches typically do not scale up well to large tasks [1]. For this reason, in many
tools (e.g., [18, 17, 9]) such general formalisms are combined or extended with a
variety of decision procedures and specialized proof accelerators. More generally,
there is a growing interest in supporting heterogeneous proofs, in which not a
single tool, but a combination of tools, developed by different researchers and
based on different formalisms, can cooperate to solve an overall proof task. The
problem, however, is how to be sure that we can trust the correctness of a hetero-
geneous proof. We have called this problem the formal interoperability problem
[14] (see also [22, 15]). It can be naturally decomposed into two subproblems: (1)
relating the semantics of different formalisms by adequate maps of logics [11, 7,
22, 15] that are then proved correct; and (2) providing machine-checkable proof
objects for the proof subtasks carried out within each formalism by each tool.
For example, in [20, 21] subproblems (1) and (2) have been solved in a special
case by proving the correctness of a mapping between the logics of HOL [8] and
NuPRL [6], and by defining a mapping between HOL and NuPRL proof objects.

In this paper we focus on subproblem (2), that is, on how to certify in a
system-independent and machine-checkable way proofs carried out in a given
formalism. This means that we do not have to trust the tool proving the sub-
task in question: if a machine-checkable proof of the result is provided, then



it can be certified using a trusted proof checker. More specifically, we focus on
certification of equality proofs, which are typically represented as sequences of
uses of the straightforward inference rules of equational logics. There is great
practical interest in certified equality proofs not only because of the pervasive
need for equational reasoning, but also because of the need to use fast equational
engines within theorem proving tasks: on the one hand, some, otherwise quite
powerful, theorem provers such as provers based on higher-order logics, need to
carry out equality proofs step by step and do not scale up well to large equality
proofs [1]; on the other hand, the wealth of results and techniques in equational
reasoning and term rewriting, combined with advanced compilation technology,
has made possible the recent development of very high performance equational
proof engines such as ELAN [2] and Maude [5] that routinely carry out millions
of equational proof steps per second. Furthermore, the equational proofs carried
out by such engines are quite sophisticated: in ELAN they can be proofs modulo
associativity and commutativity (AC), and in Maude they can be proofs mod-
ulo any combination of associativity (A), commutativity (C), and identity (U)
axioms for different operators.

The power of equational deduction modulo such axioms brings about a cor-
responding proof synthesis problem: the tools must certify not only their explicit
deduction steps, but also their implicit equational reasoning modulo axioms such
as A, C, and U. For example, Maude provides a trace of equality steps that, in
the simpler case of unconditional equations, looks roughly as follows:

t0
e1= t1

e2= t2 . . . tn−1
en= tn

with ei the equation used in the ith step. However, since each such step is per-
formed modulo axioms, say AX , to have a full proof object certifying the task
the implicit AX -equality steps must be expanded out to:

t0
AX= t′0

e1= t1
AX= t′1

e2= t2
AX= t′2 . . . tn−1

AX= t′n−1
en= tn

where each proof ti
AX= t′i is no longer a one-step equality replacement, but may

involve repeated application of the axioms in AX . The proof synthesis problem
involves synthesizing short proofs to fill the above “AX -gaps” ti

AX= t′i. Since a
typical trace may contain many millions of explicit equality steps, finding short
proofs of the AX -gaps is essential for scalability.

Our goals in this work are:
1. supporting the greatest possible generality in the kinds of equational proofs

that can be certified and synthesized;
2. achieving the greatest possible simplicity, efficiency, and ease of check for the

proof objects; and
3. synthesizing proofs that are as short as possible.

We address goal (1) by considering proofs in membership equational logic,
a framework logic for equational reasoning [13] that contains many other log-
ics (unsorted, many-sorted, order-sorted, etc.) as special cases, yet is efficiently
implemented in Maude. Additional generality is gained by considering proofs
modulo any combination of A, C, and U axioms. Our approach to goal (2) takes
the form of extremely simple proof objects, that can be easily checked without
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any need for parsing, and where proof subtasks can be shared for greater space
and time checking efficiency. Goal (3) is addressed by new synthesis algorithms
for AX -gap proofs ti

AX= t′i, with AX any combination of A, C, and U axioms,
that have length O(|ti| × log(|ti|)) in the worse case.

Our work has been stimulated by recent work of Q.H. Nguyen, C. Kirchner,
and H. Kirchner [16] on proof objects for equality proofs that can be used to
certify to the Coq prover equality proofs carried out in the ELAN engine. Besides
using a different proof representation that we think has important advantages,
the main differences between our work and theirs are: (1) the greater generality
of the equational logic (many-sorted in their case, membership equational logic
in ours) and of the proofs modulo (AC in their case, any combination of A, C,
and U in ours); and (2) the shorter length of the synthesized proofs for AX -gap
proofs (O(|ti|2) in their case, O(|ti| × log(|ti|)) in ours).

2 Membership Equational Logic

In this section we recall membership equational logic (MEL) definitions and
notations needed in the paper. The interested reader is referred to [13, 3] for a
comprehensive exposition of MEL.

A membership signature Ω is a triple (K,Σ, π) where K is a set of kinds, Σ is
a K-sorted (in this context called K-kinded) algebraic signature, and π:S → K
is a function that assigns to each element in its domain, called a sort, a kind.
Therefore, sorts are grouped according to kinds and operations are defined on
kinds. For simplicity, we will call a “membership signature” just a “signature”
whenever there is no confusion. For any given signature Ω = (K,Σ, π), an Ω-
(membership) algebra A is a Σ-algebra together with a set As ⊆ Aπ(s) for each
sort s ∈ S, and an Ω-homomorphism h:A→ B is a Σ-homomorphism such that
for each s ∈ S we have hπ(s)(As) ⊆ Bs. Given a signature Ω and a K-indexed
set of variables, an atomic (Ω,X)-equation has the form t = t′, where t, t′ ∈
TΣ,k(X), and an atomic (Ω,X)-membership has the form t : s, where s is a sort
and t ∈ TΣ,π(s)(X). An Ω-sentence in MEL has the form (∀X) a if a1∧. . .∧an,
where a, a1, . . . , an are atomic (Ω,X)-equations or (Ω,X)-memberships, and
{a1, . . . , an} is a set (no duplications). If n = 0, then the Ω-sentence is called
unconditional and written (∀X) a. Given an Ω-algebra A and a K-kinded map
θ:X → A, then A, θ |=Ω t = t′ iff θ(t) = θ(t′), and A, θ |=Ω t : s iff θ(t) ∈ As.
A satisfies (∀X) a if a1 ∧ ... ∧ an, written A |=Ω (∀X) a if a1 ∧ ... ∧ an, iff
for each θ:X → A, if A, θ |=Ω a1 and ... and A, θ |=Ω an, then A, θ |=Ω a. An
Ω-specification (or Ω-theory) T = (Ω,E) in MEL consists of a signature Ω and
a set E of Ω-sentences. An Ω-algebra A satisfies (or is a model of) T = (Ω,E),
written A |= T , iff it satisfies each sentence in E. We let MAlgT denote the full
subcategory of MAlgΩ of membership Ω-algebras satisfying an Ω-theory T .

