
Unification in Maude

Steven Eker

Protocol eXchange Seminar

1



Unification

• Unification is essentially solving equations in an abstract setting.

• Given a signature Σ, variables X and terms t1, t2 ∈ T (Σ) we want

to find substitutions σ : X → T (W ), where W is some fresh set

of variables such that

t1σ = t2σ

• A unifier σ1 is more general that a unifier σ2 if there is a

substitution υ such that σ1υ = σ2. σ2 is an instance of σ1.

• For most applications we want a complete set C of unifiers - every

unifer of t1 =? t2 would be an instance of some unifer in C.

• Computing a minimal C (no redundant unifiers) would be nice but

can be expensive.

2



Unification in Maude

Unification in Maude is complicated by two factors:

1. Equational theories: rather than equality between substituted

terms we want equality between their congruence classes:

[t1σ]E = [t2σ]E

where E is a set of axioms supported by Maude.

2. Membership equational logic: assignments to variables in unifiers

must respect the sorts of the variables. In fact we punt on on MEL

(undecideable in general) and just consider order sort algebra.

Either factor on its own:

1. Results in non-singleton minimal complete sets of unifiers.

2. Bumps the complexity of the decision problem (is there a unifer?)

from linear time to NP-hard.

3



Order-sorted free theory unification

Given a two free-theory terms t1, t2 from a pre-regular order-sorted

signature, deciding where thay are unifable, t1 =? t2, is NP-complete.

To see that the problem is in NP we note that given a putative unifier

σ:

1. t1σ = t2σ can be checked in linear time substitution.

2. The sort of a term t can be computed in polynomial time by

proceeding bottom up and at each operator occurence, looking at

all the operator declarations that have a sufficiently large coarity

and taking the glb of their arities (unique by preregularity).

3. Thus for each assignment X ← t in σ we can check in polynomial

time that the sort of t is less or equal to the sort of X.

4



NP-hardness

The basic idea is to encode satisfiability using the following signature:

fmod ENCODE is

sorts True False Value .

subsort True False < Value .

op true : -> True .

op false : -> False .

op not : True -> False .

op not : False -> True .

op and : True True -> True .

op and : True False -> False .

op and : False True -> False .

op and : False False -> False .

op or : True True -> True .

op or : True False -> True .

op or : False True -> True .

op or : False False -> False .

endfm

5



NP-hardness 2

Let F be any propositional formula over propositions p1, . . . , pn.

Translate F into a term t over the signature ENCODE:

• Proposition pi is replaced by a variable Xi of sort Value.

• Each propositional connective is replaced by the corresponding

operator.

Let Y be a variable of sort True. Then the order sorted unification

problem Y =? t has a solution iff F is satisfiable, since Y and t are

unifiable iff there is an assignment of sorts to X1, . . . , Xn such that t

has sort True and the sort declarations exactly mirror the semantics of

the propositional connectives.

6



Implementation

Unsorted unification in the free theory is well understood. For

order-sorted unification we:

• Find the unique unsorted unifier using a standard algorithm.

• Search for all ways of giving sorts to free variables in the unifier

such that:

– Each free variable recieves a sort that is less or equal to its

original sort.

– The term assigned to each bound variable has a sort less or

equal than the sort of that variable.

• For each such assignment of sorts to free variables, compute an

order-sorted unifier by replacing the free variables in the unsorted

unifier by fresh variables of the appropriate sort.

7



Top-down constraint propagation

Consider an assignment Y : s← t in the unsorted unifier. That gives

us an initial constraint that sort(t) ≤ s.

• Suppose t = f(t1, . . . , tn).

• A declaration f : s1 . . . sn → s′ of largest arity such that s′ < s

gives us a conjunction of new constraints

sort(t1) ≤ s1 ∧ · · · ∧ sort(tn) ≤ sn.

• Multiple such declarations leads to a disjunction of conjunctions.

• The non-existence of a declaration for f with coarity ≤ s leads to

failure.

The constraints can be percolated down until ultimately we arrive at a

nesting of conjunctions and disjunctions of constraints on the sorts the

free variables for each assignment on the unsorted unifier.

