Pathway Logic Tutorial

Carolyn Talcott
SRT International

September 2005



Plan

Part I: Maude
+ Lecture
* break
- Exercises
* http://maude.cs.uiuc.edu/

Lunch

Part IT: PLA
+ Lecture
* break
- Demo/Exercises

* http://www.csl.sri.com/~clt/PLweb/
* http://www.csl.sri.com/~clt/PLweb/install-notes.html



Pathway Logic Tutorial
Part T
Using Maude to Model and Analyze
Current Systems

Carolyn Talcott
SRI International

http://maude.cs.uiuc.edu/




Maude

Maude is a language and environment based on
rewriting logic

See: http://maude.cs.uiuc.edu

Features:
Executability -- position /rule/object fair rewriting
High performance engine --- {ACI} matching
Modularity and parameterization
Builtins -- booleans, number hierarchy, strings
Reflection -- using descent and ascent functions
Search and model-checking



Maude Formal Methodology

Manthly

bt E-mail

Dail y

Manuall y
Fault
Configuration
Accounting
Performance
Security

Resource monitoring

S |=®
model
checking
|
/ S|-®@
state space 21 kS
rapid search I \‘iﬂ tt::g‘l;(:‘rg
prototyping h‘/{b 3 f;



Topics

About rewriting logic

Specifying data types

Specifying dynamics

Analysis (search and model-checking)

Reflection



Rewriting Logic

Q: What is rewriting logic?

Al. A logic for executable specification and
analysis of software systems, that may be
concurrent, distributed, or even mobile.

A2: A logic to specify other logics or languages

A3: An extension of equational logic with local
rewrite rules to express

1. concurrent change over time
2. inference rules



What Rewriting Logic Is/IsNot

A rewrite theory plus a ferm describes a state
transition system

states can have rich algebraic structure
transitions are local and possibly concurrent

The equational part of a rewrite theory is similar to a
term rewriting system (modulo ACI axioms)

it is usually desirable for equations to be CR and terminating
rewrite rules are often non-deterministic and non-terminating



Rewriting Logic as a
Semantic Framework

A wide variety of models of computation can be
naturally expressed as rewrite theories

Lambda Calculus, Turing Machines
Concurrent Objects and Actors

CCS, CSP, pi-calculus, Petri Nets

Chemical Abstract Machine, Unity

Graph rewriting, Dataflow, Neural Networks

Real-time Systems
Physical Systems (Biological processes)



Rewriting Logic as a
Logical Framework

A wide variety of logics have a natural representation
as rewrite theories

Equational logic

Horn logic

Linear logic

Quantifiers

Higher-order logics (HOL, NuPrl)
Open Calculus of Constructions
Rewriting logic |



Rewriting Logic is Reflective

A reflective logic is a logic in which important aspects
of its metatheory (entailment relation, theories,
proofs) can be represented at the object level in a
consistent way.

This has many applications:
Transforming, combining rewrite theories
Execution / proof strategies
Meta tools: theorem provers, coherence checkers ...
Language extensions: object-oriented, real-time, ...
Higher-order capabilities in a first-order framework
Model of reflection for concurrent objects
Domain specific assistants



Rewrite Theories

Rewrite theory: (Signature, Labels, Rules)

Signature: (Sorts, Ops, Egns) -- an equational theory
Describe data types, system state

Rules have the form label: t=>1" if cond

Rewriting operates modulo equations
Describes computations or deductions, also modulo equations



Maude System Specifications

A Maude specification has two parts

An equational part describing structure and
properties of system states (and ADT)

A rules part specifying how the system might change
over time.



ADTs (Abstract Data Types)

An ADT consists of one or more sets of values, together
with a set of operations

(D1 ...Dk, cl..cm, fl ... fn)
Values are given by constructors: c(t1,...,1l)

Functions f1 .. fn are defined by mathematical
relations (usually equations).



ADTs in Maude

ADTs are specified in Maude using functional modules

fmod <modname> is

<imports> *** reuse, modularity
<sorts> *** data types and subtyping
<opdecls> *** names/and arities of operations
<egns> *** how to compute functions

endfm

The module components can appear interleaved and in
any order

The semantics of an fmod is an initial model

ho junk---every data value is constructable

no confusion---two terms are equal only forced by the
equations



Operator declarations

The <opdecls> part of a module consists of operator declarations
having the form

op <opname> : <argSorts> -> <resultSort> [<attributes>]

opname can be an identifier (without special characters) or
identifiers interleave with * _'s (mixfix notation).

<attributes> for binary operators include assoc, comm, id:
<term>

Including assoc declares the operator to b associative, ...