MEL admits complete deduction (see [13], where the rule of congruence is
stated in a somewhat different but equivalent way; in the congruence rule below,
σ ∈ Σk1...ki,k, W is a set of variables w1 : k1, . . . , wi−1 : ki−1, wi+1 : ki+1, . . . ,
wn : kn, and σ(W, t) is a shorthand for the term σ(w1, . . . , wi−1, t, wi+1, . . . , wn)):
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(1) Reflexivity :
E `Ω (∀X) t = t

(2) Symmetry :
E `Ω (∀X) t = t′

E `Ω (∀X) t′ = t

(3) Transitivity :
E `Ω (∀X) t = t′, E `Ω (∀X) t′ = t′′

E `Ω (∀X) t = t′′

(4) Congruence :
E `Ω (∀X) t = t′

E `Ω (∀X,W ) σ(W, t) = σ(W, t′), for each σ ∈ Σ

(5) Membership :
E `Ω (∀X) t = t′, E `Ω (∀X) t : s

E `Ω (∀X) t′ : s

(6) Modus Ponens :



Given a sentence in E
(∀Y ) t = t′ if t1 = t′1 ∧...∧ tn = t′n ∧w1 : s1∧...∧wm : sm

(resp. (∀Y ) t : s if t1 = t′1 ∧...∧ tn = t′n ∧w1 : s1∧...∧wm : sm)
and θ:Y → TΣ(X) s.t. for all i ∈ {1, .., n} and j ∈ {1, ..,m}

E `Ω (∀X) θ(ti) = θ(t′i), E `Ω (∀X) θ(wj) : sj

E `Ω (∀X) θ(t) = θ(t′) (resp. E `Ω (∀X) θ(t) : s)
The rules above can therefore prove any unconditional equation or member-

ship that is true in all membership algebras satisfying E. [19] gives a four-rule
categorical equational inference system which can handle directly conditional
equations, but that proof system is not well explored yet and seems hard to
formalize at the level of detail needed in this paper. In order to derive condi-
tional statements, we will therefore consider the standard technique adapting
the “deduction theorem” to equational logics, namely deriving the conclusion of
the sentence after adding the condition as an axiom; in order for this procedure
to be correct, the variables used in conclusion need to be first transformed into
constants. All variables can be transformed into constants, so we only consider
the following simplified rules:

(7) Theorem of Constants :
E `Ω∪X (∀∅) a if a1 ∧ ... ∧ an
E `Ω (∀X) a if a1 ∧ ... ∧ an

(8) Implication Elimination :
E ∪ {a1, . . . , an} `Ω (∀∅) a
E `Ω (∀∅) a if a1 ∧ ... ∧ an

Theorem 1. (from [13]) With the notation above, E |=Ω (∀X) a if a1 ∧ ... ∧ an
if and only if E `Ω (∀X) a if a1 ∧ ... ∧ an. Moreover, any statement can be
proved by first applying rule (7), then (8), and then a series of rules (1) to (6).

Maude [5] is an executable specification language supporting membership
equational logic and also rewriting logic [12]. To make specifications easier to
read, and to emphasize that order-sorted specifications are a special case of
MEL ones, the following syntactic sugar conventions are supported by Maude:
Subsorts. Given sorts s, s′ with π(s) = π(s′) = k, the declaration s < s′ is

syntactic sugar for the conditional membership (∀x : k) x : s′ if x : s.
Operations. If σ ∈ Ωk1...kn,k and s1, . . . , sn, s ∈ S with π(s1) = k1, . . . ,

π(sn) = kn, π(s) = k, then the declaration σ : s1 · · · sn → s is syntactic
sugar for (∀x1 : k1, . . . , xn : kn) σ(x1, . . . , xn) : s if x1 : s1 ∧ . . . ∧ xn : sn.

Variables. (∀x : s,X) a if a1 ∧ . . . ∧ an is syntactic sugar for the Ω-sentence
(∀x : π(s), X) a if a1∧ . . .∧an∧x : s. With this, the operation declaration
σ : s1 · · · sn → s is equivalent to (∀x1 : s1, . . . , xn : sn) σ(x1, . . . , xn) : s.
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We next give two examples of MEL specifications in Maude.
Example 1. This example is inspired by group theory. Suppose that a MEL
specification defines a kind k, a constant e :→ k, a unary operation − : k → k,
a binary operation ? : k× k → k, and the three equations (∀A : k) e ? A = A,
(∀A : k) A− ? A = e, and (∀A,B,C : k) A ? (B ? C) = (A ? B) ? C. The right-
inverse and right-identity properties can then be proved.

In Maude, kinds are declared only implicitly, via declarations of sorts and
subsorts. More precisely, a kind is automatically defined for every connected
component in the partial order on sorts. Maude also implements efficient algo-
rithms for rewriting modulo any combination of A, C, and U; however, in order
to make proper use of them, the user needs to declare associativity, commuta-
tivity and/or identity as operator attributes rather than equations. The MEL
specification of groups can then be implemented in Maude as follows:

fmod GROUP is sort S .
op _*_ : S S -> S [assoc] . op _- : S -> S . op e : -> S .
var A : S . eq e * A = A . eq (A -) * A = e .

endfm

The above specification is not confluent when regarded as a rewriting system.
However, one can still use Maude to prove group properties, such as the right
inverse law by giving two variants of a common expression modulo associativity,
reduce ((A - -)*(A -))*(A * (A -)) and reduce (A - -)*(((A -) * A)*(A -)),
which reduce to A * (A -) and e, respectively.
Example 2. Let us now consider a MEL specification of graphs with nodes, edges
and paths, which additionally involves sorts and conditional statements. There
are two kinds, kn and kp, for node and path elements, respectively. kn contains
a sort Node, and kp contains Edge and Path. Any edge is a path, so we add the
“subsort” membership (we label axioms to refer to them later):

[EdgeIsPath] (∀P : kp) P : Path if P : Edge.

Source and target operators are also defined, s, t : kp → kn, noticing that they
return proper nodes only for proper paths:

[SourceNode] (∀P : kp) s(P ) : Node if P : Path,
[TargetNode] (∀P : kp) t(P ) : Node if P : Path.

Paths can be concatenated using the operator ; : kp × kp → kp, but a correct
path can be obtained only under appropriate conditions:

[CorrectPath] (∀E,P : kp) E;P : Path if E : Edge ∧ P : Path ∧ t(E) = s(P ).

The source and target of a path are defined also under appropriate conditions:
[PathSource] (∀P,Q : kp) s(P ;Q) = s(P ) if P : Path∧Q : Path∧t(P ) = s(Q),
[PathTarget ] (∀P,Q : kp) t(P ;Q) = t(Q) if P : Path∧Q : Path∧t(P ) = s(Q).

Finally, we introduce the associativity of path composition:
[Assoc] (∀P,Q,R : kp) (P ;Q);R = P ; (Q;R) if

P : Path ∧Q : Path ∧R : Path ∧ t(P ) = s(Q) ∧ t(Q) = s(R).

