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Infection remains a significant cause of morbidity and mortality especially in newborn infants.

Analytical methods for diagnosing infection are severely limited in terms of sensitivity and

specificity and require relatively large samples. It is proposed that stringent regulation of the

human transcriptome affords a new molecular diagnostic approach based on measuring a highly

specific systemic inflammatory response to infection, detectable at the RNA level. This

proposition raises a number of as yet poorly characterised technical and biological variation issues

that urgently need to be addressed. Here we report a quantitative assessment of methodological

approaches for processing and extraction of RNA from small samples of infant whole blood and

applying analysis of variation from biochip measurements. On the basis of testing and selection

from a battery of assays we show that sufficient high quality RNA for analysis using multiplex

array technology can be obtained from small neonatal samples. These findings formed the basis of

implementing a set of robust clinical and experimental standard operating procedures for whole

blood RNA samples from 58 infants. Modelling and analysis of variation between samples

revealed significant sources of variation from the point of sample collection to processing and

signal generation. These experiments further permitted power calculations to be run indicating the

tractability and requirements of using changes in RNA expression profiles to detect different

states between patient groups. Overall the results of our investigation provide an essential first

step toward facilitating an alternative way for diagnosing infection from very small neonatal

blood samples, providing methods and requirements for future chip-based studies.

Introduction

Infection is an important source of morbidity and mortality in

neonates and infants. In the developed world, 65% of

extremely low birth weight infants develop presumed sepsis

in the neonatal period.1 With mortality rates of 10–50%, a

four-fold increase in cerebral palsy and increased risk of

hearing, growth and neuro-developmental impairments, the

costs are great.1 On a global perspective, infection accounts for

more than half of all deaths worldwide of children younger

than age 5.2 During the first year of life, the developing human

immune system encounters many challenges from both

infections and vaccinations. Systemic deficiencies of both

innate and adaptive immunity are thought to contribute to

impaired neonatal host defences while protection through

maternal antibodies, which is deficient in preterm babies,

wanes after approximately six months in term infants. Early

diagnosis of infection is key to providing timely and

appropriate treatment. Blood is the primary source of clinical

material available and when one considers that some patients

may have no more than 40 ml total blood volume and that

current procedures often withdraw several millilitres for

various blood tests then this sets a stringent ethical and

research challenge of working with extremely small quantities

of blood. It is noteworthy that the standard diagnostic tool for

infection is the blood culture, but this does not give a rapid

result (up to 48 h), has poor sensitivity (50–80% at best but

often considerably less3) and requires blood volumes that

represent a significant proportion of an infant’s circulating

blood volume.

Many signaling molecules and concurrent biological

pathways responsible for the initiation and propagation of

an inflammatory response to infection have been identified in

circulating serum – constituting what has been termed

‘Systemic Inflammatory Response’. Individual molecular

components identified as part of the systemic inflammatory

response have been helpful toward understanding the under-

lying physiology of inflammation and have also shown

potential diagnostic and therapeutic value, including

C-reactive protein (CRP) and tumor necrosis factor-a

(TNF-a).4 From early developmental stages onward, the

various activities of circulating immune cells contribute to

local as well as systemic levels of cytokines and inflammatory

molecules. In this context, blood serves as an integrative tissue

whereby its cells and associated signaling and cytokine
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networks relay or enhance the contribution made by sites of

infection or tissue damage, to effect protection or cell injury

repair responses.

