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INCE the pioneering work of Gowans and col-
leagues in the 1960s,

 

1,2

 

 much progress has been
made in understanding the pivotal role of cell

migration in immunity. We now have considerable
knowledge of the way in which specialized leuko-
cytes are channeled to distinct target tissues in im-
mune responses and inflammation (Fig. 1). This re-
view will concentrate on the migration of T cells,
which are at the heart of most adaptive immune re-
sponses.

Since T cells respond to pathogens only on direct
contact with pathogen-derived antigen, they must mi-
grate to sites where antigen is found. The T-cell re-
ceptor recognizes a peptide or lipid antigen bound to
a major histocompatibility complex (MHC) or CD1,
respectively, on the surface of another cell.

 

4,5

 

 How-
ever, antigens occur in countless shapes and forms;
theoretically, there are billions of ways to form an
octapeptide, the minimal length of peptide antigens
held in the MHC binding groove. Our immune sys-
tem copes with this diversity by generating a large
army of combat-ready T cells, each with a unique
T-cell receptor.

The repertoire of T cells that have never encoun-
tered antigen, referred to as naive T cells, in adults con-
sists of 25 million to 100 million distinct clones.

 

6,7

 

However, the number of cells whose T-cell receptors
recognize any individual antigen is very limited (sev-

S

 

eral thousand at most). This poses a dilemma, which
we can illustrate as follows. Visualize a balloon 150 m
in diameter (about twice the vertical length of the
Breitling Orbiter 3, which recently circumnavigated
the globe). Its volume relative to Earth’s roughly cor-
responds to that of a resting lymphocyte (approxi-
mately 125 femtoliters) in an adult (approximately
75 liters). Imagine now that a few thousand of these
balloons must detect within hours tiny structures that
arise suddenly anywhere within our planet and are
recognizable only by direct contact. Clearly, an intri-
cate guidance system must be at work to accomplish
this feat.

In this article we will address the following ques-
tions: What enables T cells to find a rare foreign anti-
gen rapidly in the body? How do some T cells proceed
to eliminate pathogens, whereas others find pathogen-
specific B cells, which need the help of T cells for ef-
ficient antibody responses? How do pathogens such
as human immunodeficiency virus type 1 (HIV-1) ex-
ploit or subvert this seek-and-destroy system? What
are the consequences of pathologically inefficient, ex-
cessive, or misguided migration of T cells? How can
we exploit this knowledge for therapeutic or diagnos-
tic purposes?

 

THE CAREER OF A T CELL

 

Initially, naive T cells must determine whether anti-
gen is present and whether it poses a threat to the
body. This information is provided by dendritic cells
in secondary lymphoid organs, which collect and trap
antigen produced elsewhere.

 

8

 

 Naive T cells migrate
preferentially to these lymphoid tissues, a process re-
ferred to as homing.

 

9

 

 An encounter with an antigen
induces the proliferation of T-cell clones, yielding ap-
proximately 1000 times more descendants with iden-
tical antigenic specificity. Eventually, these activated
lymphocytes acquire effector functions and home to
sites of inflammation, where they interact with anti-
gen-bearing parenchymal cells and leukocytes such
as eosinophils, mast cells, and basophils (in allergic
reactions induced by type 2 helper T [Th2] cells) or
macrophages and neutrophils (in inflammatory reac-
tions mediated by type 1 helper T [Th1] cells). Other
effector cells orchestrate humoral responses by con-
tacting activated B cells in lymphoid organs. Most ef-
fector cells die after antigen is cleared, but a few an-
tigen-experienced memory cells remain for long-term
protection. Different subgroups of memory cells stand
guard in lymphoid organs and patrol peripheral tis-
sues to mount rapid responses whenever the antigen
returns.

 

3
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Figure 1.

 

 Migratory Routes of T Cells.
Naive T cells home continuously from the blood to lymph nodes and other secondary lymphoid tissues. Homing to lymph nodes
occurs in high endothelial venules (HEV), which express molecules for the constitutive recruitment of lymphocytes. Lymph fluid
percolates through the lymph nodes; the fluid is channeled to them from peripheral tissues, where dendritic cells collect antigenic
material. In inflamed tissues, dendritic cells are mobilized to carry antigen to lymph nodes, where they stimulate antigen-specific
T cells. On stimulation, T cells proliferate by clonal expansion and differentiate into effector cells, which express receptors that
enable them to migrate to sites of inflammation. Although most effector cells are short-lived, a few antigen-experienced cells sur-
vive for a long time. These memory cells are subdivided into two populations on the basis of their migratory ability

 

3

 

: the so-called
effector memory cells migrate to peripheral tissues, whereas central memory cells express a repertoire of homing molecules similar
to that of naive T cells and migrate preferentially to lymphoid organs. The traffic signals that direct effector and memory cells to
peripheral tissues are organ-specific (for example, molecules required for migration to the skin differ from those in the gut). They
are modulated by inflammatory mediators, and they are distinct for different subgroups of T cells (for example, type 1 and type 2
helper T cells respond to different chemoattractants).
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MICROVASCULAR DETERMINANTS 

OF T-CELL RECRUITMENT

 

Specialized microvessels control the migration of
T cells from blood into tissues. In most microvascu-
lar beds (except the spleen, lungs, and liver), post-
capillary venules, but not arterioles or capillaries, in-
teract efficiently with leukocytes, thus minimizing the
effects of leukocyte adhesion on gas exchange in cap-
illaries and on tissue perfusion, which is regulated by
the arteriolar diameter.

 

10

 

 Intravascular leukocytes are
subjected to extreme physical conditions. Flowing

blood quickly dislodges cells that touch the vessel wall,
because it exerts a shear stress of up to approximately
50 dyn per square centimeter. As an example, the jet
d’eau fountain in Lake Geneva spouts 500 liters of
water per second with a mean velocity of 200 km per
hour, reaching a height of 140 m. Assuming that a
cross-section of the water column is circular, the wall
shear stress at the nozzle equals approximately 41.5
dyn per square centimeter.

