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Immature and mature dendritic cells (DC) have been well characterized functionally and phe-
notypically. Microorganisms or bacterial products such as lipopolysaccharide (LPS) and
inflammatory molecules, including tumor necrosis factor (TNF-a), are both believed to acti-
vate the DC maturation program which allows DC to initiate and amplify innate and adaptive
immune responses. However, there is increasing evidence that the functional state of DC,
induced by different stimuli, may be relevant for the immune response outcome. Thus, we
compared the transcriptional program of mature, transitional and immature DC, after either
LPS or TNF-a stimulation. GeneChip® oligonucleotide microarrays, representing approxi-
mately 6,500 murine genes and ESTs, were used for this analysis. A very diverse modulation
of gene expression was observed with the two stimuli. Only LPS-treated cells showed a pat-
tern of expression of genes compatible with a definitive growth arrest and with a suitable

activation and control of the immune response.
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1 Introduction

Dendritic cells (DC) are professional antigen-presenting
cells (APC) able to initiate the innate and adaptive
immune responses [1, 2]. Immature DC are strategically
located in tissues that represent pathogen entry routes
(the skin and mucosal surfaces), where they continu-
ously monitor the environment through the uptake of par-
ticulate and soluble products. DC maturation is associ-
ated with reduced endocytic and phagocytic capacities,
enhanced production of inflammatory cytokines and
chemokines, and acquisition of migratory functions
allowing antigen-loaded DC to move from non-lymphoid
to lymphoid tissues or, within lymphoid tissues, to
migrate from the marginal zones to the T cell areas.
Migrated and mature DC have acquired high cell surface
major histocompatibility complex (MHC) and costimula-
tory protein expression, have the ability to activate CD8*
and CD4* T cell responses [3, 4], and are programmed
for apoptotic death [5]. However, beside their physiologi-
cal role, there are evidences that DC can also participate
in uncontrolled immune responses that have been asso-
ciated with diseases such as the development of chronic
inflammation [6]. It has been proposed that the functional
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state of DC, induced by different stimuli, may be relevant
for the immune response outcome [7].

The transcription profile, transcriptome, is a major deter-
minant of cellular phenotype and function [8]. Differences
in gene expression are indicative of morphological, phe-
notypical and functional changes induced in a cell by
environmental factors and perturbations. Microarrays
have been successfully applied to identify genes that
discriminate between Th1 and Th2 functions in humans
[9] and anergic and activated B cells in mice [10]. Micro-
array technology is, thus, a valid approach to investigate
possible differences induced in particular cell types by
diverse external factors. Concerning DC, a transcrip-
tional profile of immature and LPS-matured human
monocyte-derived DC has been carried out revealing
225 differentially expressed genes in the two situations
out of a total of 10,962 genes screened [11]. These
genes mainly consisted of chemokines (RANTES, ELC,
PARK, MDC and TARC) and chemokine receptors
(CCRY7), enzymes (such as germinal center kinase-
related protein kinase), IFN-inducible proteins, lipase A,
CD52, CD11b, CD23, and glucose 6 phosphatase. Nev-
ertheless a comparison between different stimuli in their
efficiency in inducing DC maturation has never been per-
formed. The most common stimuli used to activate DC
are TNF-a and LPS. Moreover TNF-a has been widely
used to generate in vitro bone marrow-derived DC. This
procedure is also followed to obtain large
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amounts of DC for cell-based therapies of cancer. Thus,
to evaluate the differences in DC response to LPS and
TNF-0 we performed a genome-wide transcriptional
analysis of activated DC and we compared it with the
expression analysis performed on immature DC. We
observed that LPS only was able to induce the transcrip-
tion of genes responsible for DC growth arrest and it was
much more effective than TNF-a in activating the expres-
sion of genes involved in antigen processing and T cell
stimulation. Moreover LPS- but not TNF-a-stimulated
DC expressed genes able to control the inflammation
during the immune response. The transcriptional pro-
gram analysis suggests that TNF-a is an ineffective stim-
ulus for terminal DC differentiation. The observation that
the expression of several genes found with the Gene-
Chip utilization corresponds to a number of functional
characteristics of DC validates the applicability of the oli-
gonucleotide microarray technology for monitoring gene
expression in mouse cells.