These axioms are all declared in the following (sugared) Maude specification:
fmod GRAPH is sorts Node Edge Path . subsort Edge < Path .

ops s t : Path -> Node . op _;_ : Path Path -> [Path] .
vars P Q R : Path . var E : Edge .

cmb E ; P : Path if t(E) = s(P) .
ceq s(P ; Q) = s(P) if t(P) = s(Q) . ceq t(P ; Q) = t(Q) if t(P) = s(Q) .
ceq (P ; Q) ; R = P ; (Q ; R) if t(P) = s(Q) /\ t(Q) = s(R) .

endfm
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3 Formalizing Proofs

In order to be mechanically checked, MEL proofs have to be first formalized. In
this section we present such a formalization, for which a proof certifier will be
given in the next section. By Theorem 1, any MEL sentence can be proved by first
applying the theorem of constants, followed by implication elimination, and then
by a series of applications of rules (1)–(6). This is reflected in our formalization
of proofs by considering that proof objects have the following structure:
〈Proof Object〉 ::= 〈Proof Goal: Desugared Specification and Sentence〉

〈Theorem of Constants〉 〈Implication Elimination〉
〈Ground Proof〉

The proof goal, containing a specification and a sentence, both in desugared
form, can be just a name referring to a file containing it. Keeping it isolated
from proofs is a desirable feature for certifying authorities, who essentially want
to consider proofs as nothing but mechanically checkable correctness certificates
for well defined, often public, verification tasks. We do not enforce any specific
syntax for defining and referring to the specification and the sentence to prove.
The theorem of constants rule just adds constants to specification’s signature:
〈Theorem of Constants〉 ::= (constants (〈Constant〉 : → 〈Kind〉)? )

〈Constant〉 and 〈Kind〉 are identifiers. The syntax of the implication elimination
rule is similar, in the sense that one adds equations or memberships to the
specification; these new axioms should have (unique) labels:
〈Implication Elimination〉 ::=
(implication ([〈AxLabel〉] (eq 〈Term〉 = 〈Term〉 | mb 〈Term〉 : 〈Sort〉))?)

〈Sort〉 is an identifier. 〈Term〉 is a list of characters that the proof checker will
ensure that is a well formed, disambiguated prefix term over the signature of the
specification. A ground proof is a nonempty sequence of proof steps
〈Ground Proof〉 ::= (〈Proof Step〉)+,

where a proof step applies one of the rules (1)–(6). Each proof step is supposed
to have a unique label, which is an integer number; the proof checker will ensure
that these labels are used in increasing order:

〈Proof Step〉 ::= (〈Label〉 〈Rule〉)
〈Rule〉 ::= 〈Reflexivity〉 | 〈Symmetry〉 | 〈Transitivity〉 |

〈Congruence〉 | 〈Membership〉 | 〈Modus-Ponens〉
〈Reflexivity〉 ::= reflexivity eq 〈Term〉 = 〈Term〉
〈Symmetry〉 ::= symmetry eq 〈Term〉 = 〈Term〉 follows by 〈Label〉
〈Transitivity〉 ::= transitivity eq 〈Term〉 = 〈Term〉

follows by 〈Label〉 〈Label〉
〈Congruence〉 ::= congruence eq 〈Term〉 = 〈Term〉

position 〈Integer〉 follows by 〈Label〉
〈Membership〉 ::= membership mb 〈Term〉 : 〈Sort〉

follows by 〈Label〉 〈Label〉
〈Modus-Ponens〉 ::= modus-ponens

(eq 〈Term〉 = 〈Term〉 | mb 〈Term〉 : 〈Sort〉)
axiom 〈AxLabel〉 map (〈Var〉:〈Kind〉 <- 〈Term〉)?
[follows by (〈Label〉)?]
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Spaces and new lines should be read as white spaces in the formalized syn-
tax of MEL rules above. The list of labels in a modus-ponens rule application
represents the proofs of the instantiated conditions of the axiom 〈AxLabel〉; not
needed if the axiom is unconditional. The keywords can be shortened and some
other encoding conventions can be devised in practical implementations in order
to reduce the size of proofs, but essentially the same amount of information is
needed in order to simplify the proof checker as much as possible.

Example 3. Let the group axioms in Example 1 have the labels leftId, leftInv,
and assoc, respectively. In fully disambiguated form, as our proof certifier defined
in the next section expects its input, these equational axioms are written as

(∀A : k) ? kk,k(eλ,k, A) = A,
(∀A : k) ? kk,k( −k,k(A), A) = eλ,k,
(∀A : k,B : k,C : k) ? kk,k(A, ? kk,k(B,C)) = ? kk,k( ? kk,k(A,B), C).

Suppose now that the goal is to prove the right identity property, namely the
equation (∀A : k) ? kk,k(A, eλ,k) = A. Then the following is a proof according
to the formalization described above:

(constants aλ,k :→ k) (implication)

(1 modus-ponens eq ? kk,k(e, ? kk,k(aλ,k,
−
k,k(aλ,k))) = ? kk,k(aλ,k,

−
k,k(aλ,k))

axiom leftId map A : k <- ? kk,k(aλ,k,
−
k,k(aλ,k)) )

(2 modus-ponens eq ? kk,k( −k,k( −k,k(aλ,k)), −k,k(aλ,k)) = e axiom leftInv map A : k <- −
k,k(aλ,k))

(3 symmetry eq e = ? kk,k( −k,k( −k,k(aλ,k)), −k,k(aλ,k)) follows by 2)

(4 congruence eq ? kk,k(e, ? kk,k(aλ,k,
−
k,k(aλ,k))) =

? kk,k( ? kk,k( −k,k( −k,k(aλ,k)), −k,k(aλ,k)), ? kk,k(aλ,k,
−
k,k(aλ,k))) position 1 follows by 3)

(5 symmetry eq ? kk,k( ? kk,k( −k,k( −k,k(aλ,k)), −k,k(aλ,k)), ? kk,k(aλ,k,
−
k,k(aλ,k))) =

? kk,k(e, ? kk,k(aλ,k,
−
k,k(aλ,k))) follows by 4)

(6 transitivity eq ? kk,k( ? kk,k( −k,k( −k,k(aλ,k)), −k,k(aλ,k)), ? kk,k(aλ,k,
−
k,k(aλ,k))) =

? kk,k(aλ,k,
−
k,k(aλ,k)) follows by 5 1)

(7 modus-ponens eq ? kk,k( −k,k(aλ,k), aλ,k) = e axiom leftInv map A : k <- aλ,k )

(8 congruence eq ? kk,k( ? kk,k( −k,k(aλ,k), aλ,k), −k,k(aλ,k)) = ? kk,k(e, −k,k(aλ,k))

position 1 follows by 7)

(9 modus-ponens eq ? kk,k(e, −k,k(aλ,k)) = −
k,k(aλ,k) axiom leftId map A : k <- −

k,k(aλ,k) )

(10 transitivity eq ? kk,k( ? kk,k( −k,k(aλ,k), aλ,k), −k,k(aλ,k)) = −
k,k(aλ,k) follows by 8 9)

(11 modus-ponens eq ? kk,k( −k,k(aλ,k), ? kk,k(aλ,k,
−
k,k(aλ,k))) =

? kk,k( ? kk,k( −k,k(aλ,k), aλ,k), −k,k(aλ,k))

axiom assoc map A : k <- −
k,k(aλ,k) B : k <- aλ,k C : k <- −

k,k(aλ,k) )

(12 transitivity eq ? kk,k( −k,k(aλ,k), ? kk,k(aλ,k,
−
k,k(aλ,k))) = −

k,k(aλ,k) follows by 11 10)

(13 congruence eq ? kk,k( −k,k( −k,k(aλ,k)), ? kk,k( −k,k(aλ,k), ? kk,k(aλ,k,
−
k,k(aλ,k)))) =

