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Abstract

We present a novel approach for key management in wireless sensor networks. Using initial
trust built from a small set of shared keys, low-cost protocols enable neighboring sensors
to authenticate and establish secure local links. As the risk of sensor compromise increases
with time, the keys are used only for a limited period right after deployment. Once secure
local links are established, other security services such as group-key refresh can be pro-
vided. The protocols we present require little memory and processing power, and require a
small number of shared keys independent of the network size.Moreover, these protocols do
not depend on a trusted server or base station. To validate the applicability of our approach
to ad hoc wireless sensor networks, we have implemented our protocols on the TinyOS-
based Mica platform and applied them to secure a perimeter monitoring application.
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1 Introduction

Networks of wireless sensors present a cost-effective solution to a range of applications in
critical domains such as detection of chemical or biological agents or tracking of enemy
vehicles. In these critical applications, using incorrector maliciously corrupted data can
have disastrous consequences. Security services are essential to ensure the authenticity,
confidentiality, freshness, and integrity of the critical information collected and processed
by such networks. To support these security services, one needs entity authentication and
key management that are resilient to external attacks against these networks and to failure
or compromise of these sensors.

If all sensors have sufficient memory and processing power, approaches based on public-
key cryptography or on the Diffie-Hellman key exchange protocol may be applicable, but
the necessary cryptographic primitives are currently too expensive for the most resource-
constrained devices. Less costly alternatives that employtrusted servers sharing a long-term
secret with each client are available. However, such approaches have significant adminis-
trative overhead as clients must be registered and keys set up before deployment. Also,
servers must have sufficient memory and computation power toensure good performance,
and connectivity must be maintained between clients and servers. Furthermore, unless ad-
ditional costly measures are taken, attacks against a server may result in denial of service,
or in the loss of a large set of long-term keys, compromising all security services. These
disadvantages and constraints make server-based solutions unsuitable for sensor networks.

This report presents key-management services that enable asensor network to set up
cryptographic keys in an autonomous fashion, without relying on expensive cryptography
or trusted servers, and with minimal administrative overhead.

The approach requires the sensors to share a small set of secret keys. These keys are
loaded in each sensor before deployment, and, unlike other key predistribution schemes [4,
6], the number of keys required does not increase with the network size. The shared keys
enable a pair of neighborsA andB — that is, two sensors that can communicate directly
with each other — to mutually authenticate and securely exchange a keyKab, unique to
the pair(A;B). This keyKab can then be used to secure local communication betweenA
andB. We call the process of establishing these pairwise keysbootstrappingand call the
corresponding linkssecure local links.

Since sensors are typically not tamperproof, we cannot assume that the initial keys
used for bootstrapping can be kept secret forever. However,we can assume that it takes
time for an adversary to physically compromise sensors and get the keys. Thus, sensors
that are deployed at the same time can trust each other for a small time interval right after
sensor deployment. Bootstrapping exploits this interval of trust to establish secure local
links inexpensively. In particular, a sensor can authenticate and set up pairwise keys with
its neighbors by using secrets that only recently deployed sensors possess. An extension of
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the basic bootstrapping protocol supports multiphase deployment, in which secure links are
established between sensors that are deployed in differentphases.

Because of its low cost, this approach is well suited for key management in networks
of resource-constrained sensors. The main benefits of the approach can be summarized as
follows.� Low memory and computation cost: Each sensor needs to store only a small set of

(symmetric) keys, independent of network size, and no expensive operations such as
those used in public-key cryptography are required.� Low key setup overhead: Sensors deployed at the same time arepreconfigured with
the same set of keys. As a result, our approach has a small administrative key setup
overhead.� Self organizing: Sensors autonomously establish secure links without involving a
trusted server that may become a bottleneck or a single pointof failure.

The remainder of the report describes our key-management services in greater detail.
Section3 presents the basic bootstrapping protocol. An extended protocol for multiphase
deployment of sensors is discussed in Section4. An example network-level key-refresh
service that builds upon the secure local links is describedin Section5. Our implementation
of these protocols in the TinyOS framework is presented in Section 6, and related work is
discussed in Section7.