8



Top-down constraint propagation 2

• These expressions can be conjuncted together and the result

placed in DNF where each conjunction is a conjunction of

constraints the free variables.

• Each free variable already has a constraint on it’s sort given by it

original declared sort.

• Multiple constraints on the same variable can be resolved by a glb

computation, possibly producing several alternatives - or none at

all.

• Thus each of the conjuncts may give rise to 0 or more order-sorted

unifiers.

This approach can introduce redundant unifiers.

9



Top-down constraint propagation 3
Consider the unification problem

f(A : NzNat , B : NzNat) =? f(X : Nat +Y : Nat , Y : Nat +Z : Nat)

in the signature
fmod NAT is

sorts NzNat Nat .

subsort NzNat < Nat .

op _+_ : Nat Nat -> Nat .

op _+_ : NzNat Nat -> NzNat .

op _+_ : Nat NzNat -> NzNat .

op 0 : -> Nat .

op s : Nat -> NzNat .

op f : Nat Nat -> Nat .

endfm

The unsorted unifier is

A : NzNat ← X : Nat + Y : Nat

B : NzNat ← Y : Nat + Z : Nat

10



Top-down constraint propagation 4

Resolving sort(X : Nat + Y : Nat) ≤ NzNat we get:

sort(X) ≤ NzNat∧sort(Y ) ≤ Nat∨sort(X) ≤ Nat∧sort(Y ) ≤ NzNat

Similarly resolving sort(Y : Nat + Z : Nat) ≤ NzNat we get:

sort(Y ) ≤ NzNat∧sort(Z) ≤ Nat∨sort(Y ) ≤ Nat∧sort(Z) ≤ NzNat

Conjuncting these two constraints together and distributing out we get

4 conjunctions:

sort(X) ≤ NzNat∧sort(Y ) ≤ Nat∧sort(Y ) ≤ NzNat∧sort(Z) ≤ Nat

sort(X) ≤ NzNat∧sort(Y ) ≤ Nat∧sort(Y ) ≤ Nat∧sort(Z) ≤ NzNat

sort(X) ≤ Nat∧sort(Y ) ≤ NzNat∧sort(Y ) ≤ NzNat∧sort(Z) ≤ Nat

sort(X) ≤ Nat∧sort(Y ) ≤ NzNat∧sort(Y ) ≤ Nat∧sort(Z) ≤ NzNat

11



Top-down constraint propagation 5

Resolving the multiple constraints on Y we get

sort(X) = NzNat ∧ sort(Y ) = NzNat ∧ sort(Z) = Nat

sort(X) = NzNat ∧ sort(Y ) = Nat ∧ sort(Z) = NzNat

sort(X) = Nat ∧ sort(Y ) = NzNat ∧ sort(Z) = Nat

sort(X) = Nat ∧ sort(Y ) = NzNat ∧ sort(Z) = NzNat

However the 1st and 4th alternatives are subsumed by the 3rd

alternative so there are only 2 most general unifiers corresponding to

the 2nd and 3rd alternatives.

12



Bottom-up symbolic sort computation

Boolean Decision Diagrams (BDDs) can be viewed as compressed

truth tables.

• For random Boolean functions they are less compact than truth

tables.

• Boolean functions of interest usually have a lot of structure —

BDDs can be much more compact than truth tables — perhaps

even exponentially so if we lucky.

• Many useful operations (combination by arbitrary Boolean

connective, composition, univeral and existential elimination of

variables, substitution of variables) can be performed efficiently.

• Many implementations available as open source libraries.

13



Bottom-up symbolic sort computation 2

• Represent sorts symbolically using BDDs.

• If a kind has n user sorts we need to represent n + 1 values and

thus need d(log2(n + 1)e BDD variables to represent a sort from

this kind.

• For each operator we precompute the vector of BDDs that

encodes its sort function — this can be done reasonably efficiently

if (as in Maude) an ordered decision diagram for computing this

sort function has already be generated.

• For each sort s we precompute the BDD for the relation

lts(s′) = s′ ≤ s.

• For each kind k, we precompute the BDD for the relation s > s′.

14



Bottom-up symbolic sort computation 3

• We represent the sort of each free variable X : s by a vector of

BDD variables.