Infections not only elicit but also modify, in a pathogen-

specific manner, immune inflammatory responses. This

occurs at two levels, the infected cell and the systemic host

response levels. At the cell level, analysis of a wide range of

studies looking at infection in tissue-culture experiments has

defined differential and common host transcriptional

responses.5 This is due in part to the recognition of

pathogen-associated molecular patterns by an array of cellular

receptors to specific pathogen products. This is especially true

for professional antigen presenting cells which orchestrate the

selective and appropriate protective immunity. Accordingly,

the nature of the systemic inflammatory response generated

in vivo to an infective agent will also vary depending upon

the specific pathogen resulting in both qualitative and

quantitative aspects of the immune response being markedly

influenced by the various countermeasures enacted by the

pathogen. The systemic responses can be seen in altered

cytokine levels, specific lymphocyte responses and can also be

detected by alterations in the host RNA phenotype in

response to infection.6–10 Microarrays have proven themselves

to be useful means for global analysis of gene or protein

content and expression. Studies of variation in gene expression

among individuals has revealed a surprising consistency, but

also evidence of distinct patterns of inter-individual and

temporal variation.11 Microarray technology has shown

many potential clinical applications including classification

of cancer patients on the basis of disease outcome and

prediction of treatment response.12–15 In recent months there

have been increasing numbers of publications reporting

microarray experiments using RNA extracted from clinical

whole blood samples in adults and children.11,16–30 In this

report we show for the first time that it is feasible to

isolate RNA of sufficient quality and quantity from small

volumes of whole blood collected from neonates in order to be

able to use RNA as a potential early biomarker for infectious

disease.

Experimental

Ethical consent

Ethical permission was obtained from the local research ethics

committee for this study. Written informed consent was taken

from the parent(s) in each case.

Sample collection

Work to determine optimal RNA extraction from neonatal

blood was carried out using umbilical cord blood. Umbilical

cord blood sampling took place from the cord segment still

attached to the placenta after the cord was cut at delivery. The

umbilical cord was cleaned with a sterile swab soaked in

phosphate buffered saline and the cord cut using sterile

scissors. The umbilical vein was then catheterised with a

sterile 5-gauge nasogastric tube and blood aspirated into sterile

syringe(s). The samples were then injected immediately into

sample collection tubes.

For array analysis neonatal whole blood was used. For these

samples neonatal blood sampling was performed by trained

members of clinical staff. Gloves were worn during the

procedure to avoid contamination. The infant’s skin was

cleaned with an iodine-based solution and then washed with

sterile saline and dried with a sterile swab. The needle or

cannula was then inserted and a blood sample of approxi-

mately 0.5 ml drawn into a syringe. The sample was injected

immediately into a PAXgeneTM blood RNA tube which was

then inverted ten times. Samples were taken from needles,

newly inserted venous cannulae or newly inserted arterial

cannulae. Samples were not taken from heparinised lines. If

samples were to be processed the same day they were

transferred to the laboratory and incubated at room tempera-

ture for a minimum of 2 h. Otherwise samples were put directly

into a 220 uC freezer located within the clinical area until they

were transported to the laboratory. In each case data were

gathered for each infant including the age of the infant and the

mode of sampling (needle or cannula).

Blood collection tube assessment

Five different blood collection media were investigated. Blood was

injected into one each of clinical blood tubes containing EDTA,

Lithium Heparin and Sodium Citrate. Blood was also injected

directly into a PAXgeneTM blood RNA tube and into a micro-

centrifuge tube containing TRIZOL
1 LS reagent. All tubes were

transferred to the laboratory on ice with the exception of the

PAXgeneTM tube which was transferred at room temperature.

With the exception of the PAXgeneTM tubes, 0.5 ml of blood from

each of the blood collection tubes was processed immediately using

the TRIZOL
1 LS extraction method followed by an on-column

cleanup. The PAXgeneTM tubes were processed using the

PAXgeneTM blood RNA extraction kits after at least 2 h

incubation at room temperature.

RNA extraction assessment

Five different methods for RNA extraction were performed

ranging from organic phase extraction to the use of magnetic

bead technology. These were TRIZOL
1 LS (InvitrogenTM

Corporation), QIAamp RNA Blood Mini Kit (QIAgen Ltd.),

TRIZOL
1 LS followed by QIAamp RNA Blood Mini Kit,

MagaZorb1 (CorTex BiochemTM, Inc., San Leandro, CA)

and PAXgeneTM (PreAnalytiX GmbH).

At the time of sampling for these experiments, blood was

injected into PAXgeneTM and EDTA tubes. RNA extraction

was performed using the PAXgeneTM system and using 0.5 ml

of blood from the EDTA for each of the other methods except

MagaZorb1. As a separate experiment later, 0.5 ml of blood

processed in a PAXgeneTM tube was compared to 0.2 ml of

blood collected in a clinical EDTA tube and processed using

the MagaZorb1 magnetic bead extraction (results shown later

for the MagaZorb1 yield in Table 2 multiplied to give the yield

equivalent to 0.5 ml).