? kk,k( −k,k( −k,k(aλ,k)), −k,k(aλ,k)) position 2 follows by 12)

(14 modus-ponens eq ? kk,k( −k,k( −k,k(aλ,k)), ? kk,k( −k,k(aλ,k), ? kk,k(aλ,k,
−
k,k(aλ,k)))) =

? kk,k( ? kk,k( −k,k( −k,k(aλ,k)), −k,k(aλ,k)), ? kk,k(aλ,k,
−
k,k(aλ,k))) axiom assoc map

A : k <- −
k,k( −k,k(aλ,k)) B : k <- −

k,k(aλ,k) C : k <- ? kk,k(aλ,k,
−
k,k(aλ,k)) )

(15 symmetry eq ? kk,k( ? kk,k( −k,k( −k,k(aλ,k)), −k,k(aλ,k)), ? kk,k(aλ,k,
−
k,k(aλ,k))) =

? kk,k( −k,k( −k,k(aλ,k)), ? kk,k( −k,k(aλ,k), ? kk,k(aλ,k,
−
k,k(aλ,k)))) follows by 14)

(16 transitivity eq ? kk,k( ? kk,k( −k,k( −k,k(aλ,k)), −k,k(aλ,k)), ? kk,k(aλ,k,
−
k,k(aλ,k))) =

? kk,k( −k,k( −k,k(aλ,k)), −k,k(aλ,k)) follows by 15 13)

(17 symmetry eq ? kk,k(aλ,k,
−
k,k(aλ,k)) =

? kk,k( ? kk,k( −k,k( −k,k(aλ,k)), −k,k(aλ,k)), ? kk,k(aλ,k,
−
k,k(aλ,k))) follows by 6)

(18 transitivity

eq ? kk,k(aλ,k,
−
k,k(aλ,k)) = ? kk,k( −k,k( −k,k(aλ,k)), −k,k(aλ,k)) follows by 17 16)

(19 transitivity eq ? kk,k(aλ,k,
−
k,k(aλ,k)) = e follows by 18 2)

Example 4. Let us now consider the MEL specification of graphs in Example 2.
In order to keep the notation simple, in this example we do not write symbols in
their disambiguated form, as we did in the previous example. However, our proof
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checker described in the next section requires each symbol to be disambiguated.
We next give a formalized proof object for the following conditional equation:
(∀N1, N1, N3 : kn;E1, E2, E3 : kp) (E1;E2); (E3;E1) = E1; ((E2;E3);E1) if

N1 : Node ∧N2 : Node ∧N3 : Node ∧ E1 : Edge ∧ E2 : Edge ∧ E3 : Edge∧
s(E1) = N1 ∧ s(E2) = N2 ∧ s(E3) = N3 ∧ t(E1) = N2 ∧ t(E2) = N3 ∧ t(E3) = N1.

Despite its apparently intuitive simplicity, the proof of the above implication
is quite tedious. This is because one actually has to prove all the conditions
of a sentence before applying it via the modus-ponens rule. In a mechanically
checkable proof this information is needed.

(constants n1 :→ kn n2 :→ kn n3 :→ kn e1 :→ kp e2 :→ kp e3 :→ kp)

(implication [imp1 ] mb n1 : Node [imp2 ] mb n2 : Node [imp3 ] mb n3 : Node [imp4 ] mb e1 : Edge

[imp5 ] mb e2 : Edge [imp6 ] mb e3 : Edge [imp7 ] eq s(e1) = n1 [imp8 ] eq s(e2) = n2

[imp9 ] eq s(e3) = n3 [imp10 ] eq t(e1) = n2 [imp11 ] eq t(e2) = n3 [imp12 ] eq t(e3) = n1)

(1 modus-ponens mb e1 : Edge axiom imp4 map)

(2 modus-ponens mb e1 : Path axiom EdgeIsPath map P : kp <- e1 follows by 1)

(3 modus-ponens mb e2 : Edge axiom imp5 map)

(4 modus-ponens mb e2 : Path axiom EdgeIsPath map P : kp <- e2 follows by 3)

(5 modus-ponens eq s(e1) = n1 axiom imp7 map)

(6 symmetry eq n1 = s(e1) follows by 5)

(7 modus-ponens eq t(e3) = n1 axiom imp12 map)

(8 transitivity eq t(e3) = s(e1) follows by 7 6)

(9 modus-ponens mb e3 : Edge axiom imp6 map)

(10 modus-ponens mb e3 : Path axiom EdgeIsPath map P : kp <- e3 follows by 1)

(11 modus-ponens mb e3; e1 : Path axiom CorrectPath map E : kp <- e3 P : kp <- e1
follows by 9 2 8)

(12 modus-ponens eq s(e2) = n2 axiom imp8 map)

(13 symmetry eq n2 = s(e2) follows by 12)

(15 transitivity eq t(e1) = s(e2) follows by 14 13)

(16 modus-ponens eq t(e2) = n3 axiom imp11 map)

(17 modus-ponens eq s(e3; e1) = s(e3) axiom PathSource map P : kp <- e3 Q : kp <- e1
follows by 10 2 8)

(18 modus-ponens eq s(e3) = n3 axiom imp9 map)

(19 transitivity eq s(e3; e1) = n3 follows by 17 18)

(20 symmetry eq n3 = s(e3; e1) follows by 19)

(21 transitivity eq t(e2) = s(e3; e1) follows by 16 20)

(22 modus-ponens eq (e1; e2); (e3; e1) = e1; (e2; (e3; e1)) axiom Assoc

map P : kp <- e1 Q : kp <- e2 R : kp <- e3; e1 follows by 2 4 11 15 21)

(23 transitivity eq t(e2) = s(e3) follows by 21 17)

(24 modus-ponens eq (e2; e3); e1 = e2; (e3; e1) axiom Assoc

map P : kp <- e2 Q : kp <- e3 R : kp <- e1 follows by 4 10 2 23 8)

(25 symmetry eq e2; (e3; e1) = (e2; e3); e1 follows by 24)

(26 congruence eq e1; (e2; (e3; e1)) = e1; ((e2; e3); e1) position 2 follows by 25)

(27 transitivity eq (e1; e2); (e3; e1) = e1; ((e2; e3); e1) follows by 22 26)

4 Certifying Proofs

The major reason why the proof objects formalized in the previous section are
so low level is because a certifying authority will typically want to use a proof
checker which is as simple as possible, in order to be easily validated and therefore
trusted. A proof checker for generic logical frameworks, taking as input both a
”logic”, including its inference rules, and a proof within that logic, is a nice idea
but in our view too complex to be easily trusted. Instead, we opt for logic specific
proof checkers, having the inference rules of the logic, six in our case, hardwired.
Interestingly, with the level of detail in proofs described above, the corresponding
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proof checker described in what follows does not even need parsing; it only needs
to perform trivial checks in time linear on the size of the proofs. We expect its
implementation to be quite trivial and short. For the rest of this section we
assume a proof object satisfying the syntax in the previous section

(constants c1λ,k1 :→ k1 ... cCλ,kC :→ kC)
(implication [AxLabel1 ] sentence1 ... [AxLabelI ] sentenceI)

(1 proofStep1)

...