*** unary constructor
op s_ : Nat -> Nat

*** unary operator
op subl : Nat -> Nat

*** associative commutative infix operator with identity
op + : Nat -> Nat [assoc comm id: 0]



The NAT and NATLIST Data Types

The natural numbers are specified by
fmod NAT is

sorts Zero NzNat Nat .
subsort Zero NzNat < Nat .

op 0 : -> Zero [ctor]
op s_ : Nat -> NzNat [ctor]
endfm

Examples: 0, s s s 0 (also printed as 3)

Lists of natural numbers are specified by
fmod NATLIST is

pr NAT .

sort NatList . subsort Nat < NatList .

op nil : -> NatList .

op _ _ : NatList NatList -> NatList [assoc id: nil]
endfm

Example lists: ni1, 1 2 3



Defining NatList Functions I

Definition by pattern matching (extending NaTLIsT)

var n: Nat. var nl: NatList .

op head : NatList ~> Nat .

op tail : NatList -> NatList .

eq head(n nl) n .

eq tail(n nl) nl . eq tail (nil) = nil .

Consider the list: 1 2 3
It matches the pattern (n n1) with n := 1, n1 := 2 3

Maude> reduce head(l 2 3) . Maude> red tail(l 2 3)
result NzNat: 1 result NatList: 2 3
Maude> red head(nil) . Maude> red tail (nil)

result [Nat]: head(nil) result NatList: nil



Defining NatList Functions IT
Definition by recursion

Define a function “sum' that adds the elements of a
NatList.

var n : Nat. var nl : Natlist .

op sum : NatList -> Nat .
eq sum(nil) = 0 .
eq sum(n nl) = n + sum(nl)

The equations are used to reduce terms to canonical form
sum(l 2 3) =1 + sum(2 3) =1+ 2 + sum(3) =1 + 2 + 3 =6

Maude> reduce sum(l 2 3)
result NzNat: 6



Defining NatlList Functions ITI
Conditional equations

Define a function " isElt' that takes a Nat and a NatList
and returns true if the Nat is in the NatList and false

otherwise.

vars n n’: Nat. var nl: NatList .

op isElt : Nat NatList -> Bool .
eq isElt(n, n’ nl) =
if n == n’ then true else isiElt(n,nl) fi .

eq isElt(n, nil) = false .

Examples:
isElt(4, 4 6 3) = true
isElt(4, 7 2 4 6) = isElt(4,2 4 6)
isElt(4,nil) = false



Defining NatList Functions IV

Alternate definition of " isElt": via AC pattern matching

vars n : Nat . vars nl nl’: NatLlList .

op isElt : Nat NatList -> Bool .
eq isElt(n, nl n nl’) = true .

eq isElt(n, nl) = false [owise]

Examples:

isElt(4, 7 2 4 6 3) matches the 1st equation
’raking n :=4, nl’ =7 2, nl := 6 3
and so reduces to true

isElt(4, 7 2 3) does not match the 1st equation, so
reduces to false by the [owise] equation



Caveats

Caveats for writing Maude specifications:

Don't forget the period at the end of a declaration or
statement! .
Check keywords / symbols are correct.

correct use of fmod, mod

op VS ops

variables not used before bound

Make sure all cases are covered in defining equations.



Specifying behavior/dynamics

System dynamics are specified in system modules using

rewrite rules

mod <modname> is

*** functional part

<imports> *kk
<sorts> * k%
<opdecls> * k%
<eqgns> * k%

* % %

<rules>
endm

reuse, modularity

data types and subtyping
names/and arities of operations
how to compute functions

A system module defines a set of computations (aka
derivations) over the ADT specified by the functional

part.



Rule declarations

The <rules> part of a system module consists of rule declarations
having one of the forms

rl[<id>]: <lhs> => <rhs>

crl[<id>]: <1lhs> => <rhs> if <cond> .

<lhs>, <rhs>, <cond> are terms, possibly containing variables.

A rule applies to a term T if there is a substitution S (mapping
variables to terms) such that S<ilhs> is a subterm of T (<1hs>
matches a subterm of T) and S <cond> rewrites to true.

In this case T can be rewritten by replacing the matched subterm by
the matching instance of <rhs> (S <rhs>).



Deduction/Computation Rules

one step rewrite: A —>A

closed under

reflexivity: replacement:

NN\ congruencer )
- f A_ _______
f N AAA\ /‘AAAA\




Rule application

Suppose we have the following rules (in a suitable module).

rl[fa2b]: f£(a,x) => £ (b, x)

rl[hh2h]: h h(y) => h(y)
then

g(c,f(a,d)) => g(c,£f(b,d))
using [fa2b] and congruence

and
h h(g(c,f(a,d))) => h(g(c,f(b,d)))

also using replacement.

