





# UM Rhino Challenge Data Analysis

### Summit

April 14, 2008

A. Hero, P. Wolfe

Y. Huang, A. Rao, P. Harrington, M. Kliger

Depts of EECS and Bioinformatics Program

University of Michigan

### Outline

- Recapitulation of milestones
- Time course analysis (EDGE, RF)\_
- Differential motif analysis (DMDA)\_
- Path forward

### **Recapitulation of milestones**

| subject | #sxbegan      | sx peak    | info        | 0.1onset | 0.2onset | 0.8onset | 0.1maxT | 0.2maxT | 0.8maxT |                            |
|---------|---------------|------------|-------------|----------|----------|----------|---------|---------|---------|----------------------------|
|         | 1 control     |            |             |          |          |          |         |         |         |                            |
|         | 2 control     |            |             |          |          |          |         |         |         |                            |
|         | 3 54 hrs      | day 4      | moderate    | 5.4      | 10.8     | 43.2     | 9.6     | s 19.2  | 2 76.8  |                            |
|         | 4 60 hrs      | day5       | severe      | 6        | 12       | 48       | 12      | 2 24    | 4 96    |                            |
|         | 5 asx and sl  | hedding    |             |          |          |          |         |         |         |                            |
|         | 6 36 hrs      | day 3      | severe sx   | 3.6      | 7.2      | 28.8     | 7.2     | 2 14.4  | 4 57.6  |                            |
|         | 7 day 2 42 l  | nday 2 at  | 56severe sx | 4.2      | 8.4      | 33.6     | 5.6     | 5 11.3  | 2 44.8  |                            |
|         | 8 control     |            |             |          |          |          |         |         |         |                            |
|         | 9 day 3       | day 3      | mild sx     | 7.2      | 14.4     | 57.6     | 7.2     | 2 14.4  | 4 57.6  | Pd>0.7 at Pf<0.05 at 0.2T  |
|         | 10 control    |            |             |          |          |          |         |         |         |                            |
|         | 11 48 hrs     | 4          | 8 mild sx   | 4.8      | 9.6      | 38.4     | 4.8     | 9.6     | 38.4    |                            |
|         | 12 asx and sl | hedding    |             |          |          |          |         |         |         | Pd>0.95 at Pf<0.01 at 0.81 |
|         | 13 control    |            |             |          |          |          |         |         |         |                            |
|         | 14 control    |            |             |          |          |          |         |         |         |                            |
|         | 15 day 2 48 l | hiday 2 54 | hsevere sx  | 4.8      | 9.6      | 38.4     | 5.4     | 11.3    | 2 43.2  |                            |
|         | 16 day 2 42 I | h54 hours  | moderate    | 4.2      | 8.4      | 33.6     | 5.4     | i 11.3  | 2 43.2  |                            |
|         | 17 asx and sl | hedding    |             |          |          |          |         |         |         |                            |
|         | 18 control    |            |             |          |          |          |         |         |         |                            |
|         | 19 day 5      | day 5      | mild        | 12       | 24       | 96       | 12      | 2 24    | 1 96    |                            |
| :       | 20 44 hours   | day 4      | severe sx   | 4.4      | 8.8      | 35.2     | 9,6     | 3 19.2  | 2 76.8  |                            |

# Main findings

>mRNA data quality is generally high but exhibits high biological variability

>A small panel discriminatory biomarkers has been found

»Several of these biomarkers appear to be in good agreement with immune and inflammatory pathways

Benchmarks can be attained (caveat: small sample)

>mRNA and immunoassay markers seem to have highest predictive value

»Differential S vs A molecular signatures are strong at 0.8T, weaker at 0.1T

## Analysis

»Methods adapted to different fundamental assumptions about the

"signal" model:



- > 1) Linear (fixed effects) regression model
- > 2) Random effects model
- > 3) Mixed random effects model

# Linear fixed effects of Analysis applied

•SAM/PAM analysis (TimeSlice)\_

•EDGE/Co-cluster Analysis (TimeCourse)\_

•Random effects

•LDA/PCA (TimeSlice)\_

•Pareto sample depth distributions (PSDD)

(TimeCourse)\_

Mixed Effects

•Random forest regression (Time\_Slice)\_

Differential Matif Discovery and Analysis (TimeCourse)

### SAM/PAM/EDGE Analysis

Differential Expression Analysis At Baseline / Pre-Challenge Asymptomatic (n=22) vs. Symptomatic (n=21)\_



#### **Training and Testing 18-Gene Classifier Using LDA-based PAM Method**

#### Top 673 unique significant SAM genes (q-value <25%) are used to build the predictor



| Baseliı   | ne / Prech | allenge | (Training)_           |           |       | 0.1T |                |           |       | 0.8T |                       |
|-----------|------------|---------|-----------------------|-----------|-------|------|----------------|-----------|-------|------|-----------------------|
| True\Pred | Asymp      | Symp    | <b>Detection Rate</b> | True\Pred | Asymp | Symp | Detection Rate | True\Pred | Asymp | Symp | <b>Detection Rate</b> |
| Asymp     | 22         | 0       | 100%                  | Asymp     | 9     | 1    | 90%            | Asymp     | 9     | 1    | 90%                   |
| Symp      | 1          | 20      | 95.2%                 | Symp      | 1     | 9    | 90%            | Symp      | 1     | 8    | 88.9%                 |