2 Results and discussion

2.1 Genomic-scale gene expression analysis

To investigate the differential effects of TNF-a versus
LPS on DC priming we have used the Affymetrix Gene-
Chip technology [12-15], that permits the simultaneous
analysis of the expression of thousands of genes. These
analyses require homogeneous cell populations to avoid
dilution and contamination of information. Bone marrow-
derived mouse DC are extremely unstable and it is not
possible to obtain homogeneous immature DC without
contamination with mature and intermediate DC. Cell
lines that closely parallel fresh DC functions are a valid
alternative. Thus we took advantage of the previously
described mouse DC line, D1 [5]. D1 cells are a splenic,
myeloid and growth factor-dependent DC line that can
be maintained indefinitely in culture in the immature
state. This cell line can be driven to full maturation using
different stimuli. In particular, D1 cells reach a mature
state 18 h after LPS or TNF-a stimulation, as assessed
by phenotypical (up-regulation of class Il and costimulat-
ory molecules) and functional characteristics, like anti-
gen presentation, inhibition of migration, block of antigen
uptake, cytoskeleton rearrangements [5, 16]. Gene ex-
pression analysis was performed on immature, transi-
tional (6 h LPS and TNF-a-activated) and mature (18 h
LPS- and TNF-a-activated) D1 cells using GeneChip oli-
gonucleotide probe arrays representing approximately
6,500 distinct mouse genes and ESTs. The 6,500 probe
sets are subdivided in four individual chips, A-D, each
containing oligonucleotide probes for about 1,600 genes
and ESTs. The hybridized arrays were analyzed using the
GeneChip Expression Analysis Program 3.3. Data analy-
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sis protocols, sensitivity and quantitative aspects of the
method have been previously precisely described [12]. In
brief, gene probes are represented by 20 perfectly
matched 20-mer oligonucleotides (PM) and 20 control
oligonucleotides with a single mismatch (MM). Gene
expression levels are defined averaging the differences
(AvgDiff) between the PM and MM of every probe pair
over the entire probe set:

= (PM-MM)

Avg Diff =
g n of pairs

An AvgDiff of 20 approximates the lower value of fluores-
cence intensity for detected genes. An absolute (individ-
ual) analysis of each probe array was performed to deter-
mine gene expression levels in each target cRNA ana-
lyzed. Signal intensities were then normalized among
hybridized arrays by measuring the average value of sig-
nal intensities for each chip-array and scaling to a fixed
arbitrary value (target intensity). We used a target inten-
sity of 100, calculated considering average values of sig-
nal intensities for mouse GeneChips. This particular pro-
cedure has been developed in order to minimize the vari-
ability of GeneChip performance and sample preparation
[17, 18]. Subsequently, probe arrays hybridized with
TNF-a- and LPS-activated D1 cell samples were com-
pared to the same baseline sample (non-stimulated cells)
to determine differences in expression levels between
treated and untreated cells. Among the genes and ESTs
displayed on the chip 25% were called present in non-
stimulated and 6 h and 18 h LPS- and TNF-a-activated
DC. Hybridization efficiency was assessed for each array
by measuring the signal intensities of the three control
bacteria BioB, BioC, BioD and one phage cre gene cRNA
(see Sect. 4). BioB “spikes” at 1.5 pM were usually
detected. Thus, under these hybridization conditions the
detection limit was around 1.5 pM.

