
Pathway Logic Tutorial

Carolyn Talcott
SRI International

September 2005

Plan
Part I : Maude

• Lecture
• break
• Exercises
• http://maude.cs.uiuc.edu/

Lunch

Part II: PLA
• Lecture
• break
• Demo/Exercises
• http://www.csl.sri.com/~clt/PLweb/
• http://www.csl.sri.com/~clt/PLweb/install-notes.html

Pathway Logic Tutorial
Part I

Using Maude to Model and Analyze
Current Systems

Carolyn Talcott
SRI International

http://maude.cs.uiuc.edu/

Maude

0 Maude is a language and environment ! based on
rewriting logic

0 See: http://maude.cs.uiuc.edu
0 Features:

– Executability -- position /rule/object fair rewriting
– High performance engine --- {ACI} matching
– Modularity and parameterization
– Builtins -- booleans, number hierarchy, strings
– Reflection -- using descent and ascent functions
– Search and model-checking

Impact

rapid
prototyping

state space
search

S |=Φ
model

checking

Maude Formal Methodology

S |- Φ
theorem
provng

model building

Topics

About rewriting logic

Specifying data types

Specifying dynamics

Analysis (search and model-checking)

Reflection

Rewriting Logic

Q: What is rewriting logic?

A1: A logic for executable specification and
analysis of software systems, that may be
concurrent, distributed, or even mobile.

A2: A logic to specify other logics or languages

A3: An extension of equational logic with local
rewrite rules to express
 1. concurrent change over time
 2. inference rules

What Rewriting ! Logic Is/IsNot

0 A rewrite theory plus a term describes a state
transition system

– states can have rich algebraic structure
– transitions are local and possibly concurrent

0 The equational part of a rewrite theory is similar to a
term rewriting system (modulo ACI axioms)

– it is usually desirable for equations to be CR and terminating
– rewrite rules are often non-deterministic and non-terminating

Rewriting Logic as a
Semantic Framework

A wide variety of models of computation can be
naturally expressed as rewrite theories

0 Lambda Calculus, Turing Machines
0 Concurrent Objects and Actors
0 CCS, CSP, pi-calculus, Petri Nets
0 Chemical Abstract Machine, Unity
0 Graph rewriting, Dataflow, Neural Networks
0 Real-time Systems
0 Physical Systems (Biological processes)

Rewriting Logic as a
Logical Framework

A wide variety of logics have a natural representation
as rewrite theories

0 Equational logic
0 Horn logic
0 Linear logic
0 Quantifiers
0 Higher-order logics (HOL, NuPrl)
0 Open Calculus of Constructions
0 Rewriting logic !

Rewriting Logic is Reflective

A reflective logic is a logic in which important aspects
of its metatheory (entailment relation, theories,
proofs) can be represented at the object level in a
consistent way.

This has many applications:
0 Transforming, combining rewrite theories
0 Execution / proof strategies
0 Meta tools: theorem provers, coherence checkers ...
0 Language extensions: object-oriented, real-time, ...
0 Higher-order capabilities in a first-order framework
0 Model of reflection for concurrent objects
0 Domain specific assistants

Rewrite Theories

0 Rewrite theory: (Signature, Labels, Rules)

0 Signature: (Sorts, Ops, Eqns) -- an equational theory
– Describe data types, system state

0 Rules have the form label : t => t’ if cond

0 Rewriting operates modulo equations
– Describes computations or deductions, also modulo equations

Maude System Specifications

A Maude specification has two parts
0 An equational part describing structure and

properties of system states (and ADT)
0 A rules part specifying how the system might change

over time.

ADTs (Abstract Data Types)

An ADT consists of one or more sets of values, together
with a set of operations

 (D1 ... Dk, c1 ... cm, f1 ... fn)
0 Values are given by constructors: c(t1,...,tl)
0 Functions f1 .. fn are defined by mathematical

relations (usually equations).

ADTs in Maude

ADTs are specified in Maude using functional modules
 fmod <modname> is
 <imports> *** reuse, modularity
 <sorts> *** data types and subtyping
 <opdecls> *** names/and arities of operations
 <eqns> *** how to compute functions
 endfm

0 The module components can appear interleaved and in
any order

0 The semantics of an fmod is an initial model
– no junk---every data value is constructable
– no confusion---two terms are equal only forced by the

equations

Operator declarations

The <opdecls> part of a module consists of operator declarations
having the form

 op <opname> : <argSorts> -> <resultSort> [<attributes>] .

opname can be an identifier (without special characters) or
identifiers interleave with `_’s (mixfix notation).

<attributes> for binary operators include assoc, comm, id:
<term>

Including assoc declares the operator to b associative, ...