Such extreme fluid dynamics require T cells to use
adhesion receptors, which form stable bonds with
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Selectins

 

All selectins are constitutively active

L-selectin (CD62L) All leukocytes except effector and memory 
subgroups

Rapidly shed on activation

E-selectin (CD62E) Endothelial cells Expression induced by TNF-

 

a

 

, interleukin-
1, and endotoxin

P-selectin (CD26P) Endothelial cells, platelets Stored intracellularly in resting cells; rapid 
surface translocation on activation by his-
tamine, thrombin, or superoxide

 

Selectin ligands

 

Most relevant selectin ligands are sialylated, 

 

a

 

1,3-fucosylated O-glycans

Sialyl-Lewis

 

X

 

 (sCD15) Myeloid cells, some memory (Th1) cells, 
high endothelial venules, other types of 
cells

Expression in leukocytes depends on fuco-
syltransferase-VII

P-selectin glycoprotein ligand 1 All leukocytes Glycosylation or tyrosine sulfation or both 
are essential for selectin binding

Peripheral-node addressin High endothelial cells in lymph nodes and 
sites of chronic inflammation

Sulfated, sialyl-Lewis

 

X

 

–like sugar that is pre-
sented by 4 endothelial sialomucins: 
CD34, podocalixin, GlyCAM-1, and 
sgp200

Cutaneous lymphocyte antigen Skin-homing T cells, dendritic cells, gran-
ulocytes, skin-tropic lymphomas

Unique glycoform of P-selectin glycoprotein 
ligand 1 on skin-homing memory T cells

b

 

2

 

 Integrins

 

High-affinity binding is activation-
dependent

 

a

 

L

 

b

 

2

 

 (LFA-1, CD11aCD18) All leukocytes Enhanced expression on effector and mem-
ory cells

 

a

 

M

 

b

 

2

 

 (Mac-1, CD11bCD18) Myeloid cells, some activated T cells Rapid up-regulation on activated myeloid 
cells

 

a

 

X

 

b

 

2

 

 (p150,95, CD11cCD18) Dendritic cells Constitutive expression

 

a

 

D

 

b

 

2

 

 (CD11dCD18) Monocytes, macrophages, eosinophils High levels of expression on foam cells in 
intimal plaques

 

a

 

4

 

 Integrins

 

Function is regulated by activation signals

 

a

 

4

 

b

 

1

 

 (VLA-4) Most leukocytes except neutrophils Enhanced expression on effector and mem-
ory cells

 

a

 

4

 

b

 

7

 

Lymphocytes, natural killer cells, mast 
cells, basophils, monocytes

Enhanced expression on gut-homing effec-
tor and memory cells

 

Immunoglobulin superfamily

 

ICAM-1 (CD54) Most types of cells Up-regulated by lipopolysaccharide and in-
flammatory cytokines

ICAM-2 (CD102) Endothelial cells, platelets Constitutive expression; no change in level 
of expression during inflammation

VCAM-1 (CD106) Endothelial cells, bone marrow stroma, 
follicular dendritic cells, osteoblasts, 
mesothelium

Absent on most resting endothelial cells; in-
duced by cytokines

Mucosal addressin-cell adhe-
sion molecule 1

High endothelial venules in gut-associated 
lymphoid tissues and sites of chronic in-
flammation, lamina propria, spleen

Constitutive expression in high endothelial 
venules; induced in insulitis, thymic hy-
perplasia, some forms of arthritis
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counterreceptors in the vascular wall (Table 1).

 

11,12

 

Not only are adhesion receptors mechanical anchors,
but also many function as tissue-specific recognition
molecules. For example, the specialized endothelial
cells that line the high endothelial venules in lymph
nodes and Peyer’s patches constitutively express so-
called addressins, which support the homing of naive
lymphocytes, whereas endothelial cells elsewhere per-
mit little or no leukocyte binding unless they are ex-
posed to inflammatory mediators. Thus, we distin-
guish two venular beds: those in lymphoid organs that

recruit lymphocytes as a daily routine, and those that
solicit the entry of leukocytes only when faced with
danger signals.

 

ADHESION MOLECULES

 

Leukocytes must engage several sequential adhe-
sion pathways to leave the circulation (Fig. 2). Ini-
tially, tethers are formed by adhesion receptors that
are specialized to engage rapidly and with high ten-
sile strength. The most important initiators of adhe-
sion are the three selectins expressed on leukocytes

 

*Integrins are named according to the composition of their constituent 

 

a

 

 and 

 

b

 

 protein chains, which are each identified by a
number or letter (e.g., 

 

a

 

4

 

b

 

1

 

 and 

 

a

 

D

 

b

 

2

 

). Some integrins are frequently referred to by alternative names such as leukocyte function–
associated antigen 1 (LFA-1) in the case of 

 

a

 

L

 

b

 

2

 

 integrin; the alternative names are given in parentheses. TNF-

 

a

 

 denotes tumor
necrosis factor 

 

a

 

, ESL-1 E-selectin ligand-1, Th1 type 1 helper T cells, GlyCAM-1 glycosylation-dependent cell-adhesion molecule
1, sgp200 sialylated glycoprotein of 200 kd, Mac-1 macrophage antigen 1, p150,95 protein with 150-kd and 95-kd subunits,
ICAM intercellular adhesion molecule, VCAM-1 vascular-cell adhesion molecule 1, and VLA-4 very late antigen-4.
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Selectins

 

All selectins bind sialyl-Lewis

 

X

 

–like sugars

L-selectin (CD62L) Peripheral-node addressin, P-selectin glyco-
protein ligand 1, mucosal addressin-cell ad-
hesion molecule type 1, E-selectin, others

Homing to lymph nodes and Peyer’s 
patches

E-selectin (CD62E) P-selectin glycoprotein ligand 1, ESL-1, cuta-
neous lymphocyte antigen, sialyl-Lewis

 

X

 

, 
glycoproteins and gycolipids

Homing of memory and effector cells to 
skin and sites of inflammation

P-selectin (CD26P) P-selectin glycoprotein ligand 1, CD24, 
peripheral-node addressin

Homing of memory or effector (Th1) 
cells to sites of inflammation; platelet-
mediated interaction with venules that 
express peripheral-node addressin

 

Selectin ligands

 

Sialyl-Lewis

 

X

 

 (sCD15) All selectins Function depends on presentation mole-
cule

P-selectin glycoprotein ligand 1 Essential ligand for P-selectin; also binds 
L- and E-selectin

Homing of memory and effector (Th1) 
cells to inflamed tissue; binding to ac-
tivated platelets