Genes modulated in treated cells with respect to
untreated cells were divided into four main groups:
induced (not detected in non-activated but detected in
activated cells), up-regulated, down-regulated, sup-
pressed (detected in non-activated and not detected in
activated cells). For up-regulated and down-regulated
genes we have considered only those ones that showed
at least a twofold change in the level of mMRNA expres-
sion in two independent experiments (fold change =2;
Fig. 1). Differences in expression are calculated by divid-
ing the intensity values (AvgDiff) of genes from treated
cells by intensity values of genes from non-stimulated
cells. Since not-detected genes do not have reliable
intensity values, we could not use the fold change as a
parameter for the expression analysis of induced and
suppressed genes. Thus, the former were selected on
the basis of the level of expression reached after stimula-
tion (a minimum AvgDiff of 40 in two independent exper-
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Fig. 1. Known genes differentially expressed in LPS- and TNF-a-activated DC versus unstimulated cells. Genes were divided in
four groups (induced, suppressed, up-regulated, down-regulated) and represented by their GenBank accession numbers. Fold
change values are indicated for up-regulated and down-regulated genes. Intensity values before and after stimulation are shown
for suppressed and induced genes, respectively. Genes in white boxes are not modulated under the indicated conditions.

iments), and the latter on the basis of the level of expres-
sion they had in unstimulated cells (a minimum AvgDiff of
40, suppressed in two independent experiments) (Fig. 1).

Although LPS and TNF-a were considered equivalent
factors for DC maturation, D1 cells activated with these
two different stimuli showed a very diverse gene expres-
sion program (Fig. 1). In Table 1 we have listed an exam-
ple of the gene families differentially expressed or modu-
lated in mature DC compared to non-stimulated cells.

2.2 Genes involved in cell cycle control and
survival

Terminal differentiation results in the growth arrest of
proliferating cells. There are evidences that the cell cycle
control in immature, splenic, mouse DC is not stringently
regulated and small increase in cell number can be
observed when they are plated over an irradiated stromal
cell monolayer of fibroblasts and endothelial cells [19].
Mature DC completely loose the proliferation capacity
and die by apoptosis 8-9 days after activation. A very
similar differentiation process can also be induced in
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Table 1. Differential gene expression analysis in LPS- and TNF-a-stimulated versus unstimulated D1 cells

D' Gene LPS LPS TNFo TNFo
name 6 h 18 h 6h 18h

D' Gene LPS LPS TNFo TNFo
name 6 h 18 h 6h 18h

Cell surface and membrane proteins

L09754 CD30L NC NC 136* I42%
U12763 OX40L NC 170 NC NC
M83312 CD40 I 345% I201* NC T 4.3%
M34510 CD14 U 1L.6 U32 NC NC
Y08026 1AP38 S 73%x S T3 NC S 73%*
U10484 Jawl S 242** S 242%* NC D26
X93328 F4-80 D26 D24 NC NC
Z16078 CD53 D39 D73 D2 D23
X68273  Macrosialin D23 D21 NC NC
u47737 TSA1 D4l D99 NC NC
U18372 CD37 D338 D29 NC NC
V05265 g2p49 NC D49 D29 D37
LO8115 CD9 NC D43 D29 D24
X72910 HSA-C NC D55 D28 D25
U25633 T™MP S 165** S 165** NC D74

Cell cycle and apoptosis

D86344 TIS NC 1273* NC NC
L49433 c-IAP-1 I171* 168* NC 177*
L16846 BTG1 U3z2 U4 NC NC
M83749 cyclin D2 U3 U317 NC NC
U19860 GAS NC U228 NC NC
D50494 RCK U3 U222 NC NC
M64403 CYL-1 D24 D38 NC NC
U70210 TR2L NC NC D24 D35
U58633 p34CDC2 NC D55 D22 D32
X82786 Ki-67 NC D 6.4 NC D26
726580 cyclin A NC S 147** NC NC
X66032 cyclin B2 NC S 108** NC S 108**
X64713 cyclin Bl NC S 47*x NC S 47x*
D86725 mMCM2 NC S 125%* D27 NC
Z72000 BTG3 S 46%* S 46%* NC S 46%*