*** unary constructor
 op s_! : Nat !!!!-> Nat .
*** unary operator
 op sub1! : Nat !!!!-> Nat .
*** associative commutative infix operator with identity
 op _+_! : Nat -> Nat [assoc comm id: 0] .

The NAT and NATLIST Data Types

The natural numbers are specified by
 fmod NAT is
 sorts Zero NzNat Nat .
 subsort Zero NzNat < Nat .
 op 0 : -> Zero [ctor] .
 op s_ : Nat -> NzNat [ctor] .

 endfm

 Examples: 0, s s s 0 (also printed as 3)

Lists of natural numbers are specified by
 fmod NATLIST is

 pr NAT .
 sort NatList . subsort Nat < NatList .
 op nil : -> NatList .
 op _ _ : NatList NatList -> NatList [assoc id: nil] .

 endfm

Example lists: nil, 1 2 3

Defining NatList Functions I

Definition by pattern matching (extending NATLIST)

 var n: Nat. var nl: NatList .
 op head : NatList ~> Nat .
 op tail : NatList -> NatList .
 eq head(n nl) = n .
 eq tail(n nl) = nl . eq tail(nil) = nil .

Consider the list !: ! 1 2 3
It matches the pattern (n nl) with n := 1, nl := 2 3

Maude> reduce head(1 2 3) . Maude> red tail(1 2 3) .
result NzNat: 1 result NatList: 2 3

Maude> red head(nil) . Maude> red tail(nil) .
result [Nat]: head(nil) result NatList: nil

Defining NatList Functions II
Definition by recursion

Define a function `sum’ that adds the elements of a
NatList.

 var n : Nat. var nl : NatList .
 op sum : NatList -> Nat .
 eq sum(nil) = 0 .
 eq sum(n nl) = n + sum(nl) .

The equations are used to reduce terms to canonical form
 sum(1 2 3) = 1 + sum(2 3) = 1 + 2 + sum(3) = 1 + 2 + 3 = 6

 Maude> reduce sum(1 2 3) .
 result NzNat: 6

Defining NatList Functions III
Conditional equations

Define a function `isElt’ that takes a Nat and a NatList
and returns true if the Nat is in the NatList and false
otherwise.

 vars n n’: Nat. var nl: NatList .
 op isElt : Nat NatList -> Bool .
 eq isElt(n, n’ nl) =
 if n == n’ then true else isElt(n,nl) fi .
 eq isElt(n, nil) = false .

 Examples:
 isElt(4, 4 6 3) = true
 isElt(4, 7 2 4 6) = isElt(4,2 4 6)
 isElt(4,nil) = false

Defining NatList Functions IV

Alternate definition of `isElt’: via AC pattern matching

 vars n : Nat . vars nl nl’: NatList .
 op isElt : Nat NatList -> Bool .
 eq isElt(n, nl n nl’) = true .
 eq isElt(n, nl) = false [owise] .

Examples:
isElt(4, 7 2 4 6 3) matches the 1st equation
 taking n := 4, nl’ := 7 2, nl := 6 3
 and so reduces to true
isElt(4, 7 2 3) does not match the 1st equation, so

reduces to false by the [owise] equation

Caveats

Caveats for writing Maude specifications:
0 Don’t forget the period at the end of a declaration or

statement! .
0 Check keywords / symbols are correct.

– correct use of fmod, mod
– op vs ops
– variables not used before bound

0 Make sure all cases are covered in defining equations.

Specifying behavior/dynamics

System dynamics are specified in system modules using
rewrite rules

 mod <modname> is

 *** functional part
 <imports> *** reuse, modularity
 <sorts> *** data types and subtyping
 <opdecls> *** names/and arities of operations
 <eqns> *** how to compute functions

 <rules>
 endm

A system module defines a set of computations (aka
derivations) over the ADT specified by the functional
part.

Rule declarations

The <rules> part of a system module consists of rule declarations
having one of the forms

 rl[<id>]: <lhs> => <rhs> .

 crl[<id>]: <lhs> => <rhs> if <cond> .

<lhs>, <rhs>, <cond> are terms, possibly containing variables.
A rule applies to a term T if there is a substitution S (mapping

variables to terms) such that S<lhs> is a subterm of T (<lhs>
matches a subterm of T) and S <cond> rewrites to true.

In this case T can be rewritten by replacing the matched subterm by
the matching instance of <rhs> (S <rhs>).

Deduction/Computation Rules

reflexivity: replacement:
congruence:

f f

one step rewrite:

closed under

Rule application

Suppose we have the following rules (in a suitable module).

 rl[fa2b]: f(a,x) => f(b,x) .

 rl[hh2h]: h h(y) => h(y) .

then
 g(c,f(a,d)) => g(c,f(b,d))

using [fa2b] and congruence

and
 h h(g(c,f(a,d))) => h(g(c,f(b,d)))

also using replacement.