Diagnosis of multiple cancer types by shrunken centroids of gene expression. Robert Tibshirani, Trevor Hastie. Balasubramanian Narasimhan. and Gilbert Chu

#### **Case-by-case Prediction Results Report at 0.1T and 0.8T Milestone**

| 0.1T   | Subject | Hr | Pheno | Predicted | Posterior<br>Asymp | Posterior<br>Symp | 0.8T    | Subject    | Hr   | Pheno    | Predicted    | Posterior<br>Asymp | Posterior<br>Symp |
|--------|---------|----|-------|-----------|--------------------|-------------------|---------|------------|------|----------|--------------|--------------------|-------------------|
| C01H04 | C01     | 4  | А     | А         | 75.2%              | 24.8%             | C01H48  | C01        | 48   | А        | А            | 75.9%              | 24.1%             |
| C02H04 | C02     | 4  | А     | А         | 72.6%              | 27.4%             | C02H48  | C02        | 48   | А        | А            | 73.1%              | 26.9%             |
| C05H04 | C05     | 4  | А     | А         | 58.2%              | 41.8%             | C05H48  | C05        | 48   | А        | А            | 52.1%              | 47.9%             |
| C08H04 | C08     | 4  | А     | А         | 62.3%              | 37.7%             | C08H48  | C08        | 48   | А        | А            | 55.5%              | 44.5%             |
| C10H08 | C10     | 8  | А     | А         | 62.2%              | 37.8%             | C10H48  | C10        | 48   | А        | А            | 66.7%              | 33.3%             |
| C12H04 | C12     | 4  | А     | А         | 62.6%              | 37.4%             | C12H48  | C12        | 48   | А        | А            | 70.6%              | 29.4%             |
| С13Н04 | C13     | 4  | А     | А         | 57.3%              | 42.7%             | С13Н48  | C13        | 48   | А        | А            | 67.7%              | 32.3%             |
| C14H04 | C14     | 4  | Α     | 8         | 42.3%              | 57.7%             | C14H48  | C14        | 48   | Α        | S            | 48.2%              | 51.8%             |
| C17H04 | C17     | 4  | А     | А         | 62.8%              | 37.2%             | C17H48  | C17        | 48   | А        | А            | 64.2%              | 35.8%             |
| C18H04 | C18     | 4  | А     | А         | 50.3%              | 49.7%             | C18H48  | C18        | 48   | А        | А            | 56.3%              | 43.7%             |
| С03Н04 | C03     | 4  | S     | S         | 28.8%              | 71.2%             | C03H48  | C03        | 48   | S        | S            | 29.2%              | 70.8%             |
| C04H08 | C04     | 8  | S     | S         | 39.1%              | 60.9%             | C04H48  | C04        | 48   | S        | S            | 41.6%              | 58.4%             |
| С06Н04 | C06     | 4  | S     | Α         | 51.5%              | 48.5%             | C06H30  | C06        | 30   | S        | S            | 47.9%              | 52.1%             |
| C07H04 | C07     | 4  | S     | S         | 41.1%              | 58.9%             | C07H42  | C07        | 42   | S        | S            | 34.5%              | 65.5%             |
| C09H08 | C09     | 8  | S     | S         | 42.8%              | 57.2%             | C09H48  | <b>C09</b> | 48   | S        | Α            | 50.8%              | 49.2%             |
| C11H04 | C11     | 4  | S     | S         | 27.5%              | 72.5%             | C11H48  | C11        | 48   | S        | S            | 19.8%              | 80.2%             |
| C15H04 | C15     | 4  | S     | S         | 43.7%              | 56.3%             | C15H48  | C15        | 48   | S        | S            | 42.3%              | 57.7%             |
| C16H04 | C16     | 4  | S     | S         | 31.4%              | 68.6%             | C19H96  | C19        | 96   | S        | S            | 24.1%              | 75.9%             |
| C19H04 | C19     | 4  | S     | S         | 35.2%              | 64.8%             | C20H42  | C20        | 42   | S        | S            | 41.6%              | 58.4%             |
| C20H04 | C20     | 4  | S     | S         | 31.8%              | 68.2%             | Subject | 16 Hrs42   | chip | has qual | lity issues. |                    |                   |