TRIZOL
1 LS extraction

0.5 ml of RNase-free water was added to 0.5 ml of blood, then

3 ml of TRIZOL
1 LS solution was added and repetitive
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pipetting was carried out to lyse the cells. RNA extraction was

carried out as per TRIZOL
1 LS instructions with the exception

of the initial centrifugation step being carried out at 4000 rpm

in an Eppendorf 5810R centrifuge for 1 h.

On-column cleanup following TRIZOL
1 LS RNA extraction

100 ml samples obtained from the TRIZOL
1 LS reaction were

carried into the first step of the QIAamp RNA Mini Protocol

for RNA Cleanup and this protocol was followed to the end.

The optional on-column DNase step, second centrifugation

step and repeated elution step (to give a final elution volume of

100 ml) were incorporated.

QIAamp RNA extraction

The QIAamp RNA Mini Protocol for Isolation of Total

Cellular RNA from Whole Human Blood was followed with

the following variations: the blood/Buffer EL mix was

incubated on ice for 20 min; after centrifugation and removal

of the supernatant the pellet was incubated on ice for a further

10 min; and after further addition of Buffer EL, 600 ml (rather

than 350 ml) of buffer RLT was added to the sample. The

optional on-column DNase step and second centrifugation

step after the addition of buffer RPE were incorporated. The

sample was eluted in 100 ml of RNase-free water.

PAXgeneTM blood RNA extraction

Each of the PAXgeneTM tubes was processed according to the

PAXgeneTM blood RNA protocol from PreAnalytix dated

April 2001. Variations from the protocol were: the incubator

steps were carried out in a water bath rather than a shaker–

incubator (in step 5 the samples were vortexed once during the

incubation), the centrifugation step was increased to 10 min,

the optional on-column DNase step and the 1 min drying

centrifugation were incorporated.

MagaZorb1 extraction

RNA extraction was carried using 200 ml of whole umbilical

cord blood according to the MagaZorb1 RNA Purification

Protocol (CorTex BiochemTM) with Supplementary Protocol

B (DNase protocol) incorporated.

Quantification and quality assessment of RNA

RNA was quantified and an A260 : A280 ratio calculated for

each sample after analysis on a ThermoSpectronic Biomate

5 v1.6 spectrophotometer. RNA quality was assessed running

each sample on an Agilent 2100 Bioanalyser using an RNA

LabChip kit. RNA quality was assessed qualitatively by

looking at the electropherogram of each sample, and

quantitatively by means of the RNA Integrity Number (RIN).

Microarray processing and analysis

The CodeLinkTM Human Whole Genome Bioarray was

comprised of approximately 55 000 30-mer probes designed

to conserve exons across the transcripts of targeted genes.

These 55 000 probes represent well-annotated, full length, and

partial human gene sequences from major public databases.

The biotin-labelled cRNA target is prepared by a linear

amplification method using tailed oligo dT priming of total

RNA. After second-strand cDNA synthesis, the cDNA

undergoes an in vitro transcription (IVT) reaction to produce

the target cRNA. This method produces approximately 1000-

fold to 5000-fold linear amplification. Various quality control

procedures are incorporated. Hybridisation is performed

overnight and post-hybridisation processing includes a strin-

gent wash to remove unbound and non-specifically hybridised

target molecules and staining with CyTM5-streptavidin con-

jugate. Several non-stringent washes remove unbound con-

jugate. The bioarrays are then dried and scanned on the

Agilent G2567A scanner at 5 mm resolution. Raw data were

obtained from the scanned images using CodeLinkTM

EXPv4.1 (GE Healthcare) feature extraction software.

Subsequent data validation comprising data quality control

and normalisation involved the use of the statistical software

package R (v 2.2.1) and Bioconductor modules for R (v 1.7).

Microarray data have been deposited in the GPX MIAME

compliant database at http://www.pathwaymedicine.ed.ac.uk/

gpx (Accession number: GPX000071 will be made available

upon publication).