(N proofStepN)

where C, I ≥ 0 and N ≥ 1, and claiming to prove a goal Spec |= ϕ. Then a proof
certifier algorithm works as follows:
Proof goal. It first checks whether the specification and the sentence to prove
satisfy the required format. This can be done by first collecting all the kinds and
sorts declared in Spec, then all the operation declarations, checking whether each
is correctly disambiguated, and finally checking each sentence in Spec as well as
the sentence to be proved. For simplicity, we also require and check that each
variable defined in a sentence is different from any other symbol in the signature
of Spec and different from any other variable defined in the same sentence. A
sentence (∀v1 : k1, ..., vV : kV ) a if a1 ∧ ... ∧ am is then checked in three steps:
1. check that k1, ..., kV are defined in Spec;
2. add v1

λ,k1
:→ k1, ..., v

V
λ,kV

:→ kV as disambiguated constants to Spec, and
let Spec’ be the new specification; let also a′, a′1, ..., a′m be the atoms a,
a1, ..., am with each occurrence of a variable vi replaced by the constant
viλ,ki , for each 1 ≤ i ≤ V (this can be simply and safely done by word/token
substitution, because of the conventions on variable names).

3. check each atom a′, a′1, ..., a
′
m as follows: if it is a membership of the form t : s,

then check that s is a sort of the kind k of t (k can be easily found by looking
at the result of the topmost operator of t, because t is disambiguated), and
then call the procedure check(Spec′, t), which is explained below; if the atom
is an equality t = t′ then first check that the kinds of t and t′ coincide and
then call check(Spec′, t) and check(Spec′, t′).

The procedure check(Spec′, t) ensures that t is a ground well-formed term under
the syntax of Spec’. Since t is disambiguated, this is quite a trivial task: if t has
the form σk1k2...kn,k(t1, t2, ..., tn) then we first check that the kind of each ti is
ki (again, by just looking at the result kind of the topmost operator of ti) and
then recursively call check(Spec′, ti) for each 1 ≤ i ≤ n. The specification and
the sentence to be proved are now checked, so we can start checking the proof.
Constants. Check that each constant c1λ,k1

, ..., cCλ,kC is different from any other
symbol in Spec and from the other constants. Also check that C equals the
number of variables in ϕ and that k1, ..., kC are the kinds of those variables in
this order, respectively, and that they are all defined in Spec. Add these constants
to Spec. Let θ map variable vi : ki in ϕ to constant ciλ,ki , for each 1 ≤ i ≤ C.
Implication. Check that ϕ has I conditions and that each of sentence1, ...,
sentenceI is the instance by θ of the corresponding condition of ϕ; check also
that [AxLabel1 ], ... [AxLabelI ] are distinct and different from other labels in Spec.
Add all the labeled sentences to Spec.
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Proof step. A proof step can have one of the following six types: reflexivity,
symmetry, transitivity, congruence, membership and modus-ponens. Each type
is analyzed separately. For simplicity of the checker, a common requirement,
which needs to be checked, is that the proof step labels are given in increasing
order. We next perform a case analysis on the type of the proof step:

(1) reflexivity eq t = t′. Check that t and t′ are equal as strings of characters
(to keep the checker simple) and also call the procedure check(Spec, t).

(2) symmetry eq t = t′ follows by 〈label〉. Check that 〈label〉 is smaller than
current label and that the (previous) proof step with label 〈label〉 was equational
and proved equation u = u′, where u equals t′ and u′ equals t as strings.

(3) transitivity eq t = t′ follows by 〈label1〉 〈label2〉. Check that 〈label1〉 and
〈label2〉 are smaller than the current label, that they refer to proof steps which
are equational and prove the equations u = u′ and v = v′, respectively, where u
equals t, u′ equals v, and v′ equals t′ as strings of characters.

(4) congruence eq t = t′ position i follows by 〈label〉. First call the procedure
check(Spec, t). Check that t and t′ have the forms σ(t1, ..., ti−1, ti, ti+1, ..., tm)
and σ(t1, ..., ti−1, t

′
i, ti+1, ..., tm), respectively. This can be done by checking the

topmost operators of t and t′ which must be equal in their disambiguated form,
then taking the two strings between the parentheses of σ in t and t′, say α and
α′, and traversing them character by character from left to right in parallel,
increasing a counter whenever a left parenthesis is encountered and decreasing
it whenever a right one is encountered, and also counting the number of comma
characters occurring when the parenthesis counter is 0; when the number of such
commas becomes i−1, then extract the terms ti and t′i (their ends can be found
by also counting parentheses), and then continue the character level equality
checks for the remaining substrings as before. Once ti and t′i are extracted, and
everything else in t and t′ being checked to be identical, we check that 〈label〉
is smaller than the current label and that proof step 〈label〉 proves an equality
u = u′, where u equals ti and u′ equals t′i as strings of characters.

(5) membership mb t:s follows by 〈label1〉 〈label2〉. We check that 〈label1〉 and
〈label2〉 are smaller than the current label, and that they refer to proofs of an
equational and a membership proving u = u′ and v : s′, respectively, where u
equals t, u′ equals v, and s′ equals s as strings of characters.

(6) modus-ponens sentence axiom 〈AxLabel〉 map v1 : k1 <- t1 ... vV : kV <- tV
follows by 〈label1〉 ... 〈labelL〉. Identify the sentence labeled 〈AxLabel〉 in Spec
(including the sentences added by the implication proof step), and check that
its variables are exactly v1 : k1, ..., vV : kV , in this order. Then for each 1 ≤ i ≤
V , check that the kind of ti is ki and call the procedure check(Spec, ti). Then
take all the atoms of the sentence labelled 〈AxLabel〉, say a, a1, ..., am, and
substitute in each v1, ..., vV by t1, ..., tV , respectively (this is a simple word or
token level substitution, because operations and symbols were always enforced
to be distinct), obtaining new atoms a′, a′1, ..., a′m, respectively. Then check
that m equals L and that each 〈label i〉 refers to a proof step for atom a′i for each
1 ≤ i ≤ L. Finally, show that a′ is identical to sentence, as strings of characters.
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Proofs can be quite large in practical applications. Rewriting-based equa-
tional systems can perform millions of rewrites per second involving several de-
cision procedures, such as, for example, matching routines modulo associativity,
commutativity and identity, which can easily transform into tens or hundreds of
millions of proof steps per second of rewriting execution. Based on experience,
we claim that there are many applications that need several minutes of rewriting
to be executed, so we believe that, in order to be practical and thus accepted
by certifying authorities, proof checkers should not only be linear in the size of
the proof objects, but should also provide potential for parallel checking. The
proof checker above involves a series of small and relatively independent tasks,
which makes it attractive for parallelization. However, a parallel checker needs
additional efforts in order to be itself validated.

5 Synthesizing Proofs

Even though the proof objects above are human readable, we think that it is
highly undesirable for humans to produce such detailed proofs manually. We next
propose several techniques to automatically generate detailed proof objects as
above from not so detailed proof traces produced by other systems. The crucial
aspect here is how to deal with decision procedures, that is, how to generate
detailed proofs from decision procedure computations. Since the size of proofs
can easily become a bottleneck in our low level proof checking algorithm, an
important issue discussed in this section is how to generate small proof objects.

5.1 Replacement Proofs

Perhaps the most widely known representation of an equational proof is as a
replacement proof, that is, as a series of applications of equational axioms, either
forwards or backwards, at any position in a term.