#### Table 1: List of 18-Gene Predictor

| Probeset    | Symbol      | Cytoband         | Score  | Location            | Туре                       |
|-------------|-------------|------------------|--------|---------------------|----------------------------|
| 213478_at   | KIAA1026    | chr1p36.21       | -3.234 | Plasma Membrane     | other                      |
| 209396_s_at | CHI3L1      | chr1q32.1        | -3.221 | Extracellular Space | enzyme                     |
| 205033_s_at | DEFA1       | chr8p23.1        | -3.005 | Extracellular Space | other                      |
| 205040_at   | ORM1        | chr9q31-q32      | -2.994 | Extracellular Space | other                      |
| 203936_s_at | MMP9        | chr20q11.2-q13.1 | -3.015 | Extracellular Space | peptidase                  |
| 207269_at   | DEFA4       | chr8p23          | -2.802 | Extracellular Space | other                      |
| 203691_at   | PI3         | chr20q12-q13     | -2.879 | Extracellular Space | other                      |
| 219594_at   | NINJ2       | chr12p13         | -3.140 | Plasma Membrane     | other                      |
| 205844_at   | VNN1        | chr6q23-q24      | -2.762 | Plasma Membrane     | enzyme                     |
| 221491_x_at | hCG_1998957 | chr6p21.3        | 2.538  | Plasma Membrane     | transmembrane receptor     |
| 218272_at   | FLJ20699    | chr22q13         | 3.167  | Unknown             | other                      |
| 202869_at   | OAS1        | chr12q24.1       | 2.992  | Cytoplasm           | enzyme                     |
| 209433_s_at | PPAT        | chr4q12          | 2.996  | Cytoplasm           | enzyme                     |
| 203290_at   | HLA-DQA1    | chr6p21.3        | 2.647  | Plasma Membrane     | transmembrane receptor     |
| 218638_s_at | SPON2       | chr4p16.3        | 3.039  | Extracellular Space | other                      |
| 212070_at   | GPR56       | chr16q12.2-q21   | 3.008  | Plasma Membrane     | G-protein coupled receptor |
| 204439_at   | IFI44L      | chr1p31.1        | 3.037  | Unknown             | other                      |
| 219269_at   | HMBOX1      | chr8p21.1        | 3.588  | Nucleus             | transcription regulator    |

Up-regulated genes in symptomatic cases Down-regulated genes in symptomatic cases

#### Table 1 (Cont'd): Function of 18-Gene Predictor

| Probeset    | Symbol          | Gene Title                                                                             | Relevant<br>Function                                                                                                                                       |
|-------------|-----------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 213478_at   | KIAA1026        | kazrin                                                                                 | Cellular development and organ morphology                                                                                                                  |
| 209396_s_at | CHI3L1          | chitinase 3-like 1 (cartilage glycoprotein-39)_                                        | A tiny variation in a gene known as CHI3L1 increases susceptibility to asthma, bronchial hyperresponsiveness and decline in lung function (NEJM Apr 2008)_ |
| 205033_s_at | DEFA1           | defensin, alpha 1                                                                      | Innate immune response to pathogen                                                                                                                         |
| 205040_at   | ORM1            | orosomucoid 1                                                                          | Inflammation modulating molecules                                                                                                                          |
| 203936_s_at | MMP9            | matrix metallopeptidase 9 (gelatinase B, 92kDa gelatinase, 92kDa type IV collagenase)_ | Regulator of cellular migration, likely plays a role in recruitment of leukocytes other than chemokines                                                    |
| 207269_at   | DEFA4           | defensin, alpha 4, corticostatin                                                       | Innate immune response to pathogen                                                                                                                         |
| 203691_at   | PI3             | peptidase inhibitor 3, skin-derived (SKALP)_                                           | Elafin reduced the activation of inflammatory TF NFKB (anti-inflammatory effect)_                                                                          |
| 219594_at   | NINJ2           | ninjurin 2                                                                             | Cell adhesion                                                                                                                                              |
| 205844_at   | VNN1            | vanin 1 (Pantetheinase precursor)_                                                     | homolog to mouse VNN1, involved in lymphocyte migration in cell adhesion<br>and in the colonization of the thymus by hematopoietic precursor cells         |
| 221491_x_at | hCG_19989<br>57 | major histocompatibility complex, class II, DR beta 1                                  | Antigen presentation                                                                                                                                       |
| 218272_at   | FLJ20699        | hypothetical protein FLJ20699                                                          |                                                                                                                                                            |
| 202869_at   | OAS1            | 2',5'-oligoadenylate synthetase 1, 40/46kDa                                            | Interferon signaling (inhibition of virus replication)_                                                                                                    |
| 209433_s_at | PPAT            | phosphoribosyl pyrophosphate amidotransferase                                          |                                                                                                                                                            |
| 203290_at   | HLA-DQA1        | major histocompatibility complex, class II, DQ alpha 1                                 | Antigen presentation                                                                                                                                       |
| 218638_s_at | SPON2           | spondin 2, extracellular matrix protein                                                | Critical in antigen presentation and initiation of innate immune response                                                                                  |
| 212070_at   | GPR56           | G protein-coupled receptor 56                                                          | Signal transduction                                                                                                                                        |
| 204439_at   | IFI44L          | interferon-induced protein 44-like                                                     |                                                                                                                                                            |
| 219269_at   | HMBOX1          | homeobox containing 1                                                                  | Transcription repressor                                                                                                                                    |

### Functional Analysis Using Ingenuity Reveals Major Involvement by 18 Predictor Genes in Canonical Inflammatory and Infectious Disease Pathway



to RSV infection

Another PA inhibitor SERPINE2 (PN-1) is significantly

#### Legend of Pathway Analysis Diagram

Relationships

#### Network Shapes Chemical or Drug Cytokine Enzyme G-protein Coupled Receptor Group or Complex Growth Factor Ion Channel $\langle \rangle$ Kinase Ligand-dependent Nuclear Receptor Peptidase Phosphatase Transcription Regulator Translation Regulator Transmembrane Receptor Transporter

Other

Α B binding only A В inhibits в acts on A B inhibits AND acts on (A В leads to (A в translocates to (A В reaction catalysis enzyme (A reaction direct interaction indirect interaction

Note: "Acts on" and "inhibits" edges may also include a binding event.