Statistical methodology and analysis

For comparison of blood collection methods, sample storage

and RNA extraction procedures a two-tailed paired Student’s

t-test was employed. For microarray data analysis, a simple

(per-gene) analysis of variance model was employed. To define

the model, suppose that the median spot intensity Xg(i,j,k,l,m,n)

corresponds to the gth gene, ith operator, jth way of taking the

sample, kth freezing status, lth level of time to extraction, mth

category of age, and nth sample. We assume that the median

intensity Xg(i,j,k,l,m,n) consists of a systematic component

Sg(i,j,k,l,m) and a non-systematic (random error) component

Rg(i,j,k,l,m,n) and are related by a multiplicative relationship.

That is,

Xg(i,j,k,l,m,n) = Sg(i,j,k,l,m) 6 Rg(i,j,k,l,m,n), (1)

where the random component Rg(i,j,k,l,m,n) is distributed as log-

normal with scale parameter 1 [or, loge(1) = 0] and shape

parameter sg(i,j,k,l,m). Therefore,

Rg(i,j,k,l,m,n) y LN(0,s2
g(i,j,k,l,m)). (2)

A random variable X has the distribution LN(m,s2) if Y =

loge(X) has the normal distribution N(m,s2). Therefore, fitting

of a log-normal distribution, in principle, reduces to fitting of a

normal distribution. Now with the transformations

Sg(i,j,k,l,m) = exp(gg(i,j,k,l,m)), and Rg(i,j,k,l,m,n) = exp(eg(i,j,k,l,m,n)),

model corresponding to eqn (1) for log-intensity Yg(i,j,k,l,m,n) =

loge(Xg(i,j,k,l,m,n)) can be written as

Yg(i,j,k,l,m,n) = gg(i,j,k,l,m) + eg(i,j,k,l,m,n), (3)

where gg(i,j,k,l,m) is the log-systematic component and eg(i,j,k,l,m,n)

is the log-error. Assuming that the log-systematic component
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gg(i,j,k,l,m) is as an additive function of the effects of the

systematic sources of variation,

gg(i,j,k,l,m,n) = mg + ag(i) + bg(j) + cg(k) + dg(l) + tg(m), (4)

the per-gene analysis of variance (ANOVA) model for log-

intensity Yg(i,j,k,l,m,n) is expressed as,

Yg(i,j,k,l,m,n) = mg + ag(i) + bg(j) + cg(k) +
dg(l) + tg(m) + eg(i,j,k,l,m,n), (5)

where mg is the overall log-expression of gene g, ag(i) the effect

of the ith operator, bg(j) the effect of the jth way of taking

blood, cg(k) the effect of the kth freezing status, dg(l) the effect

of the lth level of time to extraction, tg(m) the effect of the mth

category of age, and eg(i,j,k,l,m,n) is the corresponding log-error

term distributed as

eg(i,j,k,l,m,n) y N(0,s2
g(i,j,k,l,m,n)). (6)

The parameters of model (5) can be estimated using a least-

squares method by minimising the error sum of squares given

by,

SSEg~
X

i,j,k,l,m,n

e2
g i,j,k,l,m,nð Þ~

X

i,j,k,l,m,n

ðYg i,j,k,l,m,nð Þ{

mgzag ið Þzbg jð Þzcg kð Þzdg lð Þztg mð Þ

n o�2

:

(7)

This is done by partially differentiating SSEg with respect to

each of the parameters, and then solving the resulting

equations by setting them equal to zero. Details of the

methods have previously been described31 and are implemen-

ted in all standard statistical analysis software. We used the R

program aov to fit the model (5). If the normality assumption

of the log-errors (6) is true, then the least-squares estimates of

the model (5) are equivalent to the maximum likelihood

estimates. We employed a factorial design to analyse the data.

There are five factors with a number of levels resulting in

144 factor combinations. The experiment was difficult to

implement as balanced for such multi-factor analysis and

therefore have cell frequencies ranging from 0 to 5. The

reason for this primarily relates to lack of control on the

selection of infants, ages and clinical procedures performed.