2 Notation and Cryptographic Primitives

The following table summarizes the notation used in this report.
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A;B;C; : : : Node identitiesNa; Nb Random numbers (nonces) generated
byA orBRa Random number stored in nodeA be-
fore deploymentGk(m) Keyed one-way hash function applied
to stringm using keykMAC k(m) Message authentication code for mes-
sagem, generated using keykbk1 Group authentication key used for
bootstrappingbk2 Key generation key used for bootstrap-
pinggki Key shared by all sensors of generationi and used for authentication with pre-
vious generationsKab Pairwise key established by neighborsA andBG is a keyed one-way hash function. It has the property that, given a random quantityr and a data stringm, it is computationally infeasible to find the keyk such thatr =Gk(m). Moreover, givenm andk, one can computeGk(m) efficiently, but one cannot

learn anything aboutGk(m) without knowingk. More formally,G is assumed to form a
pseudo-random function family. That is, a polynomial time adversary cannot distinguish
between the functionGk for a randomly chosen keyk, and a true random functionf of
same domain and range asGk. The notion of undistinguishability is defined rigorously
in [1], for example.MAC is an algorithm for constructing secure message-authentication codes usingk.
Given k and a messagem, MAC k(m) can be efficiently computed, but one cannot effi-
ciently constructMAC k(m) givenm but notk. We also assume that theMAC is collision
resistant. Knowingm andMAC k(m), it is computationally intractable to construct a mes-
sagem0 such thatMAC k(m0) = MAC k(m). Like G, such aMAC can be constructed
from a pseudo-random function family.

3 Bootstrapping Service

Authentication and key management require initial trust between some of the parties in-
volved. For example, a public-key certificate is accepted asvalid if signed by an authority
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one trusts. If only symmetric-key cryptography is used, theparties that trust each other must
somehow acquire a common shared secret that will enable themto communicate securely.
In traditional networks, the initial secrets that are necessary to bootstrap the authentication
services are typically set up by hand. For example, if a central authentication server is used,
an initial shared key is distributed by an administrator when the client is registered with the
server. This initial key is typically communicated offline to ensure secrecy.

In the case of large networks of embedded devices, manually setting a large number
of keys is not practical. In many scenarios, access to the devices for administration is
impossible once the devices are deployed. For example, sensors could be dropped from a
plane over an inaccessible region or deployed in a toxic environment [7]. In such cases,
device configuration is possible only before deployment, and there are no secure offline
channels. Once deployed, the network must be autonomous andself-organizing. The initial
keys should then be set up securely by the devices themselves, without manual intervention.

The typical scenario is for a setS of wireless sensors to be deployed or dropped in
the environment. At this point, the devices must discover their neighbors and self-organize
in an ad hoc network. During this initial phase, the main security concerns are external
attacks and possibly malicious devices already present in the environment. The sensors
from S themselves may be assumed initially trustworthy, as it takes time for an adversary
to compromise them. As the risk of device compromise increases with time, it is crucial to
very quickly establish the initial secure links. This callsfor an efficient localized algorithm
with minimal communication overhead. Our bootstrapping protocol is a localized algorithm
that builds initial trusted links between sensors that are within direct communication range
of each other. It is executed in a short time window after the sensors have been deployed.

3.1 Protocol Description

Since all the sensors ofS are assumed initially trustworthy, two neighborsA andB can
trust each other and establish a secure link if they can make sure that both of them belong
to S. Hence, a fairly weak form of authentication is sufficient, namely, the ability for a
sensor to prove that it belongs toS. This is implemented cheaply by loading a secretgroup
authentication keybk1 into all the members ofS. Another secret key, thekey generation
keydenoted bybk2, is also stored in all sensors ofS. It is used by neighborsA andB
to generate a pairwise keyKab after they have authenticated. Loading these two keys in
all devices can be done easily when the sensors are programmed, and has very minimal
administration overhead.