Antigen processing and presentation

U60329 PA28 U 32 U32 NC NC
X97042 UBcM4 U223 U226 U2 U226
M55637 TAP-1cas NC U238 NC NC
U35323 H-2Mp2 D 125 D 9.2 D22 D22
U35323 H-2Ma S 304%* S 304** NC NC
U35323 H-2MpB1 D69 S 149** NC NC
D83585  proteasome NC NC D25 D22
Z subunit
K01923 I-Aa D28 D35 NC NC
V01527 1-AB NC D 3.7 NC NC
Secreted molecules
J03783 IL-6 I 45% 178* NC NC
M86671 IL-12p40 1 820* I 759* NC NC
M64404 IL-1IRA U 13.4 U9 NC NC
X03505 serum NC I 256* NC 167
amyloid

M15131 IL-1B U 82 U 34.8 U74 U118
M73061 MIP-1ct U39 Us.s NC NC
X53798 MIP-2 U 20.2 us7 NC NC
V02298 RANTES U3.7 U28 [OK] U34
X58861 Clga S 628** S 628%** NC NC
X66295 ClqC D15 S 656%* D 3.7 D35
X16151 ETAl S 485%* S 485%* NC D79
M19681 JE D 5.9 S 348 D6 D 4.6
X06086 MEP D 2.6 D29 D2 S 126**
U50712 MCPS S 83w S 83+ S 83** S 83**
X83601 PTX3 D 3.8 S 211%* D 3.6 S 211%*
M22531 ClgB D 8.7 D 42.8 D24 D42
M58004 C10 D 3.1 D 6.5 D2.6 D52
L19932 Big-h3 NC D51 NC NC
X12905 properdin D 4.7 D 16.2 D22 NC

1, accession number; NC: no change in the level of expression; I: induced (detected only in stimulated cells); U: up-regulated; D:
down-regulated; S: suppressed (detected only in unstimulated cells), *AvgDiff reached after stimulation,
** AvgDiff in the baseline, values without asterisks represent the fold change in stimulated versus unstimulated cells.

immature D1 cells that undergo growth arrest and terminal
differentiation in vitro. An important difference between
LPS- and TNF-a-activated D1 cells resided in the com-
plexity of the pattern of genes involved in the control of
cell cycle progression (Table 1). Cyclins are usually
expressed during mitogenesis and they control cell prolif-
eration. Cyclins A and B are involved in the control of G1/
S and G2/M transition, respectively. LPS induced the sup-
pression of type A and B cyclins, including genes like
MCM2 [20], which allow the initiation of DNA replication.
In contrast, TNF-a-activated D1 cells, showed exclusive
suppression of cyclins necessary to pass the G2 phase
(cyclin B1, cyclin B2), suggesting that they can still initiate
DNA replication and that they could be arrested at a cell
cycle checkpoint between S and G2. D-type cyclins have
a different pattern of expression with respect to the other
type of cyclins. They are induced in many different cell
types by mitogens and are essential for G1 phase pro-
gression, but they have also been described to be indu-

ced by differentiation stimuli in megakariocytes facilitating
their differentiation process [21]. Moreover, cyclin D2 is
induced in macrophages following the anti-mitogenic
stimulus of LPS [22]. Interestingly, LPS but not TNF-a
induces the up-regulation of D type cyclins (Table1). In
addition, anti-proliferative genes, such as BTG1, GAS,
RCK were exclusively up-regulated in LPS-activated D1
cells (Table 1). This particular pattern of expression could
suggest that only LPS was able to induce a definitive DC
growth arrest. LPS-activated DC underwent irreversible
growth arrest already 24 h after stimulation [23], whereas
TNF-a-activated D1 cells showed only a strong prolifera-
tion slow down but not a definitive growth arrest (Fig. 2),
with a doubling time of 130 h. These results imply that
only LPS drives complete terminal differentiation of DC
and that TNF-a induces only partial DC activation.