Thus, while interpretation of results obtained from analysis of

variance of unbalanced factorials may sometimes be less

precise, the current analysis should reflect the overall

behaviors of data in terms of the multiple factors, and provide

guidelines for future designs and analyses using larger

replication studies.

Results and discussion

Sample collection and processing

Sample collection was performed using a closely defined set of

standard operating procedures as in the Experimental section.

Tables 1 and 2 show results of the investigations into finding

the optimal blood collection tube and extraction method

(using umbilical cord blood as a surrogate for neonatal blood)

comparing five different commercial RNA extraction proce-

dures. The PAXgeneTM blood RNA system consistently gave

the best quality RNA while yielding sufficient quantity for

microarray analysis. Using standardised protocols for sample

collection and processing following identification of optimal

methods means that data are as robust and reproducible as

possible. Importantly our subsequent studies using neonatal

samples have shown that it is possible to obtain sufficient

RNA of consistently high quality from neonatal whole blood

samples of 0.5 ml. For the 58 samples examined in this report,

the mean yield of RNA was 8.45 mg (range 1.84–43.82), the

mean RIN value was 9.1 (range 6.6–10) and the mean A260/

A280 ratio was 1.86 (range 1.24–2.47). We also show in Table 3

that storage of these PAXgeneTM blood samples at 220 uC for

7 days prior to RNA extraction leads to no loss in quality of

RNA.

Chip-based measurements – contending with systematic and non-

systematic variation

Next we implemented the defined clinical and RNA extraction

standard operating procedures for collection and processing of

Table 1 Comparison of blood collection tubes

Blood tube n
Mean (range) RNA
per 0.5 ml blood/mg

Mean (range)
A260 : 280

Mean (range)
RIN values

RIN p-value cf.
PAXgeneTM

EDTA 8 9.80 (3.51–24.91) 1.73 (1.01–2.10) 5.0 (1.0–7.6) 0.002
Li heparin 7 14.33 (4.35–30.60) 1.99 (1.79–2.17) 7.9 (7.1–8.9) 0.0004
Na citrate 8 10.20 (2.34–20.23) 1.85 (1.62–2.0) 5.5 (1.1–8.3) 0.01
TRIZOL

1 LS 9 18.21 (5.18–39.96) 1.86 (1.63–2.04) 8.2 (6.8–9.2) 0.01
PAXgeneTM 8 8.16 (3.33–13.17) 2.03 (1.93–2.2) 9.5 (8.3–10)

Table 2 Comparison of RNA extraction methods

RNA extraction method n
Mean (range) RNA
per 0.5 ml blood/mg

Mean (range)
A260 : 280

Mean (range)
RIN values

RIN p-value cf.
PAXgeneTM

MagaZorb1 7 15.92 (9.98–21.85) 1.71 (1.53–1.85) 1.9 (1.0–2.9) 0.008
QIAamp 7 2.91 (1.34–4.18) 2.77 (0–7) 4.7 (1.0–8.2) 0.1
TRIZOL

1 LS 7 26.35 (11.88–44.48) 1.80 (1.65–1.92) 2.2 (0.0–6.4) 0.00009
TRIZOL

1 LS and QIAamp 7 16.29 (9.03–25.41) 1.91 (1.5–2.02) 6.0 (0.0–7.8) 0.2
PAXgeneTM 7 9.25 (4.41–16.66) 1.98 (1.95–2.01) 7.5 (5.5–8.9)
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58 neonatal whole blood samples. Whole blood RNA samples