Before applying a rewrite rule, Maude reduces a term to canonical
form using equations.

Petri Net Example

Petri nets (Place-transition nets) are a formalism for
modeling concurrent system behavior.

0 Places represent properties or component features.

0 System state is represented by marking of places
0 Transitions specify transfer of marks from one place

to another
0 Petri nets have a natural graphical representation and

a natural representation in Maude

Petri Net Example
A vending machine

Buy-c Buy-a change

c a q

$

4

The vending machine in Maude

mod VENDING-MACHINE is
 sorts Coin Item Place Marking .
 subsorts Coin Item < Place < Marking .
 op null : -> Marking . *** empty marking
 ops $ q : -> Coin .
 ops a c : -> Item .
 op _ _ : Marking Marking -> Marking
 [assoc comm id: null] .
 rl[buy-c]: $ => c .
 rl[buy-a]: $ => a q .
 rl[change]: q q q q => $.
endm

What about AC Rewriting?

q M:Marking q matches a subterm of a q c $ q q
 with M:Marking := c $
q M:Marking a M1:Marking matches a subterm of
$ q c $ q a

 with M:Marking := c $ q and M1:Marking := nil

For terms constructed from operators that are
declared with attributes such as assoc, comm and / or
id, rule matching is extended to match AC terms to
segments.

Using the vending machine

Maude> rew $ $ $.
result Marking: q a c c

Maude> search $ $ $ =>! a a M:Marking .

Solution 1 (state 8)
M:Marking --> q q c

Solution 2 (state 9)
M:Marking --> q q q a

No more solutions.
states: 10 rewrites: 12)

What is one way to use 3 $s?

How can I get 2 apples with 3 $s?

Model checking

Algorithm for determining if M |= P (M satisfies P)
where M is a `model’ and `P’ is a property.

In our case a model is a Maude specification of a
system together with a state of interest.

A property is a `temporal logic’ formula to be
interpreted as a property of computations of the
system (linear sequences of states generated by
application of rewrite rules).

Model checking

Temporal formulas are built from propositions about
states, using boolean connectives, and temporal
operators [] (always) and <> (eventually).

 Satisfaction for M |= A is axiomatized by equations

 M |= P if C |= P for every computation C of M

 C |= A if the first state of C satisfies A

 C |= [] P if every suffix of C satisfies P

 C |= <>P if some suffix of C satisfies P

Model checking: Defining properties

mod MC-VENDING-MACHINE is
 inc VENDING-MACHINE . inc MODEL-CHECKER . inc NAT .

 op vm : Marking -> State [ctor] .
 op countPlace : Marking Place -> Nat .
 op value : Marking -> Nat . *** in units of quarters

 ops fiveQ lte4Q : -> Prop .
 ops nCakes nApples val : Nat -> Prop .

 eq vm(M) |= fiveQ = countPlace(M,q) == 5 .
 eq vm(M) |= lte4Q = countPlace(M,q) <= 4 .
 eq vm(M) |= nApples(n) = countPlace(M,a) == n .
 eq vm(M) |= val(n) = value(M) == n .
endm

Model checking the vending machine I

Starting with 5 $s, can we get 6 apples without accumulating more
than 4 quarters? Model check the claim that we can't.

Maude>
 red modelCheck(vm($ $ $ $ $),[]~(lte4Q U nApples(6))) .
result ModelCheckResult: counterexample(
 {vm($ $ $ $ $),'buy-a}
 {vm($ $ $ $ q a),'buy-a}
 {vm($ $ $ q q a a),'buy-a}
 {vm($ $ q q q a a a),'buy-a}
 {vm($ q q q q a a a a),'change}
 {vm($ $ a a a a),'buy-a}
 {vm($ q a a a a a), 'buy-a},
 {vm(q q a a a a a a),deadlock})

A counterexample to a formula is a pair of transition lists
representing an infinite compuation which fails to satisfy the
formula. A transition is a state and a rule identifier. The second
list represents a loop.

Model checking the vending machine II

Starting with 5 $s, can we get 5 quarters then 6 apples?

Maude>
red modelCheck(vm($ $ $ $ $),
 []~(<>fiveQ /\ (fiveQ |-> nApples(6))) .
result ModelCheckResult: counterexample(...)

Is value conserved?
Maude> red modelCheck(vm($ $ $ $ $),[]val(20) .
result Bool: true

Extracting Paths from CounterExamples
A simple path from a given initial state S0, to a state
satisfying a property P is a list of rules together
with a state S1 satisfying P such that applying the
rules starting with S0 leads to S1.

One way to find a simple path is to model check the
assertion that from S0 no state can be reached
satisfying P: modelCheck(S0, ~ <> P). If there is a
reachable state satisfying P, a counterexample will
be returned. The counterexample contains the list
of rules applied.