#### **Time Series Analysis Using EDGE ---- Two Densely Sampled Subjects**











Pathway Analysis of 41 Top Significant Genes (*q*-value < .5%)

\* 15 out of 41 genes are directly related to immune response (colored in pink to red depending on its significance)

#### Pathway Analysis of 41 Top Significant Genes (*q*-value < .5%) Reveals Direct Involvement in Cancer or Organismal Injury and Abnormalities



\* 18 out of 43 genes are directly related to cancer or organismal injury and abnormalities (colored in pink to red depending on its significance)

#### Time Course Analysis Using 5 Samples Per Individual at BL/0.1T/0.8T/T





**Expression Pattern of 7 Predictor Genes Whose Time Course** 

1. Inside each box, 5 time points are shown: BL/T0/T0.1/T0.8/T

2. Individual 16 missing 42hrs and individual 14 missing 96hrs. data imputed using closest time point

### Expression Pattern of 7 Predictor Genes Whose Time Course Analysis Results Are Also Significant (*q*-value <25%)\_



1. Inside each box, 5 time points are shown: BL/T0/T0.1/T0.8/T

2. Individual 16 missing 42hrs and individual 14 missing 96hrs. data imputed using closest time point



#### **Expression Pattern of 7 Predictor Genes Whose Time Course**

Analysis Results Are Also Significant (*q*-value <25%)

1. Inside each box, 5 time points are shown: BL/T0/T0.1/T0.8/T

2. Individual 16 missing 42hrs and individual 14 missing 96hrs, data imputed using closest time point



- 1. Inside each box, 5 time points are shown: BL/T0/T0.1/T0.8/T
- 2. Individual 16 missing 42hrs and individual 14 missing 96hrs, data imputed using closest time point

#### Major Canonical Signaling Pathways and Metabolic Pathways Involved by Top Significant Time Course Genes (q-value<5%)\_



Ratio

| Pathway                                      | Significant Genes                       |
|----------------------------------------------|-----------------------------------------|
| Interferon Signaling                         | IFIT1,IFIT3,OAS1,IFITM1,IFI35,MX1,PSMB8 |
| Complement System                            | CFD,CD59,SERPING1,C1QA,C1QB,C3AR1,C2    |
| Glycosphingolipid Biosynthesis - Globoseries | NAGA,GLA,GM2A,HEXB                      |
| IL-10 Signaling                              | CCR1,FCGR2C,MAPK14,BLVRA,IL1B,CD14      |
| Aminosugars Metabolism                       | NAGK,GM2A,HEXB,HK3,NANS                 |
| Antigen Presentation Pathway                 | PSMB9,HLA-DRA,PSMB8,MR1                 |

#### Major Disease and Disorders Involved by Top

#### Significant Time Course Genes (q-value<5%)



#### Canonical Pathway Involvement by Significant Genes: Cellular Growth and Proliferation / Organism Injury



© 2000-2008 Ingenuity Systems, Inc. All rights reserved.

### Canonical Pathway Involvement by Significant Genes: Immunological Diseases



### Canonical Pathway Involvement by Significant Genes: Immunological Diseases



### Canonical Pathway Involvement by Significant Genes: Inflammatory Diseases



### Random Forest Analysis

- Random Forests: Ensembles of tree based classifiers using lasso selection (Breiman 1990).
- Ys=a1\*f1(Xs) +...+an\*fn(Xs) + I1(a1...an)
- For classification Y is symptom 3-level sx of each chip
- For prediction Y is the end state (sx or asx) of each chip
- RF trained on Y and X=genes, metabolites, AA/AC and immunoassay data over days 0-3).
- Stratified sampling used to compensate for unbalanced groups

### Forward Prediction at 0.2T



| 0        |
|----------|
|          |
| 0        |
| ·····    |
| 0        |
| 0        |
| 0        |
| 0        |
| -        |
| <u>_</u> |
| 0        |
| 0        |
| 0        |
| 0        |
| 0        |
| 0        |
| O        |
| 0        |
| 0        |
| 0        |
| 0        |
| <u> </u> |
| 0        |
| 0        |
| 0        |
| <br>O    |
|          |
| 0        |
|          |

### Forward Prediction at 0.8T

\_\_\_\_\_

| 0      |
|--------|
| 0      |
| 0<br>  |
| 0      |
| 0      |
| 0      |
| 0      |
| 0      |
| 0      |
|        |
| 0      |
| 0      |
| 0      |
| -      |
| 2      |
| 0      |
| -      |
| 0      |
| 0      |
| 0      |
| 0      |
| 0      |
| 0      |
| _<br>D |
| 0      |
| 0      |