As is consistent with the observation that LPS is able to
promote both DC maturation and survival [23] of termi-
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Fig. 2. LPS but not TNF-a induces definitive growth arrest of
DC. D1 cells were stimulated either with LPS or TNF-a for
the indicated time. The number of viable cells at the indi-
cated time points is expressed as percentage of seeded
cells. LPS, LPS-stimulated cells; TNF-a, TNF-a-stimulated
cells; NS, non-stimulated cells. Standard deviations of five
independent experiments are reported.

nally differentiated DC, LPS-activated D1 cells also
expressed anti-apoptotic genes, at late time points, such
as TIS (topoisomerase-inhibitor suppressed, [24]). More-
over, mRNA coding for the c-IAP-1 protein (required
together with TRAF-1 (up-regulated) and TRAF-2
(expressed) to inhibit TNF-a-induced apoptotic cell
death, [25]) was observed in both TNF-o- and LPS-
activated D1 cells.

2.3 Genes involved in antigen processing and
peptide loading on MHC molecules

The survival of growth-arrested DC after LPS stimulation
would be necessary to allow mature DC to migrate into
lymphoid tissues and prime naive CD8* and CD4" T cells.
To accomplish this task, DC should magnify their capac-
ity to produce peptides from native protein antigens to
be loaded on MHC class | and class Il molecules. Inter-
estingly, genes involved in the antigen presentation func-
tion showed a distinctive pattern of expression in LPS or
TNF-a-activated D1 cells. Only LPS up-regulated the
PA28 proteasome activator and the TAP-1 molecule
mRNA (Table 1). The PA28 protein dramatically increases
the spectrum of peptides produced and the efficiency of
the 20S proteasome, whereas the TAP-1 molecule is
required to transfer proteasome-produced peptides from
the cytosol to the endoplasmic reticulum [26]. The pro-
teasome activator was up-regulated already at 6 h after
LPS activation, while TAP-1 up-regulation was measur-
able only at late time points. This pattern of mRNA up-
regulation in D1 cells after LPS stimulation correlates
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well with the kinetic of MHC class | new biosynthesis in
D1 cells, which peaks at 18 h after bacteria [16] or LPS
stimulation. In addition, LPS is more efficient than TNF-a
in inducing the up-regulation of MHC class | molecules
and the stability of peptide-MHC complex expression at
the surface of DC can be extended from 24 to 72 h when
DC are pretreated with LPS but not TNF-a [27]. Thus,
LPS-stimulation induces a remarkable activation of the
entire intracellular apparatus necessary for class | anti-
gen presentation function. We did not observe any class
I mRNA up-regulation with the GeneChip analysis. In
fact, the class | oligonucleotide probes are specific for
the H-2D molecule and the surface class | up-regulation
observed in D1 cells, 18 h after challenge, was relative to
the H-2K protein (data not shown, [16]).