• For each assignment Y : s′ ← t in the unsorted unifer we can

bottom-up symbolically compute the sort of t as a vector of BDDs

by using BDD vector composition.

• We can then compute a BDD for the constraint that sort(t) ≤ s′.

• For each free variable X : s we can also compute a BDD for the

constraint that sort(X) ≤ s.

• Conjuncting together both kinds of constraints we arrive a BDD

encoding a relation osu on the sorts of the free variables that

exactly corresponds to sort assignments yielding order-sorted

unifiers.

15



Bottom-up symbolic sort computation 4

• Often there will be a huge number of such sort assignments and

we are only interested in those yielding most general unifiers.

• Want to compute a relation mgu that encodes these sort

assignments.

• Let vector of kinds on which osu is defined be (K1, . . . ,Kn).

• The sorts in each kind are partially ordered and thus the pointwise

extension of these orderings gives a partial ordering on

K1 × · · · ×Kn.

• For v, v′ ∈ K1 × · · · ×Kn, if osu(v) and v′ ≤ v then osu(v′).

• Furthermore if v 6= v′ then v′ < v by antisymmmetry and v′

cannot yield a most general unifier.

16



Bottom-up symbolic sort computation 5

For v′ ∈ K1 × · · · ×Kn, if osu(v′) but v′ does not yield a most

general unifier then the must be some unifier, different from v′ that is

more general, given by a sort vector v.

Clearly v ≥ v′ since the more general unifier must be at least as

general as that given be v′ on every variable position. And we can’t

have v = v′ since we need a distinct unifier, so v > v′.

Thus to compute the relation mgu that encodes exactly the most

general unifiers we want to compute

mgu(v) = osu(v) ∧ ¬(∃v′.[v′ > v ∧ osu(v′)])

Computation can be expensive since it doubles the number of BDD

variables in the intermediate expressions.

17



Bottom-up symbolic sort computation 6

We note that if v′ > v and osu(v′) then

1. for all v′′ such that v′ > v′′, we have osu(v′′); and

2. there must exist some index j at which the sort in v′ is great than

the sort in v.

Thus there exists a vector u which is equal to v on all components

except j and greater than v on component j, and osu(u).

Thus to assert ¬(∃v′.[v′ > v ∧ osu(v′)]) we form a conjunction of

assertions, one for each of the possible indices j:

for j = 1, . . . , n.[¬(∃s.[s > vj ∧ osu(v1, . . . , vj−1, s, vj+1, . . . , vn)])]

Here we existentially quantify over sorts rather than vectors of sorts so

we use fewer additional BDD variables in the intermediate expressions.

18



Bottom-up symbolic sort computation 7

Having computed a BDD that encodes mgu we recover the sort

assignments to free variables that result in most general order-sorted

unifiers.

• We trace the from the root of the BDD to the true terminal.

• Each such path corresponds to one or more sort assignments,

given by the labels on arcs taken.

• Where some BDD variable is not mentioned on a path, both the

true and false values must be used, giving rise to multiple sort

assignments.

19



Maude Implementation

• The unify command has the syntax:

unify [〈limit〉] in 〈module〉 : 〈term〉 =?〈term〉.

• [〈limit〉] and in 〈module parts are optional.

• Terms may only contain free function symbols.

• Unifiers are returned as subsitutions where all variables in the

original problem are mappped to terms containing fresh variables

with base names #1, #2, #3.

• The command

cont 〈limit〉.

can be used to look for further unifiers if a limit was originally

given.

20



Maude Implementation 2

• The unify command is reflected by the descent function:

op metaUnify : Module Term Term Nat ~> Substitution?

[special (...)] .

• As with metaMatch(), the last argument controls which solution is

returned.

• When there are no further unifiers

op noMatch : -> Substitution? [ctor] .

is returned.

21



Next steps

• Non-algebraic data types (Strings, Floats, Qids).

• Iter theory (in order to support number hierarchy).

• Commutative and AC theories.

In the AC case, sort information can be pushed into the unsorted

unification algorithm by computing bounds on what a given variable

can take and using it to prune the Diophantive basis and choice of

subsets drawn from the basis.

22