are comprised of RNA from a range of blood cells including

reticulocytes, and the presence of high levels of globin mRNA

from these cells has led to the use of globin reduction protocols

for whole blood samples.29 We evaluated the use of a globin

reduction protocol for our samples (data not shown) but

observed limited improvement on sensitivity and specificity of

chips. For this reason we processed our samples directly

without globin reduction. Gene expression data were deter-

mined for the 58 neonatal whole blood samples and analysed

for the purpose of investigating the sources and magnitude of

systematic and non-systematic (random) variation and to

explore an appropriate error model for such data. Specifically,

five sources of variation were examined: age of patient

(,5 days, 5–10 days or .10 days), blood sample collection

method (needle/cannula), freezing status of sample (frozen/not

frozen), time to extraction (,3 h, 3–4 h or .4 h), and technical

operator (one of four operators). The data were comprised of

58 samples, corresponding to RNA extracted from neonatal

whole blood of 58 infants and these samples were analysed

using CodeLinkTM Human Whole Genome Bioarrays

(GE Healthcare), providing expression profiling of ca. 55 000

human gene targets in a single array. The first step of our

analysis was to look for any significant operator variation in

the data. We employed a simple (per-gene) analysis of variance

model as outlined in the Experimental section [eqn (5)]. Results

of applying the model to the first row of data (g = 1) are

summarised in Table 4 and show that the factor ‘time to

extraction’ has the highest level of variation, but none of

these sources of variation are statistically significant. A

summary of these results is graphically presented in Fig. 1.

The top panel, Fig. 1A shows the number of genes with a

mean squared error (MSE) greater than or equal to a

certain level plotted against that level of variation. The

bottom panel, Fig. 1B shows the number of genes having a

significance level less than or equal to a certain value

plotted against the corresponding level of p-values. Mean

squared error (MSE) due to all the systematic sources of

variation and error, and the p-values for the significance

of systematic sources of variation, are computed on the basis

of the per-gene ANOVA model (5). These analyses show that a

significant source of variation can be attributed to the

‘operator’. Another significant source appears to be the

factor ‘blood draw method’. That is whether a needle or a

cannula was used for taking blood. We see that up to a

certain level of variation (MSE = 1.4) the number of genes

exceeding a certain threshold of operator variation is higher

than that exceeding the same level of variation due to other

sources. However, after the level 1.4, ‘blood draw method’

takes over the ‘operator’. Testing if other confounding

variables also contribute to these particular variations will

require further investigation. Nevertheless, the proportion of

genes showing significant variation at p = 0.05 for all five

sources of variation considered in this study are shown in

Table 5.

Error models and power calculations required for RNA

biomarker identification

We assumed in our basic model (1) that the error associated

with the untransformed spot intensity Xg(i,j,k,l,m,n) is Rg(i,j,k,l,m,n)

and follows a log-normal distribution, Rg(i,j,k,l,m,n) y
LN(0,s2

g(i,j,k,l,m,n)). Equivalently, the distribution of log-error,

which is the error associated with the log-spot-intensity

Yg(i,j,k,l,m,n) = loge(Xg(i,j,k,l,m,n)) is denoted by eg(i,j,k,l,m,n), and

follows a normal distribution

eg(i,j,k,l,m,n) y N(0,s2
g(i,j,k,l,m)).

So, fitting a log-normal distribution to errors Rg(i,j,k,l,m,n) is

equivalent to fitting a normal distribution to log-errors eg(i,j,k,l,m,n).

The second option is more commonly used and convenient in

many ways. Our per-gene ANOVA model (5) actually fits a

normal distribution to the log-errors. Therefore, if log-normal is an

appropriate choice for errors Rg(i,j,k,l,m,n), residuals from the fitted

model (5), given by,

eg i,j,k,l,m,nð Þ~Yg i,j,k,l,m,nð Þ{

m̂mgzâag ið Þzb̂bg jð Þzĉcg kð Þzd̂dg lð Þzt̂tg(m)

n o

should be approximately normally distributed. Empirical

distributions and the corresponding fitted normal distributions

to the residuals (log-errors) corresponding to ten randomly

selected genes are plotted in Fig. 2. It is seen that except for the

minor multimodal features of the empirical distributions, normal

distributions provide a reasonable fit to the data. General

conclusion from Fig. 2 may be that model (5) with normally

distributed log-errors provides a reasonable fit to the data. It

would, however, be worth investigating if the multimodality as

seen in Fig. 2A may be captured with a more appropriate

distribution.