Theorem 2. E |= (∀X) t = t′ iff t (⇒R ∪ ⇐R)? t′, for any set of equations E
and any terms t, t′ over variables1 in X, where R is the term rewriting system
obtained from E regarding each equation as a (conditional) rewriting rule, and
⇒R, ⇐R are the rewriting relation and its inverse, respectively, generated by R.

Suppose that one has a replacement proof consisting of n−1 high level proof
steps of the form t1 (⇒ ∪ ⇐) t2 (⇒ ∪ ⇐) ... (⇒ ∪ ⇐) tn. Each rewriting step
i, for 1 ≤ i ≤ n − 1, is applied at a specific position pi in ti or in ti+1, where a
position is a path from the root of the term to the subterm to which an instance
of the rewriting rule (or its inverse) is applied. A detailed proof object can be
relatively easily generated from these higher-level replacement proofs as follows:
1. For each step ti ⇒ ti+1 involving a rewrite of li into ri at position pi in
ti of depth di, generate one modus-ponens step for li = ri followed by di
congruences applied bottom-up along pi, eventually proving ti = ti+1;

2. For each step ti ← ti+1 involving a rewrite of li into ri at position pi in
ti+1 of depth di, generate one modus-ponens step proving li = ri, then one
symmetry proving ri = li followed by di congruences proving ti = ti+1;

1 The variables in t t′ are regarded as constants during rewriting.
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3. n− 1 transitivities can now generate a complete detailed proof of t1 = tn.

Therefore, for any high level replacement proof of n−1 steps we can generate
a detailed proof object consisting of at most (n− 1) ∗ (3 + max{depth(ti) | 1 ≤
i ≤ n}) steps. The analysis above is for unconditional equations; the conditional
case is more complex and we do not discuss it here.

5.2 Rewriting Proofs

Rewriting proofs are a special case of replacement proofs. More precisely, a
rewriting proof of E |= (∀X) t = t′ has the form t ⇒?

R;⇐?
R t′, where the

term to which both t and t′ reduce is typically in normal form. We next argue
that proof objects can be generated from rewriting proofs which are typically
significantly smaller than those generated from general replacement proofs.

The idea is to speculate the fact that most rewritings are applied in depth-
first order, by delaying the congruence steps until all the corresponding subterms
are processed. More precisely, let us consider two consecutive steps in a depth-
first rewriting sequence t1 ⇒ t2 ⇒ t3, where t1 = tp[γ[α]], t2 = tp[γ[β]], and
t3 = tp[δ], with α→R β and γ[β]→R δ two instances of rewriting rules in R:

t t t1 2 3

p p p

q q

α β δγ γ

Following blindly the procedure to generate proof objects from replacement
proofs would yield the following proof steps: (1) a modus-ponens step proving
α = β; (2) congruence steps for all the operators on the path to position q in t1,
in a bottom-up traversal of the path, eventually proving t1 = t2; (3) a modus-
ponens step proving γ[β] = δ; (4) congruence steps for the path to position p
in t2, eventually proving t2 = t3; (5) a transitivity step proving t1 = t3. Even
though this proof object is correct, a much smaller proof can be generated by
delaying the application of congruence rules corresponding to positions p and
above:
1. a modus-ponens step proving α = β;
2. congruence steps for all the operators on the path between positions q and
p in t1, in a bottom-up order, eventually proving γ[α] = γ[β];

3. a modus-ponens step proving γ[β] = δ;
4. a transitivity step proving γ[α] = δ;
5. congruence steps for the path to position p in t1, eventually proving t1 = t3.

Notice that as many congruence steps as the depth of p can be saved by using
this alternative procedure. Moreover, one can extend it to multiple rewriting
steps in depth-first order, minimizing the application of congruence steps.
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5.3 AC matching

Since the equations of associativity, commutativity and identity cannot be effec-
tively interpreted as rewriting rules, any rewriting-based equational prover worth
its salt implements efficient decision procedures for matching and rewriting mod-
ulo A, C, U and/or combinations of these. Even though rewriting engines can
typically trace their applications of rewriting rules, the applications of matching
decision procedures are typically opaque, thereby yielding proof gaps that need
to be filled in order to generate proof objects that can be checked mechanically
using external (trusted) proof checkers, such as the one described in Section 4.
In this section we show how one can generate small proof objects from simplified
terms which match modulo A and AC, respectively.

Let Spec declare a binary operator ? together with corresponding axioms
of associativity and commutativity, namely “[Assoc] (∀A,B,C) (A ? B) ? C =
A ? (B ? C)” and “[Comm] (∀A,B) A ? B = B ? A′′. A ?-term can be regarded
as a ground term constructed from ? together with constants (alien subterms can
be handled by constant abstraction). We will assume that these constants are
unique; i.e. each constant occurs at most once in any ?-term. For the purposes
of proof generation this can always be arranged by suitable decoration.

Let α and β be a pair of ?-terms that are AC equivalent (this can easily
be checked in practice by flattening, sorting the flattened argument lists and
comparing them for equality). We next show how to construct O(n log n) step
proof objects of this equivalence where n is the number of constant occurrences
in α (and, by AC equivalence, is also the number of constant occurrences in β).

We consider ?-terms isomorphic to (ordered) binary trees with leaves labeled
by constants, and we switch between term and tree nomenclature at will. The
height of a ?-term is the largest number of ?-occurrences above a constant.

High level proof plan. Let αr and βr be the right associative forms and of α
and β respectively. Let αb be a balanced form of α, such that each constant in
αb occurs beneath blog nc or dlog ne occurrences of ?. Such a balanced form can
be generated algorithmically by recursive subdivision of the flattened argument
list. Notice that each subterm of a balanced term is also balanced. We generate
a proof that consists of four subproofs.

1. We prove α ≡AC αr in O(n) proof steps.
2. We prove αb ≡AC αr in O(n) proof steps.
3. We prove αb ≡AC βr using O(n log n) proof steps.
4. We prove β ≡AC βr in at most O(n) proof steps.

This is illustrated in Figure 1. In the case of just A matching, only steps 1. and
4. are needed because the two right parenthesized forms must be identical.

βα
α r α b

βr

Fig. 1. Plan for proving α ≡AC β.
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These 4 subproofs can then be stitched together by 2 symmetry steps and 3
transitivity steps to give a proof of α = β. Note that subproofs 1, 2, and 4 consist
of generating the right associative form of a given term while subproof 3 requires
generating the right associative form of a particular permutation, starting from
a balanced form. This is the hardest subproof, and we give two distinct methods
for generating it based on different sorting algorithms. We define a total ordering
≺ on the constants by the left-to-right order that the constants appear in β.

Right associative form. Given an ?-term t with n constant occurrences, we
consider it as a binary tree. Let m be the number of ?-occurrences on its right-
most path. Clearly m ≥ 1. If m = n−1 then t is already in right associative form.
Otherwise there must exist some position p on the rightmost path such that t|p.1
is headed by ?. We can perform a right associative proof step (a right rotation in
the nomenclature of binary trees) at p to arrive at a new term t′ whose rightmost
path now contains m+ 1 ?-occurrences, as illustrated in Figure 2.

α

β γ

δ

α

β

δγ

p p

Fig. 2. Increasing the length of the rightmost path by a right rotation.

By performing this transformation n− 1−m times we must eventually arrive at
right associative form and will use at most n− 2 associative proof steps.