------

|                                       | 0 |
|---------------------------------------|---|
|                                       | 0 |
|                                       | 0 |
| 0                                     |   |
| 0                                     |   |
| 0                                     |   |
| 0                                     |   |
| 0                                     |   |
| 0                                     |   |
| 0                                     |   |
| 0                                     |   |
| 0                                     |   |
| 0                                     |   |
| 0                                     |   |
| 0                                     |   |
| 0                                     |   |
| 0                                     |   |
| 0                                     |   |
| 0                                     |   |
| 0                                     |   |
| 0                                     |   |
| • • • • • • • • • • • • • • • • • • • |   |
| ····· 0                               |   |
| 0                                     |   |
| 0                                     |   |
| 0                                     |   |
| 0                                     |   |
| 0                                     |   |
| 0                                     |   |
| 0                                     |   |
|                                       |   |

### **Observations from RF analysis**

- GO information embedding was applied to mRNA data prior to RF
- Perfect forward predictions of symptom onset from 0.2T and 0.8T.
- Biological validation is necessary (Gene, Metabolomic Ontology)\_
- mRNA is enhanced by other biomarkers, esp. immunoassay
- Current state estimation may allow the registration of patient state along their symptom/viral titer curve (see Extra slides)
- Cross-platform data normalization does not appear to add much value.

# DMDA

- Differential motif discovery and analysis (Hero:08) discriminates between graphical model for A and S interactions (gene-gene, gene-protein, proteinprotein)\_
  - Guiding principle: gene regulation network adapts in response to infection
- Method: detect consistent changes in loci of a small number of genes by comparing within-chip mRNA correlations in A and S groups
  - 1. Normalize mean and variance within each group at T0, 0.1T, 0.8T, T
  - 2. Sparse approximation to whole-chip (23Kx23K) covariance matrix
  - 3. Sparse matrix manipulation to detect pairs of "pivotal" mRNA probes with high correlations of opposite sign in A and S.

– 4. From these pairs construct interaction graphs under A and S
(A. Hero, report in preparation, 2008)

### Rhino-data at 0.8T DMDA -> IFIT5+SRGAP2 loci



Asymptomatic subjects

Symptomatic subjects

### Rhino-data at 0.2T PLEK,MMP11,TRIM3, ANKRD40 loci



#### **Functional Analysis of High Score Genes From DMDA Analysis**

prof.her<del>p motif</del> 3.5 3.0 (anlav-d)bol-2.0 1.5 1.0 0.5 0.0 ase ase Cell Death velopment Hematological System Development and Function Transport ase Connective Tissue elopment and Function Cellular Development Organismal Development Cancer Tissue Development Immune and Lymphatic System Development and Function Gene Expression Tissue Morphology Lipid Metabolism Small Molecule Biochemistry Cell Signaling elopmental Disorder Respiratory Disease Post-Translational Modification Repair Amino Acid Metabolism System Development and Function and Skeletal and Muscular System Development and Function Cellular Growth and Proliferation Neurological Dise Dise stern Dise Dermatological Diseases Conditions and Gastrointestinal Molecular Ō Damage š Embryonic ø Reproductiv RNA Ó Nervous Dev

Analysis: prof.hero motif

#### Functional Analysis of High Score Genes From DMDA Analysis Pathway Related to Respiratory Disease

Network 5 : prof.hero motif : prof.hero.motif



© 2000-2008 Ingenuity Systems, Inc. All rights reserved

### Functional Analysis of High Score Genes From DMDA Analysis Top Rank #1 Pathway Related to Tissue Development



© 2000-2008 Ingenuity Systems, Inc. All rights reserved.

### Path Forward

- Integration/completion of all analyses
  - CV, integrate results, include missing chips
- Integrated pathway analysis (genetic, metabolic)\_
- Identify stable targets for on-chip diagnostic testing
- Refine and validate results on new mRNA chips
- Further refine for cohorts in Challenge II and III

### Extras

RF predictor with Z-score normalization RF for current state estimation DMDA: Under the hood Sampling matrices and timing

# Forward prediction at 0.8T (scaled)\_

| 0           |
|-------------|
|             |
| 0           |
|             |
|             |
|             |
|             |
| -<br>-      |
|             |
| ~<br>       |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
| · · · · · · |

CV error rate: 45%. Prediction accuracy 100%.

· · · · C

# Current state estimation (PAM+DMDA genes)

| 0        |
|----------|
|          |
| <br>С    |
| 0        |
| 0        |
| <br>О    |
| 6        |
| 0        |
| 0        |
| 0        |
| 0        |
| 0        |
| 0        |
| 0        |
| 0        |
| 0        |
| 0        |
| 0        |
| 0        |
| 0        |
|          |
|          |
| <u> </u> |
|          |
| 0        |
|          |
| - 0      |
|          |
|          |
|          |

|      |             |   | · · · · · · · · · · · · · · · · · · · |
|------|-------------|---|---------------------------------------|
|      |             | 0 |                                       |
|      |             | O |                                       |
|      |             | 0 |                                       |
|      |             |   |                                       |
|      |             | 0 |                                       |
|      |             | 0 |                                       |
|      | · · · · · O |   |                                       |
|      |             |   |                                       |
|      | ····· 0··   |   |                                       |
|      |             |   |                                       |
|      |             |   |                                       |
|      |             |   |                                       |
|      |             |   |                                       |
|      | n           |   |                                       |
|      | -<br>n      |   |                                       |
|      |             |   |                                       |
|      |             |   |                                       |
|      |             |   |                                       |
| Ő    |             |   |                                       |
| 0    |             |   |                                       |
| 0    |             |   |                                       |
|      |             |   |                                       |
| -    |             |   |                                       |
|      |             |   |                                       |
|      |             |   |                                       |
| 0    |             |   |                                       |
| 0    |             |   |                                       |
|      |             |   |                                       |
| 0    |             |   |                                       |
| 0    |             |   |                                       |
| <br> |             |   |                                       |