Using findPath

The module SIMPLE defines a function findPath that
extracts a simple path from a counterexample and a
property.

mod FP-VENDING-MACHINE is
 inc MC-VENDING-MACHINE .
 inc SIMPLE .
endm

Maude> red findPath(vm($ $ $ $), nApples(5)) .
result SimplePath:
 spath(‘buy-a ‘buy-a ‘buy-a ‘buy-a ‘change ‘buy-a,
 vm(q a a a a a)) .

A Vending Machine Mall

To illustrate systems states with more structure,
consider a `Mall’ which contains possibly multiple
vending machines, each vending a specific item.
In addition the Mall contains `Goods’, items
purchased, and coins available to make purchases.

We add rules to put coins into machines and extract
items purchased. The orginial vending machine rules
are used to turn coins into items.

The Mall specification

mod VENDING-MALL is
 inc VENDING-MACHINE .
 sorts Machine Goods Mall .
 subsort Machine Goods < Mall .

 op mt : -> Mall .
 op __ : Mall Mall -> Mall [ctor assoc comm id: mt] .

 op m : Item Marking -> Machine [ctor] .
 op g : Place -> Goods [ctor] .

 var M : Marking . var C : Coin . var I : Item .

 rl [coin-in] : m(I, M) g(C) => m(I, M C) .
 rl [apple-out] : m(a, M a) => m(a, M) g(a) .
 rl [cake-out] : m(c, M c) => m(c, M) g(c) .

endm

Shopping in the Mall

Consider an initial state with an two vending machines, one for
apples, one for cakes, and 4 $s.

Default shopping yields 2 apples.

Maude> rew m(a,null) m(c,null) g($) g($) g($) g($) .
result Mall: g(a) g(a) m(a, q q c c) m(c, null)

Can I get 4 apples and a cake?

Maude> search m(a,null) m(c,null) g($) g($) g($) g($) =>!
X:Mall g(a) g(a) g(a) g(a) g(c) .
No solution.

But I can get 4 apples and 4 quarters stuck in the machine!

search m(a,null) m(c,null) g($) g($) g($) g($)
 =>! m(a, q q q q) X:Mall .
Solution 1 (state 725)
X:Mall --> g(a) g(a) g(a) g(a) m(c, null)

Reflection example: Module analysis

fmod CONSUMERS is
 inc MY-META .
 var M : Module . var T : Term .
 var R : Rule . var RS : RuleSet .

 op consumes : Module Rule Term -> Bool .
 eq consumes(M,R,T) = *** assumes M defines ‘has
 getTerm(metaReduce(M,'has[getLhs(R),T]))
 == 'true.Bool .

 op consumerRules : Module Term -> QidSet .
 op consumerRules : Module RuleSet Term -> QidSet .

 eq consumerRules(M,T) =
 consumerRules(M,upRls(getName(M),true),T) .
 eq consumerRules(M,none,T) = none .
 eq consumerRules(M,R RS,T) =
 (if consumes(M,R,T) then getRuleId(R) else none fi);
 consumerRules(M,RS,T) .
endfm

Reflection Example: Module analysis cntd.

mod VEND-X is
 inc VENDING-MACHINE .

 vars M0 M1 : Marking .
 op has : Marking Marking -> Bool .

 eq has(M0 M1, M1) = true .
 eq has(M0, M1) = false [owise] .
endm

select CONSUMERS .

Maude> red consumerRules(['VEND-X],'$.Coin) .
result: QidSet 'buy-a ; buy-c

Maude> red consumerRules(['VEND-X],'q.Coin) .
result: Qid 'change

Reflection example: Strategy

fmod METAREWRITE-LIST is
 inc MY-META .
 var M : Module . vars T T’: Term .
 var res : Result4Tuple? .
 var rid : Qid . var ql : QidList .

 op metaRewList : Module QidList Term -> Term .
 eq metaRewList(M,nil,T) = T .
 ceq metaRewList(M,rid ql,T) = metaRewList(M,ql,T')
 if res := metaXapply(M,T,rid,none,0,unbounded,0)
 /\ T' := if res :: Result4Tuple
 then getTerm(res)
 else T fi .
endfm

Reflection example: Strategy cntd.

Maude> red metaRewList(['VENDING-MACHINE],
 'change 'buy-a,
 '__['q.Coin,'q.Coin,'q.Coin,'q.Coin]) .

result GroundTerm: '__['q.Coin,'a.Item]

Maude> red metaRewList(['VENDING-MACHINE],
 'buy-a 'change,
 '__['q.Coin,'q.Coin,'q.Coin,'q.Coin]) .

result Constant: '$.Coin