Notice that each associative step needs to be followed by several congruence
and transitivity steps in order to generate detailed proof objects as needed by
our proof checker, and that one can generate Ω(n2) proof steps in total if one
is not careful. However, if one executes the associative steps above using an
outermost strategy, then one can minimize the total number of proof steps to at
most 2(n-2). More precisely, one can devise a procedure RightAssoc(t) which
generates a proof for t = tr, where tr is the right associative form of t, as follows:

– if t = (α ? β) ? γ for some ?-terms α, β, γ, then generate a modus-ponens
proof step of Assoc proving (α ? β) ? γ = α ? (β ? γ), followed by a recursive
call of RightAssoc(α ? (β ? γ)) which generates a proof of α ? (β ? γ) = tr
(in case they are not already equal), followed by a transitivity step proving
(α ? β) ? γ = tr (if needed);

– if t = a?α, where a is some constant and α is a ?-term, then recursively call
RightAssoc(α) to prove α = αr (in case they are different), followed by a
congruence step proving a ? α = aαr (if needed).

Then notice that one modus-ponens and one transitivity proof steps are needed
n − 1 − m times, and also that at most n − 2 congruence steps are needed;
therefore, the generated proof object will have at most 3(n− 2) proof steps.
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Permutation via merge-sort. Let t be a ?-term in balanced form. The idea of
this AC proof generator is inspired from merge sorting. Suppose some arbitrary
but fixed order ≺ on the constants occurring in t. Let MergeSort(t) be the
procedure defined below, which, for a given balanced ?-term t = αβ generates
an AC proof for t = c1 ? (c2 ? (c3 ? · · · ? cn)), where c1 ≺ c2 ≺ c3 ≺ · · · ≺ cn:
1. call MergeSort(α) to generate proof for α = a1 ? (a2 ? · · · ? anα);
2. call MergeSort(β), to generate proof for β = b1 ? (b2 ? · · · ? bnβ );
3. generate two congruence and one transitivity proof steps proving the equality
t = (a1 ? (a2 ? · · · ? anα)) ? (b1 ? (b2 ? · · · ? bnβ ));

4. call the procedure Merge(a1?(a2?· · ·?anα), b1?(b2?· · ·?bnβ )) defined below,
to get a proof of (a1?(a2?· · ·?anα))?(b1?(b2?· · ·?bnβ )) = c1?(c2?(c3?· · ·?cn));

5. generate one transitivity step proving t = c1 ? (c2 ? (c3 ? · · · ? cn)).
The procedure Merge(a1 ? (a2 ? · · · ? anα), b1 ? (b2 ? · · · ? bnβ )) assumes that its
arguments are in right-associative sorted form, and then it generates a proof of
the equality (a1 ? (a2 ? · · · ? anα)) ? (b1 ? (b2 ? · · · ? bnβ )) = c1 ? (c2 ? (c3 ? · · · ? cn)),
where the right-hand term is also in right-associative sorted form:
1. if a1 ≺ b1 then call Merge(a2 ?(a3 ? · · ·?anα), b1 ?(b2 ? · · ·?bnβ )) to generate

a proof of (a2 ? (a3 ? · · ·?anα))? (b1 ? (b2 ? · · ·? bnβ )) = c2 ? (c3 ? · · ·? cn); then
generate one modus-ponens of Assoc, one congruence and one transitivity
proof steps that together prove that (a1?(a2?· · ·?anα))?(b1?(b2?· · ·?bnβ )) =
c1 ? (c2 ? (c3 ? · · · ? cn)) (notice that a1 = c1);

2. if b1 ≺ a1 then call Merge(b2?(b3? · · ·?bnβ ), a1?(a2? · · ·?anα)) and proceed
like in 1. to generate a proof for (b1 ? (b2 ? · · · ? bnβ )) ? (a1 ? (a2 ? · · · ? anα)) =
c1 ? (c2 ? (c3 ? · · · ? cn)); one additional commutativity step followed by a
transitivity prove the desired equality.

The analysis of this algorithm is straightforward: at most 5n proof steps are
needed by Merge, so the recurrence for MergeSort is T (n) = 2T (n/2) + 5n.
Therefore, the number of steps generated by MergeSort is less than 5n log n.

Permutation via selection sort. We show how to reach the right associative
form of an arbitrary permutation starting from a balanced form in O(n log n)
proof steps. We perform n−1 selection subproofs, each of which moves a chosen
constant c to the next position in a growing right associative form.

These subproofs are generated by a procedure Select(t) that takes a term
t = α ? β of height h ≥ 1 and returns a proof that t = c ? t′ for some t′ of height
≤ h, where c is the least constant occurring in t. We consider two cases.
1. If c occurs in α then if α = c our input term already has the desired form

and we are done. Otherwise α has height h−1 ≥ 1 and we call Select(α) to
get a proof that α = c?α′ for some α′ of height ≤ h−1. We use a congruence
step to show that α ? β = (c ? α′) ? β. Substituting in the associative axiom
we prove (c ? α′) ? β = c ? (α′ ? β). Finally with a transitivity step we prove
α ? β = c ? (α′ ? β). This is illustrated in Figure 3.

2. If c occurs in β then we use prove α ? β = β ? α by substituting in the
commutative axiom. We then follow the method of case 1 with the rôles of α
and β reversed to prove that β ? α = c ? (β′ ? α) for some β′ of height h− 1.
Finally with a transitivity step we prove α ? β = c ? (β′ ? α).
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’αc

β

’α β

c

Fig. 3. Case 1 for Select

Each subproof requires at most 5h steps however assembling to subproofs into
the final proof must be done with some care to avoid a quadratic number of
congruence steps. The key idea is to generate the subproofs top-down but stitch
them together with congruence and transitivity steps bottom-up. This is done
by a procedure Sort(t) which takes a term t of height h and returns its sorted
right associative form. We consider two cases.
1. If t is a lone constant then we are done.
2. Otherwise we use Select(t) to get a proof that t = c? t′ where c is the least

constant in t. We then use Sort(t′) to get a proof that t′ = t′′ where t′′

is the sorted right associative form of t′. Using a congruence step we prove
that c ? t′ = c ? t′′ and finally a transitivity step proves t = c ? t′′.

Sort makes n−1 calls to Select and performs n−1 congruence steps and n−1
transitivity steps. Since h ≤ dlog ne we have an upper bound on the number of
proof steps required of 5(n− 1)dlog ne+ 2(n− 1).

5.4 Arbitrary Combinations of A, C and U Matching

We next assume that procedures generating proofs from A and AC matchings
for ground terms constructed from a single binary operator together with unique
constants are available (efficient such procedures were presented in the previous
subsection), and informally describe a method by which these procedures can be
combined to generate proof objects of size O(n log n) for terms that match due
to any combination of A, C and/or U at any positions and for any operators.

Suppose that t and t′ are two ground terms involving several operators, each
being potentially associative, commutative and/or have identity. We first asso-
ciate to t and t′ datastructures d(t) and d(t′), respectively, which replace multiple
consecutive occurrences of the same associative or associative and commutative
operator by a list tagged with the operator name and containing all the corre-
sponding subterms. Second, we eliminate all the constants (together with their
immediately above binary operator) which are identities for operators, but only
if they occur immediately under the operations for which they are identities;
we need to store information regarding the places from which these identities
have been removed, because appropriate identity proof steps have to be gener-
ated later. Finally, we sort the subterms of each commutative operator or list
corresponding to an associative and commutative operator, storing information
regarding the permutation of subterms that lead to the sorted order; notice that
sorting must be performed in a bottom-up fashion on the datastructures, and
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use some conventions (arbitrary but fixed; for example, one can use lexicographic
order) on how to compare lists of terms. d(t) and d(t′) should be identical now;
otherwise an error stating that t and t′ are not equal modulo combinations of
A, C and/or U axioms should be generated. By composing the permutations of
each sorted list at each appropriate position in d(t), one obtains a one-to-one
map between subterms in t and subterms in t′; equality proof obligations will be
generated for subterms in this relation.