### PAM+DMDA genes (scaled)\_

|        | 0 |
|--------|---|
|        |   |
|        | 0 |
|        | 0 |
|        | _ |
|        | 0 |
|        | 0 |
|        | 0 |
| ٩<br>د | 5 |
|        |   |
|        |   |
| 0      |   |
| 0      |   |
| 0      |   |
| 0      |   |
| 0      |   |
| 0      |   |
| 0      |   |
| 0      |   |
| 0      |   |
| 0      |   |
| - 0    |   |
|        |   |
| 0      |   |
| 0      |   |
| 0      |   |
|        |   |
| 0      |   |
| =      |   |

|       |                                       |       |   | 0 |
|-------|---------------------------------------|-------|---|---|
|       |                                       |       |   | 0 |
|       |                                       |       | 0 |   |
|       |                                       | ····· | Ŭ |   |
|       |                                       | ~     |   |   |
|       |                                       | -     |   |   |
|       |                                       | -     |   |   |
|       |                                       | 0     |   |   |
|       | 0                                     |       |   |   |
|       | 0                                     |       |   |   |
|       | 0                                     |       |   |   |
|       | 0                                     |       |   |   |
|       | • • • • • • • • • • • • • • • • • • • |       |   |   |
|       | 0                                     |       |   |   |
|       | 0                                     |       |   |   |
|       | o                                     |       |   |   |
|       | 0                                     |       |   |   |
|       | 0                                     |       |   |   |
|       | 0                                     |       |   |   |
|       | 0                                     |       |   |   |
| <br>  |                                       |       |   |   |
| <br>ŏ |                                       |       |   |   |
| 0     |                                       |       |   |   |
| 0     |                                       |       |   |   |
| _     |                                       |       |   |   |
| <br>  |                                       |       |   |   |
| <br>0 |                                       |       |   |   |
| <br>0 |                                       |       |   |   |
| <br>0 |                                       |       |   |   |
|       |                                       | 1     |   |   |

# Current State Estimation (Metabolites)\_

| 0   |
|-----|
| 0   |
| 0   |
| 0   |
| 0   |
| 0   |
| 0   |
| 0   |
| 0   |
| 0   |
| 0   |
| 0   |
| 0   |
| 0   |
| 0   |
| 0   |
| 0   |
| 0   |
| 0   |
| 0   |
| 0   |
| 0   |
| 0   |
| - 0 |
| 0   |

|   |         |   |   | · · · · · · c |
|---|---------|---|---|---------------|
|   |         |   | 0 |               |
|   |         | 0 |   |               |
|   |         | 0 |   |               |
|   | ····· ( |   |   |               |
|   | ·····G  |   |   |               |
|   |         |   |   |               |
|   |         |   |   |               |
|   | 0       |   |   |               |
|   | 0       |   |   |               |
|   | 0       |   |   |               |
|   | 0       |   |   |               |
|   | 0       |   |   |               |
|   | 0       |   |   |               |
|   | 0       |   |   |               |
|   | 0       |   |   |               |
|   | 0       |   |   |               |
|   | 0       |   |   |               |
|   | 0       |   |   |               |
|   | 0       |   |   |               |
|   | 0       |   |   |               |
|   | )       |   |   |               |
| 0 |         |   |   |               |
| 0 |         |   |   |               |
| 0 |         |   |   |               |
|   | 1       |   |   |               |

### Metabolite (scaled)\_

| 0      |
|--------|
| 0      |
| 0      |
| 0      |
| 0      |
| 0      |
| 0      |
| 0      |
| 0      |
| 0      |
| 0      |
| 0      |
| 0      |
| 0      |
| - 0    |
| 0      |
|        |
| 0      |
| -<br>- |
| 0      |
| 0      |
| 6      |
| ~<br>  |
| -<br>- |
| 0      |
| 0      |

|            |   |                   | ····· |
|------------|---|-------------------|-------|
|            |   | ····· 0 ·····     |       |
|            |   | • O • • • • • • • |       |
|            | C |                   |       |
|            | 0 |                   |       |
|            | 0 |                   |       |
|            | 0 |                   |       |
|            | 0 |                   |       |
|            | _ |                   |       |
|            |   |                   |       |
|            | 0 |                   |       |
|            | 0 |                   |       |
|            |   |                   |       |
|            |   |                   |       |
|            |   |                   |       |
| o          |   |                   |       |
|            |   |                   |       |
| ····· 0 ·· |   |                   |       |
| 0          |   |                   |       |
| 0          |   |                   |       |
| 0          |   |                   |       |
| 0          |   |                   |       |
| 0          |   |                   |       |
| 0          |   |                   |       |
|            |   |                   |       |