Before applying a rewrite rule, Maude reduces a term to canonical
form using equations.



Petri Net Example

Petri nets (Place-transition nets) are a formalism for
modeling concurrent system behavior.

Places represent properties or component features.

System state is represented by marking of places

Transitions specify transfer of marks from one place
to another

Petri nets have a natural graphical representation and
a hatural representation in Maude



Petri Net Example
A vending machine

Buy-c Buy a change

S o



The vending machine in Maude

mod VENDING-MACHINE is
sorts Coin Item Place Marking
subsorts Coin Item < Place < Marking

op null : -> Marking . *** empty marking
ops $ g : -> Coin

ops a ¢ : -> Item .

op : Marking Marking -> Marking

[assoc comm id: null]
rl[buy-c]: $ => c
rl[buy-al]: $ => a q .
rl[change]l: g gqgq g = $§
endm



What about AC Rewriting?

For terms constructed from operators that are
declared with attributes such as assoc, comm and / or
id, rule matching is extended to match AC terms to

segments.

g M:Marking q matches a subtermofa qc $ g g
with M:Marking := c $
q M:Marking a Ml:Marking matches a subterm of

$q9c$qa
with M:Marking := ¢ $ q and Ml:Marking := nil



Using the vending machine

What is one way to use 3 $s?

Maude> rew $ $ $
result Marking: g a c ¢

How can I get 2 apples with 3 $s?
Maude> search $ $ $§ =>! a a M:Marking

Solution 1 (state 8)
M:Marking --> q g ¢

Solution 2 (state 9)
M:Marking --> g g q a

No more solutions.
states: 10 rewrites: 12)



Model checking

Algorithm for determining if M |= P (M satisfies P)
where M is a " model' and " P’ is a property.

In our case a model is a Maude specification of a
system together with a state of interest.

A property is a * femporal logic' formula to be
interpreted as a property of computations of the
system (linear sequences of states generated by
application of rewrite rules).



Model checking

Temporal formulas are built from propositions about
states, using boolean connectives, and temporal
operators [] (always) and <> (eventually).

Satisfaction for M |= A is axiomatized by equations

M |= P if C |=P for every computation C of M

C |= A if the first state of C satisfies A

C |=[1Pif every suffix of C satisfies P

C |= <>P if some suffix of C satisfies P



Model checking: Defining properties

mod MC-VENDING-MACHINE is
inc VENDING-MACHINE . inc MODEL-CHECKER . inc NAT

op vm : Marking -> State [ctor]
op countPlace : Marking Place -> Nat
op value : Marking -> Nat . *** in units of quarters

ops fiveQ 1ltedQ : -> Prop
ops nCakes nApples wval : Nat -> Prop

eq vm(M) |= fiveQ = countPlace(M,q) == 5

eq vm(M) |= lted4Q = countPlace(M,q) <= 4 .
eq vm(M) |= nApples(n) = countPlace(M,a) ==
eq vm(M) |= val(n) = value(M) == n

endm



Model checking the vending machine T

Starting with 5 $s, can we get 6 apples without accumulating more
than 4 quarters? Model check the claim that we can't.

Maude>

red modelCheck(vm($ $ $ $ $),[]1~(1ted4Q U nApples(6)))
result ModelCheckResult: counterexample (

{vm ($
{vm ($
{vm ($
{vm ($
{vm ($
{vm ($
{vm ($
{vm(q

Q9 " »rnnn

P P Qg Q W
P QqgQQ W

$) , 'buy-a}

q a), 'buy-a}

q a a), 'buy-a}

q a a a), 'buy-a}

g a a a a), 'change}
a a), 'buy-a}

a aa), 'buy-a},

a a a a),deadlock})

A counterexample to a formula is a pair of transition lists
representing an infinite compuation which fails to satisfy the
formula. A transition is a state and a rule identifier. The second
list represents a loop.



Model checking the vending machine IT

Starting with 5 $s, can we get 5 quarters then 6 apples?

Maude>
red modelCheck(vm($ $ $ $ §),

[1~(<>fiveQ /\ (fiveQ |-> nApples(6)))
result ModelCheckResult: counterexample(...)

Is value conserved?

Maude> red modelCheck(vm($ $ $ $ $),[]1val(20)
result Bool: true



Extracting Paths from CounterExamples

A simple path from a given initial state SO, to a state
satisfying a property P is a list of rules together
with a state S1 satisfying P such that applying the
rules starting with SO leads to S1.