These analyses support the possibility of performing

microarray experiments on neonatal whole blood and raise

the question of whether or not patient group variance is

amenable to profiling RNA biomarkers. Fig. 3A shows the

Table 3 Comparison of storage conditions

Sample storage n Mean (range) RNA/mg Mean (range) A260 : 280 Mean (range) RIN values RIN p-value

Not frozen 6 4.16 (1.72–5.81) 1.86 (1.55–2.06) 7.8 (1.4–9.6) 0.29
Frozen at 220 uC for 7 days 6 5.61 (3.56–7.92) 1.81 (1.64–2.00) 9.4 (8.4–9.9)

Table 4 Results of applying the analysis of variance model to the first
row of data (g = 1)

Source of variation Mean squared error (MSE) p-Value

Operator 0.42 0.48
Blood draw method 0.19 0.55
Freezing status 0.78 0.22
Time to extraction 1.21 0.10
Age 0.21 0.67
Random error 0.51
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level of variation seen in the expression data generated

from the preliminary clinical data. Plots of coefficient of

variation of patient samples show acceptable levels of

variation. Some exploratory plots of the data are shown in

Fig. 3A. If we ignore the outliers in the mean vs. CV plot a

non-linear trend can be seen in the mean–CV relationship.

Determining sample size per experimental condition for a

given level of confidence in inferring differential expressions is

an important issue, and needs to be decided as an essential

first step. The multiple number of RNA markers estimated

for each sample makes it difficult to apply traditional

sample size calculation techniques and has left most

practitioners to rely on rule-of-thumb techniques. A

method for computing the sample size for microarray

experiments for a given pre-determined level of confidence

(power) in inferring differential expressions has been

described.32 The method is based on the assumption that

the microarray is set up to compare gene expressions

between one treatment group and one experimental group. It

is further assumed that the data have been normalised and

transformed so that the data for each gene are sufficiently

close to a normal distribution so that a standard two-sample

pooled variance t-test will reliably detect differentially

expressed genes. Here we compute the sample size separately

for each gene according to the standard formula for the

Fig. 1 Investigation of systematic and non-systematic variation in microarray data generated from neonatal whole blood samples. The number of

genes having mean squared error (MSE) greater than or equal to a certain level plotted against the level of variation (A), and number of genes

having a significance level less than or equal to a certain value plotted against the level of p-values (B). Mean squared error (MSE) due to the

systematic sources and random error, and the p-values for the significance of systematic variations are computed on the basis of the ANOVA model

(5).

Table 5 Proportion of genes having significant variation correspond-
ing to all five systematic sources considered in this study (p = 0.05)

Proportion of genes showing
significant variation at p = 0.05

Sources Operator
Needle/
cannula Freezing

Time to
extraction Age

Proportion 0.89 0.38 0.05 0.01 0.25
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two-sample t-test:
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where Td(N/h) is the cumulative distribution function for non-

central t-distribution with d degrees of freedom and the non-

centrality parameter h.

We apply the above method to calculate the sample size to

achieve 90% power on the basis of the standard deviations

computed from the quantile normalised data of 58 control

samples of the neonatal whole blood gene expression study.

The results are plotted in Fig. 3B representing the sample size

required to achieve 90% power for a given proportion of genes

on the arrays. Power calculations and sample size estimates

based on n = 58 samples with the same type of sample and on

the same microarray platform suggest that 100 samples per

group will be required to detect two-fold differential expres-

sion with 90% power for at least 90% of the probes on the

array, at a significance level of a = 0.001 (corrected for

multiple testing by the Bonferroni method33). We conclude

from these analyses that identifying RNA biomarkers is

tractable with a case control group size of 100 patients.

Stringency of transcriptome and variation of RNA phenotype

The above studies indicate that while there is a significant level

of variation there is nevertheless a relatively stable, well-

correlated RNA phenotype that can be used to identify a

specific set of RNAs as potential biomarkers. Overall, this

observation is indicative of homeostatic mechanisms under-

pinning a stringently regulated genome. In support there are a

number of well-documented genetic diseases, mainly of non-

protein coding mutations, that lead to an alteration of very

subtle changes (up to two-fold or less) in gene expression in

comparison with normal individuals and which result in

Fig. 2 Empirical distributions (A) and the corresponding fitted normal distributions (B) to the residuals (log-errors) corresponding to ten

randomly selected genes.
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marked clinical phenotypes.34–37 These studies indicate that