Concerning MHC class Il genes, we have previously
shown that the up-regulation of class Il protein synthesis
is very rapid, peaking as early as 1 h after DC activation
and this is followed by a striking down-regulation [16].
The GeneChip approach validated the previous analysis
of MHC protein expression during DC maturation, show-
ing that class Il molecule mRNA were down-regulated in
LPS-stimulated D1 cells. Class Il molecule mRNA are
also down-regulated in LPS-stimulated human DC [10].
Moreover, in agreement with the increased stability
observed in peptide-MHC class Il complexes in acti-
vated DC, the H-2M molecules, which regulate MHC
class Il loading with antigenic peptides, were either
down-regulated or suppressed and, again, the level of
down-regulation was more pronounced in LPS-treated
compared to TNF-a-stimulated D1 cells. The down-
regulation was already evident 6 h after LPS stimulation
(Table 1). This gene expression pattern implicates that
LPS is more effective than TNF-a in inducing the repro-
gramming of presentation activity typical for mature DC.
Taken as a whole, these data indicate that LPS but not
TNF-a is sufficient to drive DC toward a stage of matura-
tion appropriate for the immune response activation. Our
observations are also supported by the finding that TNF-
o-activated DC are, actually, rather inefficient in activat-
ing T cells in MLR assays in vitro and in conferring tumor
protection in mouse models in vivo [28]. This is also sup-
ported by the strong up-regulation of the mRNA coding
for the well known leukocyte chemo-attractants RAN-
TES, MIP10a and MIP2, in LPS-activated but not in TNF-
a-treated D1 cells (Table 1). A similar pattern of chemoki-
nes up-regulation at early and late time points after LPS
stimulation has been also observed using RNase protec-
tion and chemotactic assays [29]. Furthermore, LPS-but
not TNF-a-stimulated D1 cells expressed interleukin (IL)-
6 (Tablel and Fig. 3). This cytokine is known to be
involved in increasing the spectrum of peptides pre-
sented by DC [8], in leukocyte recruitment [30] and in
B cell differentiation [31].
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2.4 Gene involved in the control of inflammatory
responses

A physiological immune response originates from a well-
controlled inflammatory response. Genes involved in
activating and controlling the inflammation process are
differentially regulated in DC matured in the presence of
the two different stimuli (Table 1). In LPS-matured DC
and in much lesser extent in TNF-a-treated cells is
observed suppression or strong down-regulation of the
complement molecule C1q (Table 1). This protein is
known to play a role in inflammatory responses by
increasing phagocytic activity and microbial killing of
macrophages and neutrophils, by enhancing B cell
secretion of immunoglobulins and by inducing the
expression of adhesion molecules on platelets. In addi-
tion the C1g molecule has been described as being the
basis for fibroblast attachment and growth at sites of
chronic inflammation [32]. Recently a strong inflamma-
tory role in the central nervous system has been attrib-
uted to C1q [33]. Thus, the down-regulation of C1q tran-
scription at late time points may be a way of controlling
inflammatory processes.

Numerous in vivo studies indicate that the balance
between IL-1 and IL-1RA is important in influencing the
response to pathogens. A definite anti-inflammatory role
has, indeed, been attributed to the IL-1RA molecule that
has an important function in limiting organ damage sub-
sequent to the host response to infection [34]. In LPS-
matured D1 a strong up-regulation of IL-1f together with
IL-1 receptor antagonist (IL-1RA) mRNA expression is
observed, both at early and late time points. Whereas in
TNF-a-stimulated D1 cells only little IL-13 production
and not IL-1RA expression is observed (Table 1). Thus,
LPS-matured DC are likely to have an important role not
only in stimulating but also in controlling the inflamma-
tory response.

Another cytokine differentially expressed in LPS-
activated compared to TNF-a-treated D1 cells is IL-

IL-6 IL-12p40 IL-18
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Fig. 3. Cytokine production after LPS and TNF-a. treatment.
Supernatants of unstimulated, TNF-o- and LPS-treated DC
were collected 18 h after stimulation and tested by ELISA for
the presence of IL-6, IL-12p40 and IL-1(
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12p40 (Table 1, Fig. 3). The IL-12p40 homodimer is an
IL-12p75 antagonist in vitro [35] and it acts as a potent
immune-suppressant of Th1 response [36] in vivo. It has
been shown to induce a deviation of pancreas infiltrating
CD4* T cells to the Th2 phenotype in NOD mice as well
as to reduce the onset of spontaneous diabetes [37].

3 Concluding remarks

Together, the above data show clear differences in DC
activation induced by distinct stimuli. TNF-a comes out
as a mild alert stimulus unable to drive DC to terminal dif-
ferentiation. The relevance of the stimuli used to induce
DC maturation should be taken into account for DC-
based therapies, since it is likely that the quality of acti-
vation may affect the final outcome of the clinical
response.

