The Maude 2.0 System

M. Clavel F. Duran S. Eker P. Lincoln

N. Marti-Oliet J. Meseguer C. Talcott

Overview

Maude is a language based on rewriting logic.
Type system is based on membership equation logic.

Equations are assumed to be confluent and terminating; used for
conventional algebraic specification & functional programming.

Rewrite rules are assume to be coherent w.r.t. equations (Viry);
used to express inference & state change.

Maude modules themselves form an algebraic data type -

metaprogramming; extension via reflection .

Can be used as a semantic framework to specify & prototype
other languages and as a logical framework to represent &
mechanize other logics.

Maude 2.0 is the latest incarnation.

New Term Representation

e Supports AC, ACU, A, AU.
e Based on persistent data structures.

e Reduces the computational complexity of E-rewriting for large
subjects and simple patterns.

fmod REV-LIST is
sort List Elt . subsort Elt < List
op nil : -> List
op __ : List List -> List [assoc id: nil]
ops a bcde : —->Elt
vars E E2 : E1t . wvar L : List

New Term Representation (2)

op rev : List -> List .
eq rev(nil) = nil .
eq rev(E L) = rev(L) E .

op rev2 : List -> List .

eq rev2(nil) = nil .

eq rev2(E) = E .

eq rev2(E L E2) = E2 rev2(L) E .

op rev3 : List -> List .

eq rev3(nil) = nil .

eq rev3(L E) = E rev3(L)
endfm

e All three naive list reversal algorithms run in linear time!

Conditions

Rather than a single equality, conditions now allow a list of
condition fragments, separated by /\.

4 types of fragments; last type is for rule conditions only:

term) = (term) equality test

term) : (sort) sort test

pattern) := (term) | assignment by matching

<
<
<
<

term) => (pattern) | rewrite proof search

Patterns may have unbound variables that are bound by matching;
regular terms are reduced upto strategy.

Failure of a fragment causes backtracking.

Iter Attribute

e Allows efficient storage, i/o and sort computations for huge towers

of unary operator symbols.

e Main application is the efficient implementation of natural
numbers using the successor notation.

fmod ITER-TEST is
sorts Even 0dd Nat .
subsorts Even 0dd < Nat
op O : -> Even .
op s_ : Even -> 0dd [iter]
op s_ : 0dd -> Even [iter]

endfm

red s_"123456789(0)
red s_"1234567890(0)

Natural Numbers

e Nats are constructed using successor operator and the iter

attribute.
fmod NAT is

sorts Zero NzNat Nat
subsort Zero NzNat < Nat
op O : -> Zero [ctor]
op s_ : Nat -> NzNat

[ctor iter special (...)]

endfm

e Decimal i/o by default.

e Built-in operators very efficient (use GNU GMP).

e Gcd, Iem, mod exp, bitwise ops.

Natural Numbers (continued)
red in NAT : gcd(18, gcd(X:Nat, 12))

fmod COMBINATORIAL is protecting NAT .
op _! : Nat -> NzNat .
op C : Nat Nat -> Nat .

vars N M : Nat .
eq O ! s 0 .
eq (s N) ! s N x N |
eq C(N, M) =N ! quo (M ! * sd(N, M) !)

endfm

red 1000 !
red C(1000, 100)

Other Built-ins

Integers (constructed from Nats).
subsorts NzNat < NzInt Nat < Int
op —_ : NzNat -> NzInt [...]

Rationals (constructed from Ints and Nats).
subsorts NzInt < NzRat Int < Rat
op _/_ : NzInt NzNat -> NzRat [...]

|EEE Floating Point Numbers.
Strings (using SGI Rope package).

Comprehensive set of conversion functions.

LTL Model Checker

Linear Temporal Logic manipulations (simplifications and negative

normal form) are done by Maude code.

The satisfaction of (possibly parameterized) propositions are
defined in Maude.

On-the-fly model checking is done by a built-in operation
op modelCheck : State Formula "> ModelCheckResult
[special (...)]
Implementation uses state-of-the-art Buchi automaton
construction algorithm and standard double depth first search of

the synchronous product for a counterexample.

LTL Satisfiability solving and tautology checking also provided.

New Meta Level

Simpler metaterm representation:

1.0 + X:Float

IS meta-represented as

> + [’1.0.FiniteFloat, ’X:Float]

Many more descent functions such as metaXapply() (with

contexts) and metaSearch().

Descent functions return sorts of terms.
Ascent functions to inspect modules in database.

Much more sophisticated caching at module and operator level.

11

Term Coloring

e Color (possibly intermediate) results based on reduced flag and
constructor status to flag problems.

set print color on .

reduced, ctor not colored

reduced, non-ctor, colored below blue

reduced, non-ctor, no colored below red

unreduced, no reduced above

unreduced, reduced directly above magenta

unreduced, reduced not directly above | cyan

e Red and magenta denote likely origin of problem, blue and cyan
denote secondary damage.

Format Attribute

e Allows control of white-space, color and style for pretty-printing
operators.

e Format words are given for each white-space position.

s space red background red

tab green background green

t
+ increment indent counter blue

background blue

decrement indent counter yellow background yellow

indent by indent counter magenta background magenta

new line cyan background cyan

flash white
hidden black

default spacing underline

background white

TIS|OZ|<X|Tm|O|D

background black

reverse video

X

=~

original style ! bright dim

Format Attribute (2)

op while _ do _ od : Bool Statement ->

~

: Variable Expression ->

op while _ do _ od : Bool Statement ->

[format (nir! o r! o++ —--nir! o)]

op let _ := _ : Variable Expression ->
[format (nir! o d d d)]

Statement

Statement

Statement

Statement

Other New Features

Profiling.

Break points (on symbols or labeled statements).
Rewrite search, dump of rewrite graph.

Kind level declarations & on-the-fly variable declarations.
Command line editing (Tecla).

Frozen attribute.

Position fair & object-message rewriting.

Statement attributes: owise, label, nonexec, metadata.

Optimizations: left-to-right sharing, order sorted discrimination
nets, substitution slot coloring.

More powerful module operations in Full Maude.

Availability

Runs under Unix (all flavors).
Licensed under GNU GPL.

Source tree, manual, examples and binaries for selected architectures

available from the new Maude website:

http://maude.cs.uiuc.edu/