Peripheral-node addressin L-selectin and P-selectin on activated platelets Homing of naive T cells and central 
memory cells to lymph nodes

Cutaneous lymphocyte antigen E-selectin Homing of memory and effector cells to 
inflamed skin

b

 

2

 

 Integrins

 

a

 

L

 

b

 

2

 

 (LFA-1, CD11aCD18) ICAM-1, 2, 3, 4 and 5 Homing of all lymphocytes to lymph 
nodes, Peyer’s patches, and most sites 
of inflammation; adhesion to antigen-
presenting cells

 

a

 

M

 

b

 

2

 

 (Mac-1, CD11bCD18) ICAM-1, factor X, fibrinogen, C3b

 

i

 

Unknown

 

a

 

X

 

b

 

2

 

 (p150,95, CD11cCD18) Fibrinogen, C3b

 

i

 

Unknown

 

a

 

D

 

b

 

2

 

 (CD11dCD18) VCAM-1, ICAM-1 and 3 Unknown

 

a

 

4

 

 Integrins

 

a

 

4

 

b

 

1

 

 (VLA-4) VCAM-1, fibronectin, 

 

a

 

4

 

 integrin Homing of memory and effector cells to 
inflamed tissues, especially lung

 

a

 

4

 

b

 

7

 

Mucosal addressin-cell adhesion molecule 1, 
fibronectin, weak binding to VCAM-1

Homing of all lymphocytes to gut and 
associated lymphoid tissues

 

Immunoglobulin superfamily

 

ICAM-1 (CD54)

 

a

 

L

 

b

 

2

 

 integrin, 

 

a

 

M

 

b

 

2

 

 integrin, fibrinogen Critical endothelial ligand for 

 

b

 

2

 

 inte-
grins

ICAM-2 (CD102)

 

a

 

L

 

b

 

2

 

 integrin Unknown
VCAM-1 (CD106)

 

a

 

4

 

b

 

1

 

, 

 

a

 

4b7, and aDb2 integrin Homing of memory and effector cells to 
inflamed tissue

Mucosal addressin-cell adhe-
sion molecule 1

a4b7 integrin, L-selectin Homing of all lymphocytes to gut and 
associated lymphoid tissues
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(L-selectin), endothelial cells (P- and E-selectin), and
activated platelets (P-selectin).14 All selectins bind ol-
igosaccharides related to sialyl-LewisX. The most rel-
evant selectin-binding sugars are components of sia-
lomucin-like glycoproteins.15

Selectin-mediated bonds are too impermanent to
arrest cells at the vessel wall. As the flowing blood ex-
erts pressure, adhesion bonds dissociate at the cell’s
upstream end and new bonds form downstream. This
results in a rolling motion that is much slower than
that of free-flowing cells. To stop rolling, cells must
engage additional (secondary) receptors.16,17 All sec-
ondary adhesion molecules belong to the integrin
family, specifically leukocyte function–associated an-
tigen type 1 ([LFA-1], also referred to as CD11aCD18
and aLb2 integrin) and the two a4 integrins, a4b1

(also referred to as very late antigen 4, or VLA-4)
and a4b7. The a4 integrins can also mediate tethering
and rolling, albeit less efficiently than selectins.18,19

CHEMOKINES

Whereas selectins are constitutively active, inte-
grins must be activated to mediate adhesion. Rolling
T cells activate integrins when they receive signals
from chemokines on endothelial surfaces.20,21 Che-
mokines are secreted polypeptides that bind to spe-
cific surface receptors, which transmit signals through
G proteins (Table 2). Like adhesion molecules, che-
mokine receptors can be up-regulated or lost as cells
differentiate, allowing leukocytes to coordinate their
migratory routes with their immunologic function. 

Some chemokines trigger intravascular adhesion,23

whereas others direct the migration of leukocytes into
and within the extravascular space. After a cell secretes

them, chemokines bind to heparin-like glycosamino-
glycans on cell surfaces and in the extracellular ma-
trix; leukocytes can track down these immobilized
chemokines (a process called haptotaxis), which may
persist at high concentrations in tissues longer than
do freely diffusible chemoattractants. Since lympho-
cytes must be positioned correctly to interact with
other cells, the pattern of chemokine receptors and
the type and distribution of chemokines in tissues
critically influence immune responses.20,21,24,25

More than 50 chemokines and 18 chemokine re-
ceptors have been identified.20,22 Such a large number
may be needed to ensure recruitment of inflamma-
tory cells even if individual pathways are disabled by
genetic defects or pathogens.26 Also, the large num-
ber of chemokines may direct different types of cells
to the anatomically distinct microenvironments that
they need to function properly. For example, neutro-
phils sequentially use different chemoattractant recep-
tors to follow various chemotactic gradients, a proc-
ess termed “multistep navigation.”27

Chemokines are divided into four subfamilies on
the basis of the position of a pair of cysteine residues.
In the CXC (a chemokine) subfamily, two cysteines
(C) are separated by another amino acid (X). The
various subtypes of their receptors are referred to by
a number (e.g., CXCR1 and CXCR2). The second
subfamily is the CC (b) chemokines, which have two
adjacent cysteines and receptors called CCRs. Each
of the other two subfamilies, CX3C and XC, has a
single receptor (CX3CR1 and XCR1, respectively).

Many of the chemokines were identified simulta-
neously by several groups and thus have been given
up to four different names. A more systematic clas-