We can now start generating the proof object. Traverse d(t) bottom-up and
for each node do the following: (1) if the node is a list corresponding to an
associative or an associative and commutative operator then, then by calling the
appropriate A or AC matching procedure on the subterms of t and t′ from which
the sorted list node in d(t) has been formed, where all the alien subterms are
replaced by some artificial distinct constants, we generate a proof of equality
for those subterms of t and t′; (2) if the node is a commutative operator then
we generate a commutativity proof step only if needed, i.e., if the two subterms
occur in different order in t and t′. As the datastructure is traversed bottom-
up, appropriate congruence proof steps need to be generated, as well as identity
proofs for those nodes where an identity constant has been removed. Notice that
only a linear number of proof steps is added to the ones already generated by
the A and AC procedures. Therefore, the size of the proof is still O(n log n) in
the size n of t and t′.

5.5 System Dependent Aspects

The proof synthesis issues discussed so far are general to all equational provers.
In this subsection we discuss some aspects which are more system dependent;
our case study is Maude [5].

Disambiguation and desugaring. As seen in Section 3, disambiguated spec-
ifications, sentences and proofs look ugly and unreadable. As a convenience to
users, rewriting engines and theorem provers typically use a “sugared” and some-
times apparently ambiguous syntax. However, in order for the proof checker pre-
sented in Section 4 to be as simple as possible, all the symbols and statements
are required to be completely disambiguated and desugared. We next discuss
how this can be done in the case of Maude.

Kinds are not declared explicitly in Maude. Users only declare sorts and
relate them via subsorts. Kinds are then generated automatically from the sort
partial order, one kind per connected component. For s a given sort, [s] refers
to the kind to which s belongs. Therefore, a Maude desugarer needs to generate
one kind per connected component and replace each occurrence of [s] by the
appropriate kind. Moreover, each subsort relation “s < s′” in kind k needs
to be replaced by a conditional membership “(∀x : k) x : s′ if x : s”, and
each operation declaration needs to be replaced by a disambiguated kind level
operation declaration and an appropriate conditional membership (if needed).
For example, σ : s1 × · · · × sn → s needs to be replaced by σk1...kn,k : k1 × · · · ×
kn → k and (∀x1 : k1, . . . , xn : kn) σk1...kn,k(x1, . . . , xn) : s if x1 : s1, . . . xn : kn.
Notice that some, or even all, of the arguments of an operation can be already
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declared as kinds (using the bracket notation). Only those arguments which
are declared as sorts need a variable and an appropriate condition as above. A
sentence is not needed for an operation only if all the arguments and the result
of that operation are declared as kinds.

Another easy to desugar feature in Maude is the declaration of variables in
sentences; these can also be declared as having sorts rather than kinds in Maude.
Each sentence using variables in sort notation needs to be desugared by declaring
those as kinded variables and by adding appropriate conditions to the sentence.
For example, the sentence (∀x1 : s1, . . . , xn : sn) a if a1, . . . , an is replaced by
the sentence (∀x1 : k1, . . . , xn : kn) a if a1, . . . , an, x1 : s1, . . . , xn : sn.

The harder part is to disambiguate operations occurring in terms in equa-
tions, memberships, or in high-level proofs given as Maude traces. A simple
solution would, of course, be to implement the disambiguater as part of Maude
and then provide an auxiliary Maude command or flag to disambiguate all oper-
ators. Even though this could probably be done, there is an alternative solution
which would only require a small change in Maude, namely to tag each operation
by its result kind only. Since variables also have a unique kind, one can easily
devise an algorithm now that disambiguates any term.

Sharing and memoization. A major reason for which we designed a low
level proof representation and checker in Sections 3 and 4, besides generality
and simplicity, was also to deal properly with sharing and memoization. An
important optimization of rewriting engines, also supported by Maude, is to
avoid redoing computations. A typical example occurs when the right-hand term
of a rewriting rule contains multiple copies of the same subterm. Then, in any
given instance of that rule, the shared subterm is reduced only once to its normal
form, which is then copied multiple times in the resulting term. Another typical
example involves memoization, or caching. In Maude, some operations can be
declared with the attribute memo, meaning that the normal forms of terms having
those operations at top are cached and never reduced again.

Even though sharing and/or memoization could probably be replaced in some
complicated way by actual proof steps in a replacement or rewriting equational
proof, we believe that such attempts would be not only artificial and error-prone,
but also quite impractical because they would increase the size of proofs signif-
icantly. Our current formalization of proofs in Section 3 supports sharing and
memoization naturally, because one can just refer to the appropriate (previous)
proof step label when a shared sentence has been already derived. Sharing does
not explicitly occurs in Maude’s current execution traces; its existence can be
inferred by just noticing gaps in traces. However, one can easily implement an
independent algorithm which “fills the gaps” in Maude’s traces and thus gener-
ate detailed proof objects as needed by our certifier: whenever a gap is noticed
in a Maude trace (which is not given to an AC match - gap that can be filled
using the algorithms in Subsection 5.3), search through the already generated
proof object for a fitting sentence (such a sentence must exist, because otherwise
Maude could not have generated the trace) and then refer to it by its label when
generating the corresponding congruence rules.
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Least sort calculation. Due to overloading operators, the same term can
have multiple result sorts. For example, 3 + 5 can be a natural, an integer,
or a rational number. Based on the partial order on sorts, Maude implements
efficient decision procedures to calculate the least sort of any term. A term is
substituted for a variable in a rewriting rule application only if the sort of the
term is smaller or equal to the sort of the variable. These implicit applications
of conditional membership rules need to be explicitly stated when generating
the proof object. Again, this can be relatively easily done, without modifying
Maude in any essential way, if Maude is slightly changed to report a resulting sort
for each operation use in each term; this is a slightly stronger but more general
requirement than the one needed for disambiguation and desugaring (where only
the kind result of operations was needed).

6 Conclusion and Future Work

We have presented a general method to certify and synthesize proofs in mem-
bership equational logic, where the synthesis may involve generating full proofs
from proof traces modulo combinations of A, C, and U axioms. We have pro-
posed a simple representation of proof objects and have given algorithms that
can synthesize short proofs for the AX -gaps. Our proof representations and al-
gorithms are quite close to an actual implementation of both a generic proof
checker and of a synthesis tool to generate proof objects from Maude traces. We
plan to develop both tools in the near future. This will provide certified proof
objects for all equational computations in Maude. Since membership equational
logic is a sublogic of rewriting logic [4], our work has a very natural extension
to certification and synthesis of rewriting logic proofs. Therefore, a subsequent
development will involve investigating such an extension. Since rewriting logic
has good properties as a logical framework [10], the extension to rewriting logic
is potentially interesting not only for interoperating Maude with other tools, but
also to represent proof objects from different logics.
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