One way to find a simple path is to model check the
assertion that from SO no state can be reached
satisfying P: modelCheck(S0O, ~ <>P). If thereisa
reachable state satisfying P, a counterexample will
be returned. The counterexample contains the list
of rules applied.



Using findPath

The module sivere defines a function findratnh that
extracts a simple path from a counterexample and a
property.

mod FP-VENDING-MACHINE is
inc MC-VENDING-MACHINE .
inc SIMPLE .

endm

Maude> red findPath(vm($ $ $ $), nApples(5))
result SimplePath:
spath (‘buy-a ‘buy-a ‘buy-a ‘buy-a ‘change ‘buy-a,
vm(g a a a a a))



A Vending Machine Mall

To illustrate systems states with more structure,
consider a ~ Mall' which contains possibly multiple
vending machines, each vending a specific item.
In addition the Mall contains * Goods', items
purchased, and coins available to make purchases.

We add rules to put coins into machines and extract
items purchased. The orginial vending machine rules
are used to turn coins into items.



The Mall specification

mod VENDING-MALL is
inc VENDING-MACHINE
sorts Machine Goods Mall
subsort Machine Goods < Mall

op mt : -> Mall
op : Mall Mall -> Mall [ctor assoc comm id: mt]

op m : Item Marking -> Machine [ctor]
op g : Place -> Goods [ctor]

var M : Marking . var C : Coin . var I : Item .

rl [coin-in] : m(I, M) g(C) => m(I, M C)
rl [apple-out] : m(a, M a) => m(a, M) g(a)
rl [cake-out] : m(c, M c) => m(c, M) g(c)

endm



Shopping in the Mall

Consider an initial state with an two vending machines, one for
apples, one for cakes, and 4 $s.

Default shopping yields 2 apples.

Maude> rew m(a,null) m(c,null) g($) g($) g(S) g($)
result Mall: g(a) g(a) m(a, g g ¢ ¢c) m(c, null)

Can I get 4 apples and a cake?

Maude> search m(a,null) m(c,null) g($) g($) g($) g(s) =>!

X:Mall g(a) g(a) g(a) g(a) g(c)
No solution.

But I can get 4 apples and 4 quarters stuck in the machinel

search m(a,null) m(c,null) g($) g($) g($) g(9)
=>! m(a, g g qgq) X:Mall .

Solution 1 (state 725)

X:Mall --> g(a) g(a) g(a) g(a) m(c, null)



Reflection example: Module analysis

fmod CONSUMERS is
inc MY-META
var M : Module . var T : Term
var R : Rule . var RS : RuleSet

op consumes : Module Rule Term -> Bool
eq consumes (M,R,T) = *** assumes M defines ‘has
getTerm (metaReduce (M, 'has[getLhs (R) ,T] ))
== 'true.Bool

op consumerRules : Module Term -> QidSet
op consumerRules : Module RuleSet Term -> QidSet

eq consumerRules (M,T) =
consumerRules (M, upRls (getName (M) , true) ,T)
eq consumerRules (M,none,T) = none
eq consumerRules(M,R RS,T) =
(Lf consumes (M,R,T) then getRuleId(R) else none fi);
consumerRules (M,RS,T)
endfm



Reflection Example: Module analysis cntd.

mod VEND-X is
inc VENDING-MACHINE

vars MO M1 : Marking
op has : Marking Marking -> Bool

eq has(M0O M1, M1l) = true

eq has(M0O, M1l) = false [owise]
endm
select CONSUMERS

Maude> red consumerRules (['VEND-X],'$.Coin)
result: QidSet 'buy-a ; buy-c

Maude> red consumerRules (['VEND-X], 'q.Coin)
result: Qid 'change



Reflection example: Strategy

fmod METAREWRITE-LIST is
inc MY-META

var M : Module . vars T T': Term
var res : Resultd4Tuple?
var rid : Qid . var ql : QidList

op metaRewList : Module QidList Term -> Term
eq metaRewList(M,nil,T) = T
ceq metaRewlList(M,rid gql,T) = metaRewList(M,ql,T')

if res := metaXapply(M,T,rid,none,0,unbounded,k 0)
/\ T' := if res :: ResultdTuple

then getTerm(res)

else T fi

endfm



Reflection example: Strategy cntd.

Maude> red metaRewList (['VENDING-MACHINE],
'change 'buy-a,
' ['g.Coin,'q.Coin, 'q.Coin, 'q.Coin])

result GroundTerm: ' ['g.Coin,'a.Item]
Maude> red metaRewList (['VENDING-MACHINE],
'buy-a 'change,

' ['g.Coin,'q.Coin, 'q.Coin, 'q.Coin])

result Constant: 'S$.Coin