The protocol is straightforward. A sensor, sayA, initiates the protocol by generating a
random nonceNa and broadcasting ahello message of the following form:hHello; A;Na;MAC bk1(Hello; A;Na)i:
The message containsA’s identity and the nonceNa, and a message authentication code
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(MAC) generated usingbk1. On reception of such a message, any sensor ofS can check
whether the MAC is valid, thus establishing that the sender possesses the secret keybk1.
LetB be such a sensor. OnceB has verified the MAC, it generates a random nonceNb and
sends the following reply toA:hAk; A;B;Nb;MAC bk1(Ak; A;B;Nb; Na)i:
This acknowledgment communicates toA the nonceNb, and proves toA thatB knowsbk1
and has receivedNa. WhenA receives the message, it can check whether the MAC is valid,
and if so, extract the nonceNb.

After this exchange,A andB have proven to each other that they know the group
authentication key, and they are also both in possession of the noncesNa andNb. They
construct a pairwise symmetric key as follows:Kab = Gbk2(Na; Nb);
whereG is a keyed one-way hash function. This pairwise key enables them to communicate
securely in the future. The keyKab is actually split into two subkeys,K1ab andK2ab, used
for encryption and authentication of future messages, respectively.

3.2 Security

This bootstrapping protocol is a variant of the implicit keyexchange protocol AKEP2 of [2].
It can be proven to be secure against an adversary who does notknow the keysbk1 andbk2
using the models and techniques introduced by Bellare and Rogaway in [2]. The proof
relies on the assumption thatMAC andG are pseudorandom function families. Under this
assumption, one can show that the following properties are satisfied for any adversaryE,
initiator sensorA, and responderB.� The probability thatB accepts a hello message that appears to be fromA but was not

sent byA is negligible.� The probability thatA accepts an acknowledgment message that appears to be fromB but was not sent byB is negligible.� E cannot distinguish between the keyKa;b and a random bit string of the same length.

These properties can be stated precisely and proven rigorously as shown in [2]. This proof
shows that the protocol is secure against an adversaryE who can listen to traffic and inject
messages, as long asE does not know the bootstrapping keysbk1 andbk2.

Since sensors are typically not tamperproof, an adversary could potentially obtain the
keys by physically compromising a sensor. Clearly, if an adversary obtainsbk2 andbk1

5



during the bootstrapping time window, then it can compute the pairwise keysKab from
the messages it intercepts, or interfere with bootstrapping by forging hello and acknowl-
edgment messages. This risk is small if the bootstrapping window is kept short. However,
an additional risk exists if the adversary can record the messages exchanged betweenA
andB during bootstrapping and later discover the keybk2. Since all sensors use the same
key-generation key, compromise ofbk2 can lead to the compromise of a large number of
pairwise keys. Our countermeasure to this attack is to eraseboth bk1 andbk2 as soon as
possible, after the bootstrapping window has elapsed.

3.3 Robustness and Cost

The unreliability of the communication link is a major issuein designing protocols for
wireless sensor networks. We use several mechanisms to makethe bootstrapping protocol
robust to message loss.

First, all the sensors that are deployed together will play both the initiator and responder
role. All of them will initiate the bootstrapping protocol at least once by broadcasting a hello
message. Two neighborsA andB have then at least two chances to establish a secure link:
once withB and once withA as the initiator. Optionally, the sensors can be programmed
to send more than one hello message, thus executing the bootstrapping protocol more than
once. This increases the probability that bootstrapping succeeds between two neighbors
even if some messages are lost.

In addition, several timing mechanisms are employed to reduce the probability of mes-
sage collisions. Randomization is used to prevent all sensors from sending a hello at the
same time. When first started, a sensor will wait for a random period of time after de-
ployment before sending its hello message. A similar technique is used to reduce the risk
of collisions between several acknowledgments to a hello. When a sensorA broadcasts a
hello message, neighbors ofA that already share a pairwise key withA do not respond.
Such sensors either already responded to a previous hello fromA, or they have sent a hello
to whichA responded. Except for these sensors, every neighbor ofA that received the hello
is expected to respond. To reduce the probability of collisions between acknowledgments
from different responders, replies toA are sent after a randomized wait time.

A final mechanism reduces the risk of collisions between hello messages and acknowl-
edgments. When a hello message is transmitted at timet, then a time interval[t; t + �]
is reserved for acknowledgments to this hello. Transmissions of hellos are triggered by a
timer. If a sensorB receives a hello at timet, it will not broadcast its own hello until aftert+�. If B’s timer expires in the interval, thenB will not send its hello but restart the timer,
with a randomized delay, to retry later.