### Current State Estimation (AA/AC)\_

|   |                                       |     |   |   |               |   | 0 |
|---|---------------------------------------|-----|---|---|---------------|---|---|
|   |                                       |     |   |   |               |   | 0 |
|   |                                       |     |   |   |               | 0 |   |
|   |                                       |     |   |   | · · · · · · c |   |   |
|   |                                       |     |   |   | c             |   |   |
|   |                                       |     |   |   | 0             |   |   |
|   |                                       |     |   |   | <b>.</b>      |   |   |
|   |                                       |     |   | 0 |               |   |   |
|   |                                       |     |   |   |               |   |   |
|   |                                       |     | 0 |   |               |   |   |
|   |                                       |     | 0 |   |               |   |   |
|   |                                       |     | 0 |   |               |   |   |
|   |                                       |     | 0 |   |               |   |   |
|   |                                       |     | 0 |   |               |   |   |
|   |                                       |     | 0 |   |               |   |   |
|   |                                       | 0.0 |   |   |               |   |   |
|   |                                       | 0   |   |   |               |   |   |
|   | · · · · · · · · · · · · · · · · · · · |     |   |   |               |   |   |
|   | 0                                     |     |   |   |               |   |   |
|   |                                       |     |   |   |               |   |   |
|   | 0.00                                  |     |   |   |               |   |   |
|   | 0                                     |     |   |   |               |   |   |
|   |                                       |     |   |   |               |   |   |
|   | 0                                     |     |   |   |               |   |   |
|   | 0.00                                  |     |   |   |               |   |   |
|   | 0                                     |     |   |   |               |   |   |
|   | 0                                     |     |   |   |               |   |   |
| 0 |                                       |     |   |   |               |   |   |
|   |                                       |     |   |   |               |   |   |
| 0 |                                       |     |   |   |               |   |   |
|   |                                       |     |   |   |               |   |   |

|         |   |   | 0 |  |
|---------|---|---|---|--|
|         |   | 0 |   |  |
|         | o |   |   |  |
|         | 0 |   |   |  |
|         | 0 |   |   |  |
|         | 0 |   |   |  |
|         | 0 |   |   |  |
|         | 0 |   |   |  |
|         | 0 |   |   |  |
|         | 0 |   |   |  |
|         |   |   |   |  |
| ····· C | ) |   |   |  |
| 0       |   |   |   |  |
| •••••   |   |   |   |  |
| 0       |   |   |   |  |
| 0       |   |   |   |  |
| 0       |   |   |   |  |
| 0       |   |   |   |  |
|         |   |   |   |  |
|         |   |   |   |  |
| -       |   |   |   |  |
|         |   |   |   |  |
|         |   |   |   |  |
| 0       |   |   |   |  |
| ~       |   |   |   |  |
| 0       |   |   |   |  |
| 0       |   |   |   |  |
| 0       |   |   |   |  |
| 0       |   |   |   |  |
|         |   |   |   |  |

### AA/AC (scaled)\_

|   |                                         | 0 |
|---|-----------------------------------------|---|
|   |                                         | 0 |
|   |                                         |   |
|   | 0                                       |   |
|   | • • • • • • • • • • • • • • • • • • • • |   |
|   | 0                                       |   |
|   | •••••                                   |   |
|   | 0                                       |   |
|   | 0                                       |   |
| 0 |                                         |   |
| 0 |                                         |   |
| 0 |                                         |   |
| 0 |                                         |   |
|   |                                         |   |
| - |                                         |   |
| 0 |                                         |   |
| 0 |                                         |   |
| 0 |                                         |   |
| 0 |                                         |   |
| 0 |                                         |   |
|   |                                         |   |
| 0 |                                         |   |
| 0 |                                         |   |
| 0 |                                         |   |
| 0 |                                         |   |
|   |                                         |   |
| 0 |                                         |   |
|   |                                         |   |
| 0 |                                         |   |
| 0 |                                         |   |
|   |                                         |   |
| 0 |                                         |   |
| 0 |                                         |   |

|   | 0 |
|---|---|
|   | 0 |
| o |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
| 0 |   |
|   |   |
|   |   |
| 0 |   |
| 0 |   |
|   |   |
| 0 |   |
|   |   |
| 0 |   |
| 0 |   |
| 0 |   |
| 0 |   |
|   |   |
| 0 |   |
| 0 |   |
| 0 |   |
| 0 |   |
| 0 |   |
| 0 |   |
|   |   |
| o |   |
|   |   |
|   |   |

# Current State Estimation (Immunoassay)\_

|            |       | ~ | 0 |
|------------|-------|---|---|
|            |       | _ |   |
|            |       |   |   |
|            |       | 0 |   |
|            |       | 0 |   |
|            |       |   |   |
|            | 0     |   |   |
|            | ····· |   |   |
|            | ····· |   |   |
|            | ,     |   |   |
|            |       |   |   |
| ····· 0 ·· |       |   |   |
| 0          |       |   |   |
| 0          |       |   |   |
|            |       |   |   |
| o          |       |   |   |
|            |       |   |   |
| õ          |       |   |   |
| 0          |       |   |   |
| -          |       |   |   |
| 0          |       |   |   |
| 0          |       |   |   |
| 0          |       |   |   |
| 0          |       |   |   |
| 0          |       |   |   |
| ·····      |       |   |   |
| <u> </u>   |       |   |   |
| õ          |       |   |   |
| -          |       |   |   |
| 0          |       |   |   |
| 0          |       |   |   |
| 0          |       |   |   |
| 0          |       |   |   |
|            |       |   |   |