Figure 2 (facing page). Essential Molecular Players in the Multistep Adhesion Cascade.
The four distinct steps in adhesion that leukocytes must undergo to accumulate in a blood vessel are shown at the top of the dia-
gram. Also shown are the predominant molecular determinants of each step with respect to leukocytes (middle of the diagram)
and endothelial cells (bottom of the diagram). The arrows in the middle portion indicate the various interactions possible between
molecules.
Leukocytes in the bloodstream (the graduated set of arrows at the top of the diagram symbolize the laminar flow profile in blood
vessels, where the velocity of blood is fastest in the center and approaches zero at the vessel wall) become tethered to endothelial
cells and roll slowly downstream. Tethering is greatly facilitated by leukocyte receptors that occur at high density on the tips of
microvillous surface protrusions (L-selectin, P-selectin glycoprotein ligand 1 [PSGL-1], and a4 integrins), wheras subsequent rolling
is not influenced by the topography of adhesion receptors.13 The most efficient tethering molecules are L-selectin and P-selectin.
L-selectin recognizes sulfated sialyl-LewisX (sLeX)–like sugars, called peripheral-node addressin (PNAd), in high endothelial venules.
L-selectin also interacts with other ligands on inflamed endothelial cells (not shown) and with PSGL-1 on adherent leukocytes (in-
dicated by the dashed arrow). The binding of PSGL-1 to L-selectin and P-selectin requires an sLeX-like sugar to be close to an N-ter-
minal motif containing three tyrosines (Y) that must be sulfated. E-selectin can also interact with PSGL-1, but it does not require
tyrosine sulfation. E-selectin also recognizes other sLeX-bearing glycoconjugates. E-selectin and the a4 integrins can tether some
leukocytes, but their predominant function is to reduce the velocity of rolling.
Rolling leukocytes respond to chemoattractants on endothelial cells because they express specific receptors with seven transmem-
brane domains (7 TMR), which transmit intracellular signals through G proteins. The most prominent chemoattractants that bind
to 7 TMR are listed in the figure; some of these molecules, such as chemokines, are presented on the endothelial surface; others
are secreted or diffuse freely into the vessel lumen. The activating signal induces rapid activation of b2 integrins, a4 integrins, or
both, which bind to members of the endothelial immunoglobulin superfamily. The a4 integrins can mediate activation-independent
rolling interactions as well as arrest rolling leukocytes. However, the latter function requires the activation of a4 integrins (illustrated
by the more open conformation of the integrin heterodimer, as compared with that of a4 integrins that mediate rolling). C5a denotes
activated C5, PAF platelet-activating factor, LTB4 leukotriene B4, MAdCAM-1 mucosal addressin-cell adhesion molecule type 1,
VCAM-1 vascular-cell adhesion molecule 1, ICAM-1 intercellular adhesion molecule 1, and ICAM-2 intercellular adhesion molecule 2.
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sification was recently proposed in which chemokines
are designated according to their subfamily, followed
by the letter L (for ligand) and a number correspond-
ing to that of their respective gene.22

Chemokines are also classified as inflammatory or
lymphoid. Inflammatory chemokines primarily attract
neutrophils, monocytes, and other innate immune
cells. Their major sources are activated endothelial
cells, epithelial cells, and leukocytes, but virtually
any cell can generate chemokines when stimulated
by lipopolysaccharides (endotoxin) or inflammatory
cytokines. Lymphoid chemokines are primarily pro-

duced in lymphoid tissues. They maintain the con-
stitutive activity and compartmentalization of leuko-
cytes in these organs.20,21,28

MULTISTEP ADHESION CASCADES

As we have seen, homing of leukocytes involves at
least three consecutive steps: tethering and rolling me-
diated by primary adhesion molecules, exposure to a
chemotactic stimulus provided by chemokines and
G-protein–coupled receptors, and arrest mediated by
activated integrins. Each of these steps is necessary
for lymphocytes to enter lymphoid tissues (except the
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*CCR denotes receptor for CC chemokine, CXCR receptor for CXC chemokine, SLC secondary lymphoid-tissue che-
mokine, TCA-4 thymus-derived chemotactic agent 4, ELC Epstein–Barr virus–induced gene 1 ligand chemokine, MIP
macrophage inflammatory protein, SDF-1a stroma-derived factor 1a, TARC thymus- and activation-regulated chemokine,
MDC-1 macrophage-derived chemokine 1, TECK thymus-expressed chemokine, MCP monocyte chemotactic protein,
RANTES regulated on activation normal T cell expressed and secreted, Th1 type 1 helper T cells, Th2 type 2 helper
T cells, IP-10 inducible protein of 10 kd, Mig monokine induced by interferon-g, I-TAC interferon-inducible T cell alpha
chemoattractant, HCC human CC chemokine, BLC B-lymphocyte chemoattractant, BCA-1 B-cell–attracting chemokine
1, LARC liver- and activation-regulated chemokine, MPIF-1 myeloid progenitor inhibitory factor 1, GCP-2 granulocyte
chemotactic protein 2, Gro growth-related activity, Nap-2 neutrophil-activating protein 2, ENA-78 epithelial-cell–derived
neutrophil attractant 78, SCM-1b single C motif 1b, GPR-2 G-protein–coupled receptor 2, CTACK cutaneous T cell–
attracting chemokine, and ILC interleukin-11 receptor alpha-locus chemokine.

†The physiologic relevance of several chemokine receptors varies. For instance, CCR9 functions in the homing of pro-
thymocytes to the thymus and in the migration of T cells to the gut. CXCR4 is widely expressed and appears to have
multiple roles.

‡The most common names that are currently in use for human chemokines are given here, with frequently used alter-
native names shown in parentheses. Recently, a more systematic classification for chemokines has been proposed that is
based on the nomenclature for the corresponding chemokine genes.22

TABLE 2. ROLE OF CHEMOKINE RECEPTORS AND THEIR LIGANDS IN THE MIGRATION OF T CELLS.*

BIOLOGIC ACTIVITY†
CHEMOKINE

RECEPTORS PREDOMINANT CHEMOKINE AGONISTS‡

Migration of naive T cells to lymph nodes 
and Peyer’s patches

Migration of naive T cells within 
lymphoid tissues

CCR7

CXCR4

SLC (also called TCA-4, 6C-kine, exodus-2), 
ELC (also called MIP-3b)

SDF-1a

Migration of memory T cells to 
lymphoid tissues

Migration of memory T cells to the skin
Migration of memory T cells to the gut
Migration of memory T cells to 

sites of inflammation

CCR7

CCR4
CCR9
CCR2
CCR5

SLC (also called TCA-4, 6C-kine, exodus-2), 
ELC (also called MIP-3b)

TARC, MDC-1
TECK
MCP-1, 3, and 4
RANTES, MIP-1a and 1b

Migration of effector T cells (Th1)

Migration of effector T cells (Th2)

CCR2
CCR5
CXCR3
CCR3
CCR4
CCR8
CXCR4

MCP-1, 3, and 4
RANTES, MIP-1a and 1b

1P-10, Mig, I-TAC
Eotaxin-1, 2, and 3; RANTES; MCP-2, 3, and 4; HCC-2
TARC, MDC-1
I-309
SDF-1a