Microarray approach allows quantitative and simulta-
neous analysis of gene expression of a large amount of
genes. Many cellular processes are regulated by
changes in mRNA levels. Thus systematic studies of
gene expression patterns have proven to be extremely
useful for studying cellular effects of natural stimuli and
to be a powerful tool to identify molecular events and key
pathways involved in specific cellular functions [34].

4 Materials and methods

4.1 Cells and reagents

The D1 cells were derived from murine splenic DC and main-
tained in vitro in IMDM supplemented with 30% R1 condi-
tional medium as described [5]. LPS (Escherichia coli sero-
type 026:B6) was purchased from Sigma Chemical Co. and
used at 10 ug/ml. Murine rTNF-a (Genetech Inc., San Fran-
cisco, CA) was used at 100 U/ml. Cells were grown and har-
vested at the same time.

4.2 RNA extraction, amplification and labeling for
hybridization

Antisense cRNA was prepared following Affymetrix (Santa
Clara, CA) recommendations. Briefly, mRNA was directly
extracted from frozen pellets using the Direct Oligotex kit
from Qiagen (Chatsworth, CA) and converted to double-
stranded cDNA using a modified oligo dT primer witha 5’ T7
RNA polymerase promoter sequence [12] and the Super-
script Choice System for cDNA synthesis (Life Technologies,
Gaithesbourg, MD). Double-stranded cDNA (0.5 ug) was
transcribed to cRNA with the T7 RNA polymerase (T7
Megascript kit; Ambion, Austin, TX) in the presence of a mix-
ture of unlabeled ATP, CTP, GTP, UTP and biotin-labeled CTP
and UTP (ENZO Diagnostics, Farmingdale, NY). cRNA was
purified on an affinity column (RNeasy; Qiagen).
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4.3 Probe array hybridization and scanning

The Mu6500 GeneChip array consists of a set of four indi-
vidual chips, A-D, collectively representing 6,500 murine
genes and ESTs. Analysis of the D1 samples was performed
by hybridizing the cRNA to the GeneChip arrays A-D. Probe
array hybridizations were carried out as described [13].
cRNA was fragmented to an average size of 50-200 bases,
by incubation for 30 min at 94 °C in 40 mM Tris-acetate pH
8.1, 100 mM potassium acetate and 30 mM magnesium
acetate. Samples were then diluted in the hybridization solu-
tion (1 M NaCl, 10 mM Tris pH7.6, 0.005% Triton X-100,
0.1 mg/ml herring sperm DNA, BioB-, BioC-, BioD-, cre-
control cRNA at a concentration of 1.5, 5, 25, 100 pM,
respectively) at a final concentration of 0.05 ug/ml heated at
94 °C for 5 min and placed in the hybridization cartridge
(200 ul/chip). Hybridizations were performed at 40°C for
16 h. Following hybridization the chips were rinsed with
6x SSPE-T (0.9 M NaCl, 60 mM NaH,PO,, 6 mM EDTA,
0.005% Triton X-100 adjusted to pH 7.6) and 0.5x SSPE-T
and stained by incubating with 2 ug/ml streptavidin-
phycoerythrin (Molecular Probes, Eugene, OR) and 1 mg/mi
acetylated BSA (Sigma, St. Louis, MO).

The arrays were read at a resolution of 7.5 um, using a con-
focal scanner (Affymetrix) and analyzed with the GeneChip
3.3 Gene Expression analysis program (Affymetrix).

Genes, that showed, in two independent experiments, a fold
change of at least 2 in stimulated cells over the baseline
were considered differentially expressed.

4.4 ELISA

IL-18, IL-12p40 and IL-6 were quantified using DuoSEt
ELISA Development System (R&D Systems, Minneapolis,
MN).
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