### Immunoassay (scaled)\_

|          | ····· 0             |
|----------|---------------------|
|          | ····· 0···          |
|          | · · · · · O · · · · |
|          | ····· 0 · ····      |
|          | ••••••              |
|          | 0                   |
|          | 0                   |
| 0        |                     |
| 0        |                     |
| 0        |                     |
| ····· 0  |                     |
| 0        |                     |
| 0        |                     |
| 0        |                     |
|          |                     |
|          |                     |
| 0        |                     |
| <u> </u> |                     |
| 0        |                     |
| 0        |                     |
| 0        |                     |
| 0        |                     |
| 0        |                     |
| n        |                     |
|          |                     |
| . n      |                     |
|          |                     |
| _        |                     |
| 0        |                     |
| 0        |                     |

| 0           |
|-------------|
| ······O···· |
|             |
|             |
| 0           |
| 0           |
| 0           |
| 0           |
| 0           |
| 0           |
| n n         |
|             |
| 0           |
| O           |
| 0           |
| 0           |
| O.          |
|             |
| 0           |
| -           |
| 0           |
| 0           |
| 0           |
|             |
|             |
| <br>O       |
| 0           |
| 0           |
|             |

### **Current state estimation**

|          | PAM+DMD<br>A genes<br>(12)_ | Metabolites (5)_ | AA<br>(7)_ | ImmunoAssay<br>(9)_ | All (15)_ |
|----------|-----------------------------|------------------|------------|---------------------|-----------|
| Scaled   | 32.08                       | 37.74            | 42.45      | 22.6                | 32.8      |
| Unscaled | 31.13                       | 40.57            | 46.23      | 23.38               | 31.2      |

### DMDA - Under the Hood





### **Revised sampling protocol**

| Subject                                               | 30-Nov                                                             | 1- Dec Pre                                           | 1-Dec 4 hr                                     | 1-Dec 8 hr                                 | 1-Dec 12 hr | 2-Dec 20 hr | 2-Dec 24 hr | 2-Dec 30 hr | 2-Dec 36 hr | 3-Dec 42 hr  | 3-Dec 48 hr                                                              | 4-Dec                                                     | 5-Dec                                                                                    | 6-Dec | Sx Onset                                                                                                                                   | T (hours)                                          | N tubes                                                   |
|-------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------|--------------------------------------------|-------------|-------------|-------------|-------------|-------------|--------------|--------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------|
| Symptoms                                              |                                                                    |                                                      |                                                |                                            |             |             |             |             |             |              |                                                                          |                                                           |                                                                                          |       |                                                                                                                                            |                                                    |                                                           |
| 3<br>6<br>7<br>9*<br>10*<br>15<br>16<br>20            | $\begin{array}{c} x \\ x $ | X<br>XX<br>X<br>X<br>X<br>X<br>X<br>X<br>X           | X<br>X<br>X<br>X<br>X<br>X<br>X                | x<br>xx<br>x<br>x                          | XX          | xx          | XX          | XX          | X<br>XX     | XX<br>X<br>X | x<br>xx<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x                | x<br>xx<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x | x<br>xx<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x                                |       | 12 noon 12/3<br>5 PM 12/3<br>12 noon 12/3<br>12/3/2008 15:00<br>12/4/2008 6:30<br>12/4/2008 6:30<br>12 noon 12/3<br>3 AM 12/2<br>7 AM 12/3 | 53<br>58<br>53<br>54<br>71<br>71<br>53<br>44<br>48 | 6<br>26<br>7<br>6<br>6<br>7<br>7<br>7                     |
| No Symptoms                                           |                                                                    |                                                      |                                                |                                            |             |             |             |             |             |              |                                                                          |                                                           |                                                                                          |       |                                                                                                                                            |                                                    |                                                           |
| 1<br>5<br>8<br>11<br>12<br>13<br>14<br>17<br>18<br>19 | ×<br>×<br>××<br>×<br>×<br>×<br>×<br>×<br>×<br>×<br>×<br>×          | X<br>X<br>XX<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X | ×<br>×<br>×<br>×<br>×<br>×<br>×<br>×<br>×<br>× | X<br>X<br>XX<br>X<br>X<br>X<br>X<br>X<br>X | XX          | XX          | XX          | XX          | XX          | хх           | x<br>x<br>xx<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x | X<br>X<br>XX<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X | x<br>x<br>xx<br>xx<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x |       |                                                                                                                                            |                                                    | 7<br>7<br>26<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7 |
| * = marginal                                          | sx                                                                 |                                                      |                                                |                                            |             |             |             |             |             |              |                                                                          |                                                           |                                                                                          |       |                                                                                                                                            |                                                    | 173                                                       |

 $\bigcirc$ 

173