Migration of B cells CCR7

CXCR4
CXCR5

SLC (also called TCA-4, 6C-kine, exodus-2), 
ELC (also called MIP-3b)

SDF-1a

BLC (also called BCA-1)

Migration of dendritic cells to 
lymphoid tissues

Migration of dendritic cells to normal skin
Migration of dendritic cells to 

sites of inflammation

CCR7

CCR6
CCR1
CCR2
CCR5
CXCR1

SLC (also called TCA-4, 6C-kine, exodus-2), 
ELC (also called MIP-3b)

MIP-3a (also called LARC, exodus-1)
RANTES; MIP-1a; MCP-3; HCC-1, 2, and 4; MPIF-1
MCP-1, 3, and 4
RANTES, MIP-1a and 1b

Interleukin-8, GCP-2

Recruitment of monocytes CCR1
CCR2
CCR5
CCR8
CXCR1
CX3CR1

RANTES; MIP-1a; MCP-3; HCC-1, 2, and 4; MPIF-1
MCP-1, 3, and 4
RANTES, MIP-1a and 1b

I-309
Interleukin-8, GCP-2
Fraktalkine (also called neurotactin)

Recruitment of neutrophils CXCR1
CXCR2

Interleukin-8, GCP-2
Interleukin-8, Groa, b, and g; Nap-2; GCP-2; ENA-78

Recruitment of eosinophils CCR3 Eotaxin-1, 2 and 3; RANTES; MCP-2, 3, and 4; HCC-2

Migration of hematopoietic progenitor 
cells and B-cell development

CXCR4 SDF-1a

Function unknown XCR1
CCX CKR

GPR-2
D6

Lymphotactin, SCM-1b

SLC (also called TCA-4, 6C-kine, exodus-2), 
ELC (also called MIP-3b), TECK

CTACK (also called ILC)
Multiple CC chemokines

Downloaded from www.nejm.org at Stanford University on January 07, 2004.
Copyright © 2000 Massachusetts Medical Society. All rights reserved.



ADVANCES IN IMMUNOLOGY

Volume 343 Number 14 · 1027

spleen) and for the accumulation of leukocytes at
sites of inflammation.29-39 In leukocyte adhesion de-
ficiency syndrome, a genetic defect either in b2 inte-
grins (type 1) or in fucosylated selectin ligands (type
2), neutrophils cannot stop or roll, respectively; this
syndrome is characterized by marked leukocytosis and
frequent soft-tissue infections.40,41 The pronounced
lymphocytosis in patients with Bordetella pertussis in-
fection42 is probably caused by pertussis toxin, which
inactivates the signaling of G proteins and blocks che-
mokine-mediated activation of integrins. Hence, lym-
phocytes cannot stop rolling, and they remain in the
circulation.43,44

The large number of leukocyte-adhesion recep-
tors, endothelial counterreceptors, chemokines, and
chemokine receptors means that there are hundreds
of possible three-step combinations. These have been
likened to the area codes in U.S. telephone num-
bers.11,45 Indeed, several multistep combinations oc-
cur only in specialized tissues, where only a distinct
subgroup of blood-borne cells can participate in
every step.9,11,38,39,46 Endothelial adhesion molecules
with a dominant role in tissue-specific migration are
often called “vascular addressins”; their counter-
receptors on lymphocytes are called “homing recep-
tors.”9,11

HOMING OF NAIVE T CELLS 

TO LYMPHOID TISSUES

The best understood adhesion cascades mediate
homing of naive T cells to lymph nodes and Peyer’s
patches.38,39,44,47 Circulating lymphocytes gain access to
both organs in specialized high endothelial venules.2,48

A characteristic feature of high endothelial venules
in lymph nodes is the peripheral-node addressin,
whereas high endothelial venules in Peyer’s patches
express mucosal addressin-cell adhesion molecule 1
(Fig. 3). L-selectin binds both these addressins, but
it maintains rolling only on peripheral-node addressin
in lymph nodes, whereas in Peyer’s patches, binding
of a4b7 integrin to mucosal addressin-cell adhesion
molecule 1 is also required.44,47 Cells expressing high
levels of a4b7 integrin (such as gut-homing effector
cells) attach directly to mucosal addressin-cell adhe-
sion molecule 1, whereas naive T cells first engage
L-selectin.47,51

Some high endothelial venules in mesenteric lymph
nodes express only peripheral-node addressin or mu-
cosal addressin-cell adhesion molecule 1, whereas oth-
ers express both addressins. These tissue-specific dif-
ferences explain why a genetic deficiency in L-selectin
or fucosyltransferase VII (an enzyme required for the
synthesis of selectin ligands, including peripheral-node
addressin) severely impairs the homing of lympho-
cytes to peripheral lymph nodes, whereas it has only
a moderate effect on homing to mesenteric lymph
nodes and little effect on homing to Peyer’s patch-
es.32,52 Conversely, loss of b7 integrins abrogates hom-

ing to Peyer’s patches and attenuates homing to mes-
enteric lymph nodes but does not affect migration to
peripheral lymph nodes.34

The spleen lacks high endothelial venules, and no
adhesion pathway appears to be essential for homing
to that organ. However, chemokines are needed for
lymphocytes and dendritic cells to navigate within
the spleen; genetic defects in the chemokine receptor
CXCR5 or CCR7 severely disrupt the normal splen-
ic architecture.37,53

MIGRATION OF DENDRITIC CELLS

Homing to any lymphoid organs remains inconse-
quential unless lymphocytes encounter antigen in the
appropriate context. Dendritic cells are critical in this
regard.8 Subgroups of monocytes are thought to home
to tissues and differentiate into so-called immature
dendritic cells. Both types of cells express receptors
for inflammatory chemokines and other chemoattract-
ants that are released during infections. This ability
enables them to enter and migrate through inflamed
tissues.54,55 A subgroup of dendritic cells in skin, the
Langerhans’ cells, also express CCR6, which may
promote their migration to normal skin, where there
is a CCR6 agonist called macrophage inflammatory
protein 3a.56

Immature dendritic cells patrol tissues and engulf
microorganisms, dead cells, and cellular debris. On
exposure to inflammatory stimuli, they travel to local
lymph nodes through afferent lymph vessels, under-
go further maturation, lose their receptors for in-
flammatory chemokines, and up-regulate the expres-
sion of receptors for lymphoid chemokines.57 These
changes allow maturing dendritic cells to find their
way to the T-cell area of lymph nodes. While in trans-
it, dendritic cells also ready their apparatus for anti-
gen presentation and begin to produce chemokines
that make them attractive to T cells awaiting their
arrival in lymph nodes.