gene expression is tightly regulated and relatively intolerant of

dramatic variation. In support, microarray studies of variation

in expression among individuals have revealed a surprising

level of overall consistency but also evidence of distinct

patterns of inter-individual and temporal variation.11 A recent

chip study shows the possibility of even detecting slight

alterations in gene expression due to allelic variation.38 Our

recent experience in performing a range of clinical molecular

profiling studies from intestinal, mammary, adult blood,

endometrial, ovarian and testicular biopsies supports the view

for a remarkable stringency in the inter-individual regulation

of the transcriptome (see ref. 39 and unpublished observa-

tions). To date, neonatal whole blood shows the highest level

of variability in our experience. This could be due to greater

levels of complexity of procedural, sample handling and age

differences as well as a degree of biological variation.

Nevertheless, even with these samples our microarray profiling

observations show an excellent correlation between indivi-

duals, further indicating the human transcriptome to be under

stringent homeostatic regulation. Accordingly, even without

standardisation, early microarray studies have shown potential

clinical applications including classification of cancer patients

on the basis of disease outcome and prediction of treatment

response.12–15

RNA phenotype of systemic host response

One particularly exciting application of microarrays could be

investigating infection by detecting alteration in host RNA

phenotype in response to infection.6–9 This would be

particularly useful if unique host signatures could identify

individual pathogens.10 Recently, there have been a few small/

pilot studies looking at gene expression profiling in response to

infection.17,19,23,27 Also, there have been an increasing number

of publications reporting microarray experiments using

RNA from clinical whole blood samples in adults and

children.11,16–30,40 These reports are at this time limited not

only in terms of statistical power but also to the gene-analytic

approach applied. However, one study has attempted to

explore networks of inter-related genes.41 In this connection it

is worth noting that biological pathways provide a central level

of physiological organisation and, to date, a pathway-centric

approach is markedly absent.

Fig. 3 Scatter plots of inter-patient variance and power calculations.
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Perspective: bio-chip platforms for point-of-care

Biochip platforms based on pathogen detection both at the

nucleic acid42 and protein43 level are seen as key in the accurate

diagnosis of infection. However, the multi-parameter testing of

changes in whole blood RNA expression has the potential to

use extremely small quantities of material which does not

require the presence of the infective agent in the sample. It is

possible to envision that micro-devices would have the

capacity not only to process and extract RNA but also to

detect directly the presence of specific host pathway responses

to infection. It is also likely that these pathway responses may

also be detected at the protein level based on predictions from

the RNA phenotype. Biochips incorporating a combination of

both pathogen detection and host response would give the

widest possible coverage to detect signatures diagnostic of

infection. Nevertheless, regardless of the platform technology

used to detect such signatures it is of fundamental importance

that a clear understanding of the levels and contributions of

systematic and non-systematic variation are fully appreciated.

In this report we have shown that the operator and the point of

collection can provide a significant source of changes in gene

expression. Therefore if RNA is to fulfil a future role as a

potential biomarker it is essential that appropriately powered

studies are performed which account for known systematic

variation and error models developed to account for non-

systematic variation.

Conclusion

In conclusion we show that multi-parameter testing of changes

in RNA expression offers innovative potential and an

amenable means for measuring an RNA phenotype using

relatively small quantities of whole blood. We provide optimal

methods and procedures and attendant clinical and experi-

mental SOPs for applying a rigorous, chip-based investigation.

Even with such methods, significant challenges and limitations

remain, related to both systematic and non-systematic varia-

tions. From an analysis of the RNA phenotypes from

58 samples of neonatal whole blood considered in this study

we identify among the systematic sources of variation as

potentially contributing variability: laboratory operator, the

way the blood is drawn (by needle/cannula), and the age of the

infants. Further case studies are required to validate these

findings. We show that a linear additive analysis of variance

model for log-transformed data with Gaussian-distributed log-

errors seems reasonable to adjust the data for systematic

variation. Except for the minor multimodal features of the

empirical distributions, log-normal distributions for errors or,

equivalently, normal distributions for log-errors provide a

reasonable fit to the data accounting for non-systematic

variation. A sample size of about 100 per-group seems

reasonable to achieve 90% power for 90% of markers on the

chip.
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