ACTIVATION OF T CELLS AND 

COOPERATION BETWEEN T CELLS

AND B CELLS

Antigenic stimulation in lymph nodes causes anti-
gen-primed T and B cells to move in a synchronous
fashion toward each other, meeting at the edges of
B-cell follicles.58 These movements are orchestrated
by dynamic changes in the expression of chemokine
receptors. When CD4+ T cells are stimulated by an-
tigen, they up-regulate the expression of two recep-
tors (CXCR5 and CCR4) for chemokines produced
in B-cell follicles; Th2 cells lose the ability to express
CCR7 because chemokines that stimulate this recep-
tor might otherwise keep them in the T-cell area.
Conversely, antigen-stimulated B cells become respon-
sive to macrophage inflammatory protein 3b, which
drives them toward the T-cell area.21,28,59
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Figure 3 (facing page). Homing Cascades That Direct Naive T Cells to Lymph Nodes (Panel A) and Peyer’s Patches (Panel B).
In Panel A, the tethering and rolling of lymphocytes in high endothelial venules of lymph nodes are mediated by the binding of
L-selectin to peripheral-node addressin (PNAd), a group of endothelial sialomucins — CD34, podocalixin, glycosylation-dependent
cell-adhesion molecule 1 (GlyCAM-1), and sialylated glycoprotein of 200 kd (sgp200) — all of which include a sulfated sialyl-LewisX

(sLeX)–like motif. High endothelial venules synthesize a large amount of secondary lymphoid-tissue chemokine (SLC), which is pre-
sented on the luminal surface, presumably as a result of noncovalent binding to a glycosaminoglycan (GAG).38,49 Exposure of che-
mokine receptor 7 (CCR7) on rolling T cells to secondary lymphoid-tissue chemokine precipitates a signaling cascade that is initi-
ated by the dissociation of heterotrimeric G proteins (ai, b, and g). Activation-induced release of the ai subunit of the G protein
enables the b–g complex to initiate biochemical events that activate the b2 integrin aLb2.44 Activated aLb2 integrin binds with high
affinity to intercellular adhesion molecule 1 (ICAM-1) and intercellular adhesion molecule 2 (ICAM-2), thus stopping the cell from
rolling.
In Panel B, L-selectin is also responsible for most tethering events in Peyer’s patches. High endothelial venules in these organs
express mucosal addressin-cell adhesion molecule 1 (MAdCAM-1), which possesses two distal immunoglobulin domains and a
membrane-proximal mucin domain that contains a binding site for L-selectin.50 Once the T cell is tethered, a4b7 integrin must in-
teract with mucosal addressin-cell adhesion molecule 1 in order to initiate efficient rolling.47 Analogous to peripheral lymph nodes,
chemotactic stimulation of rolling T cells in Peyer’s patches relies on the pathway involving CC chemokine receptor 7,39 which ac-
tivates a4b7 integrin and aL b2 integrin. aL b2 Integrin must be activated for naive T cells to home to Peyer’s patches, whereas gut-
homing lymphoblasts or effector cells, which express large numbers of a4b7 integrin on their surface, can home to venules with
high levels of expression of mucosal addressin-cell adhesion molecule 1 (such as inflamed gut) without contributions from other
adhesion pathways.47 Homing of B cells in high endothelial venules of lymph nodes and Peyer’s patches involves the same adhesion
molecules but requires an unknown chemoattractant that is distinct from secondary lymphoid-tissue chemokine.

MIGRATION OF EFFECTOR T CELLS

During primary responses, T cells differentiate in-
to effector cells in lymphoid organs (Fig. 1). They
must immediately home to peripheral tissues that con-
tain pathogens, which elicit local inflammation by
stimulating innate immune cells. Thus, effector cells
up-regulate the expression of receptors for inflam-
mation-induced endothelial adhesion molecules and
inflammatory chemokines.9 However, different patho-
gens elicit different effector responses mediated by
either Th1 or Th2 cells. Since these two subgroups
can suppress each other, they may require physical
separation for maximal responses. Indeed, Th1 and
Th2 cells express distinct receptors and obey differ-
ent traffic signals.24 

Distinctive chemokine receptors on Th1 cells in-
clude CCR5 and CXCR3,60,61 which bind inflamma-
tory chemokines. In patients with rheumatoid arthri-
tis and multiple sclerosis (two Th1-related diseases),
virtually all infiltrating T cells express CCR5 and
CXCR3.62 People with a homozygous mutation that
disrupts the CCR5 gene63 may also be less suscepti-
ble to some inflammatory disorders, including rheu-
matoid arthritis.64 Adhesion molecules also have a
role; Th1 cells express selectin ligands abundantly.
P- and E-selectin, which occur on inflamed endothe-
lium, and their ligand, P-selectin glycoprotein ligand 1,
are critical for the migration of Th1 cells to inflamed
skin65,66 and peritoneum.67 The expression of fuco-
syltransferase VII is necessary for cells to synthesize
selectin ligands.52 This enzyme is induced by inter-
leukin-12, which drives the differentiation of Th1 cells,
whereas exposure of T cells to the Th2-governed cy-
tokine interleukin-4 decreases the expression of se-
lectin ligands.68,69

A characteristic chemokine receptor on Th2 cells is
CCR3, the eotaxin receptor.70 Eotaxin is involved in

the recruitment of eosinophils into hyperreactive air-
ways and is prominent in mucosal tissues where al-
lergic and antiparasitic responses are occurring.71 The
production of eotaxin is stimulated by cytokines se-
creted by Th2 cells such as interleukin-4 and inter-
leukin-13. It is absent from Th1-mediated lesions.72

CCR3 is also expressed on eosinophils, basophils, and
mast cells. This pattern of expression presumably al-
lows these allergy-related leukocytes to colocalize and
interact at sites of eotaxin production.73 Other che-
moattractant receptors are also preferentially (but not
exclusively) expressed on Th2 cells, including CCR4,
CCR8, and CXCR4.74

The traffic signals that direct CD8+ effector cells
to inflamed tissues have not been studied as exten-
sively as those for the CD4+ subgroup, but they ap-
pear to be similar.67,75 When stimulated by antigen,
cytotoxic T cells secrete inflammatory chemokines.76

Through this mechanism, CD8+ T cells are thought
to increase the recruitment of neutrophils, monocytes,
and Th1 cells.77

HOMING TO NONLYMPHOID TISSUES

Antigen-experienced T cells often display tissue
specificity that may improve their chances of reen-
countering antigen. T cells that have been exposed
to cutaneous pathogens in skin-draining lymph nodes
migrate preferentially to the skin, whereas effector cells
that arise in Peyer’s patches in response to enterovi-
ral infections are most useful in the gut.9 Indeed,
lymphocytes express different homing receptors af-
ter stimulation by the same antigen, depending on
whether it is given orally or parenterally.78 The best-
understood tissue-selective homing pathways are in
the skin and intestine,9,46 but there may be other se-
lective migration streams, such as to the lungs, joints,
and central nervous system.79
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IMMUNE SURVEILLANCE BY MEMORY 

T CELLS

Memory T cells can be divided into CCR7+ and
CCR7¡ subgroups.3 Most CCR7+ T cells express
L-selectin, suggesting that they home to lymph nodes.
Conversely, CCR7¡ T cells do not express L-selec-
tin but do express homing receptors for peripheral
nonlymphoid tissues and display characteristic fea-
tures of effector T cells on stimulation.3 In contrast,
CCR7+ T cells serve as precursors of the CCR7¡
subgroup. They have been referred to as “central
memory cells,” and the CCR7¡ population has been
referred to as “effector memory cells.”3 It is likely
that both subgroups share the burden of providing
immunologic memory. Central memory cells stand
guard in lymphoid tissues, strategically positioned to
orchestrate a rapid and vigorous immune response
should an antigen return, whereas effector memory
cells patrol peripheral organs. From there, they may
also reach local lymph nodes through afferent lymph
vessels.80 Although this job-sharing concept of mem-
ory subgroups is intriguing, several aspects have yet
to be proved experimentally.

VIRAL ASSAULT ON HOMING MOLECULES

One of the earliest studies of the interplay of vi-
ruses with homing molecules showed that rhinovi-
ruses, which cause the common cold, bind to inter-
cellular adhesion molecule 1 when they infect mucosal
epithelial cells.81 Recently, much attention has been
devoted to viral interactions with the chemokine
system. Dramatic examples are CCR5 and CXCR4,
which are essential coreceptors for the entry of HIV-
1 into cells.82-87 These two receptors are expressed
on reciprocal populations of CD4+ T cells: CCR5+
Th1 effector cells migrate through peripheral tissues,
whereas CXCR4+ naive T cells recirculate through
lymphoid organs.88 Macrophage-tropic strains of HIV-
1, which require CCR5 to enter CD4+ T cells, are
predominantly transmitted through sexual intercourse
or contact with blood. T-cell–tropic viral strains,
which use CXCR4, arise during later stages of the
infection.89,90

Macrophage-tropic HIV-1 probably evolved be-
cause CCR5 is abundant on CD4+ T cells at the
most common sites of viral transmission, the mucosa
of the intestinal and genital tracts. Infected cells that
return to the bloodstream serve inadvertently as “Tro-
jan horses,” spreading the virus to lymphoid organs
and throughout the body. Moreover, by concentrating
its initial attack on CCR5+ T cells, HIV-1 targets Th1
cells, which are necessary for antiviral responses. Once
the Th1 reservoir is exhausted, the virus is free to re-
direct its attack toward CXCR4+ naive T cells. In-
hibitors of HIV-1-binding to CCR5 and CXCR4 hold
promise for treating or preventing HIV-1 infections.
This notion is supported by the finding that people
carrying a defective CCR5 gene (CCR5∆32) have

increased protection against infection with macro-
phage-tropic HIV-1 and, once infected, have a slower
rate of disease progression.63 

Many other viruses subvert immune responses by
inhibiting the recruitment of leukocytes.77 Herpesvi-
ruses and poxviruses contain several genes for che-
mokine and chemokine-receptor–like proteins.91 The
best-studied viral chemokines are viral macrophage
inflammatory protein (vMIP) I and II encoded by
the Kaposi’s sarcoma–associated human herpesvirus
8.92,93 Viral macrophage inflammatory protein II binds
numerous CC and CXC chemokine receptors. It an-
tagonizes Th1-associated receptors and stimulates Th2
receptors. Thus, the virus stunts antiviral Th1 respons-
es, especially in HIV-1–infected patients, in whom
Th1 responses by CCR5+ T cells are weakened. Oth-
er viral proteins compete with chemokine receptors.
For example, the poxvirus-derived viral CC chemo-
kine inhibitor binds virtually all known CC chemo-
kines with high affinity.91 Drugs that inhibit or mimic
these viral molecules could be of potential therapeu-
tic benefit.

CLINICAL APPLICATIONS

Since chemokine receptors and adhesion mole-
cules are promising targets for new antiinflammatory
therapies,12,46,77,90,94-103 the development of antagonists
is among the most actively pursued areas in pharma-
ceutical research (Table 3). Several landmark studies
are worth mentioning. Two studies reported the pro-
found effect of antagonists of Th2 chemokines and
a4b1 integrins in animal models of asthma.104,105 An-
tibodies to a4 integrins also block the development
of experimental autoimmune encephalomyelitis, an
animal model of multiple sclerosis.106 Numerous an-
tibodies, recombinant soluble adhesion molecules, re-
ceptor-blocking mutant chemokines, and small mole-
cules are being evaluated as treatments for asthma,
multiple sclerosis, inflammatory bowel disease, ar-
thritis, and psoriasis, and some should work. Small
molecules are the drug of choice for commercial de-
velopment, and there are already several potent small-
molecule antagonists of chemokine receptors.107,108

Interactions involving integrins or selectins are more
difficult to inhibit with small molecules, but there
have been successes with antagonists of interactions
between a4b1 integrin and vascular-cell adhesion mol-
ecule 1 and between LFA-1 and intercellular adhe-
sion molecule 1.105,109

These advances should enable clinicians to choose
between highly selective treatments. For example, by
modulating essential elements of the homing of na-
ive T cells or dendritic cells, clinicians might prevent,
attenuate, or enhance immune responses to new an-
tigens, such as allografts or vaccines. Because this
treatment would not interfere with the responses of
memory T cells, it should not be globally immuno-
suppressive. Similarly, new drugs that inhibit organ-

Downloaded from www.nejm.org at Stanford University on January 07, 2004.
Copyright © 2000 Massachusetts Medical Society. All rights reserved.



ADVANCES IN IMMUNOLOGY

Volume 343 Number 14 · 1031

*Most of these molecular pathways have been targeted with either small-molecule antagonists or blocking monoclonal antibodies and are currently being
evaluated in clinical trials for various indications. In addition, numerous experiments in animals have validated these pathways for various diseases. VCAM-1
denotes vascular-cell adhesion molecule 1, Th1 type 1 helper T cells, Th2 type 2 helper T cells, MAdCAM-1 mucosal addressin-cell adhesion molecule 1,
ICAM-1 intercellular adhesion molecule 1, LAD leukocyte adhesion deficiency syndrome, PSGL-1 P-selectin glycoprotein ligand 1, CXCR receptor for CXC
chemokine, MCP monocyte chemotactic protein, CCR receptor for CC chemokine, MDC macrophage-derived chemokine, TARC thymus- and activation-
regulated chemokine, MIP-1a macrophage inflammatory protein 1a, RANTES regulated on activation normal T cell expressed and secreted, TECK thymus-
expressed chemokine, IP-10 inducible protein of 10 kd, SDF-1a stroma-derived factor 1a, and HIV human immunodeficiency virus.

TABLE 3. CLINICALLY RELEVANT ADHESION PATHWAYS AND CHEMOKINE OR CHEMOKINE RECEPTORS.*

TARGET PATHWAY ROLE IN T-CELL MIGRATION

POTENTIAL CLINICAL 
APPLICATIONS COMMENTS

Adhesion pathways

Interactions between a4b1 integrin 
and VCAM-1 

Homing to numerous types of inflamed tissues 
and Th2-mediated lesions

Asthma, multiple 
sclerosis, vasculitis 

Critical for embryogenesis; inhibitors 
may alter hematopoiesis

Interactions between a4b7 integrin 
and MAdCAM-1

Homing to nonpulmonary mucosal tissues Inflammatory bowel 
disease

Efficacy of antagonists not determined 
in humans

Interactions between aMb2 integrin 
and ICAM-1

Homing to inflamed tissues? Ischemia, reperfu-
sion injury

Role in T-cell migration uncertain

Interactions between aLb2 integrin 
and ICAM-1

Homing to most inflamed tissues and sites of 
T-cell interactions with antigen-presenting cells 

Numerous May lead to LAD type 1–like 
immunosuppression

Interactions between selectins and 
PSGL-1

Homing to sites of acute inflammation and Th1-
mediated lesions, especially in the skin

Numerous Efficacy of antagonists in humans not 
demonstrated

Fucosyltransferase-VII Homing to acutely inflamed tissues and Th1-
mediated lesions

Numerous Requires intracellular inhibitors; none 
have been described so far

Chemokine pathways

Interactions between interleukin-8 
and CXCR1,2

Homing to some types of inflamed tissues, espe-
cially skin

Psoriasis Efficacy of antagonists not determined 
in humans

Interactions between MCP-1 and 
CCR2

Homing to numerous types of inflamed tissues Rheumatoid arthritis Efficacy of treatment not determined in 
humans

Interactions between eotaxin and 
CCR3

Homing to Th2-mediated lesions Asthma, allergies Mild phenotype in knockout mice 
suggests redundancy of Th2-
mediated chemokine pathways

Interactions between MDC, TARC, 
and CCR4

Homing to skin and Th2-mediated lesions Asthma, psoriasis, 
atopic dermatitis

Importance not established in vivo

Interactions between MIP-1a, 
RANTES, and CCR5

Homing to Th1-mediated lesions Rheumatoid arthritis; 
HIV infection

Possible redundancy of Th1-mediated 
chemokine pathways

Interactions between TECK and 
CCR9

Homing to intestine Inflammatory bowel 
disease

Importance not established in vivo

Interactions between IP-10 and 
CXCR3

Homing to Th1-mediated lesions Rheumatoid arthritis Possible redundancy of Th1-mediated 
chemokine pathways

Interactions between SDF-1a and 
CXCR4

Homing to or migration within numerous types 
of tissues

HIV infection Critical for embryogenesis; inhibitors 
may alter hematopoiesis

specific homing cascades of populations of pathogen-
ic leukocytes would permit the use of tissue-selective
antiinflammatory interventions. Conversely, clinical
trials are under way of infusions of viral-specific cy-
totoxic T cells to patients with the acquired immu-
nodeficiency syndrome or other viral infections.110,111

These cells must be able to home to any tissue where
virus-infected cells may linger. Similarly, patients could
be immunized against pathogens and even advanced
tumors by an injection of antigen-loaded dendritic
cells, which must find their way into secondary lymph-
oid organs.112-114 Modifications that direct injected cells
to sites that are not on their regular itinerary might
boost their therapeutic usefulness.

FUTURE DIRECTIONS

Many questions remain. What adhesion molecules
are employed during the migration of leukocytes with-
in tissues? How do leukocytes decide which signal to

follow when faced with different chemoattractants?
How do they decide when to stay put and when to
leave? What orchestrates the transportation, presen-
tation, and neutralization of chemokines? Are there
negative modulators of migration, such as antiadhe-
sins or repellents, in addition to chemoattractants
and adhesion molecules?

One antiadhesive molecule was found in CD43,
which attenuates the homing of T cells.115 Recently,
it was also shown that low concentrations of stroma-
derived factor 1a attract T cells, whereas high con-
centrations repel some subgroups.116 The identifi-
cation and further characterization of such negative
regulators could open yet another avenue for thera-
peutic intervention. Eventually, we must translate the
wealth of new data on migratory molecules into an
understanding of their physiologic and pathologic
relevance in humans. This task will require new ex-
perimental and diagnostic tools, such as antibodies, re-
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combinant proteins, small-molecule inhibitors, screen-
ing assays, and ultimately, carefully planned and ex-
ecuted clinical trials.
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