All these mechanisms are necessary to make the protocol robust in a network where
radio links are unreliable. Since the protocol requires message exchanges only between
neighbors, it is inexpensive in terms of communication. Fora sensorA, the cost is one
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broadcast message per hello, and at most one reply fromA to each of its neighbors. A more
economical approach could be envisaged that requires only one hello message per node. A
protocol that relies on this approach to exchange session keys is discussed in [12]. In such
protocols, the keyKab must be constructed from nonces attached to the hellos fromA andB. This is very cheap in terms of communication, but also very unreliable if hellos are lost
because of collisions or radio noise.

A main benefit of our bootstrapping protocol over other approaches [4, 6] is its low
memory requirement. Only two secret keys are necessary for bootstrapping, irrespective of
the network size. The computational cost is also relativelysmall as all the cryptographic
primitives required can be implemented using block ciphers.

4 Multiphase Deployment

Sensors may be deployed in different phases. For example, new sensors may be added
when previously deployed sensors fail or when the capability of the existing network is
determined to be insufficient. We assume that sensors are deployed in successive gener-
ations. The bootstrapping protocol of Section3 applies to sensors of a single generation.
This section presents an extension of bootstrapping that enables a sensorA of generationi
to establish a secure link with a sensorB of a later generationj > i.

The basic idea is forA to store a random quantity,ra, and a secretSa;j derived fromRa.
The secret has the property that no other sensor of generation i, or earlier generation, can
efficiently computeSa;j fromRa. On the other hand, a sensor of generationj can efficiently
computeSa;j fromRa. The secret is used to establish a secure link betweenA and sensors
of generationj. The construction ofSa;j relies on a keyed one-way hash function such as
the functionG used previously. For authentication across multiple generations, we add an
extra keygkj that is shared by all sensors of generationj, and the secretSa;j is constructed
by Sa;j = Ggkj (Ra):
Thus, under the assumption thatG is a secure one-way function, only sensors of generationj can constructSa;j from Ra. SensorA itself knowsSa;j andRa, but it does not possessgkj . Several secrets such asSa;j must be stored inA before deployment; each corresponds
to one generation betweeni+1 andi+n, wheren > 0 is the number of future generations
with whichA can establish secure links.

SensorA of generationi andB of generationj use the following protocol, called
cross-generation bootstrapping (XGB). WhenB is first deployed, it adverstises the event
by broadcasting ahello message: hHello; B; j;Nbi
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Thehellomessage consists ofB’s identity and generation, and a randomly generated nonceNB . Upon receiving the message,A extracts the generation numberj and extracts corre-
sponding secretSa;j. ThenA sends the following acknowledgment toB:hAk; A;B;Ra;MACSa;j (Ak; A;B;Ra; Nb)i
WhenB receives this message, it can computeSa;j usinggkj andRa. ThenB will verify
whether the MAC is valid to establish thatx possesses the secretSa;j . If the MAC is
determined to be valid,B completes the protocol by sending a second acknowledgment
thatB can authenticate using the secret:hAk2; B;A;MAC Sa;j (Ak2; B;A)i.
After XGB,A andB will derive a new session key based onSa;j ,RA, andNb for securing
their communication in a way similar to that of the bootstrapping protocol.

Because of the one-way property of functionG, A cannot obtaingkj. Thus,A may
not tamper with the communication between a sensor of generation j and another sensor
other than itself. Also,A cannot masquerade as another sensorZ of generationi, of an
earlier generation, or of a later generation when communicating with a sensor of generationj becauseA cannot efficiently computeGgkj (Rz).

As previously, the security of the XBG protocol relies critically on the assumption that
sensors of generationj are trustworthy when deployed and remain trustworthy for a long
enough time to complete the protocol. It is also crucial for all sensors of generationj to
erase the keygkj as soon as the cross-generation protocol is over.

Using the secure local links established by the XGB protocol, one can securely transmit
a group key,Kg, from generationi and pre-generationi sensors to generation(i + 1)
sensors. In other words, we have a set of old sensors of generations smaller thani+ 1 that
share a secret group keyKg. This set may be strictly smaller than the set of all generation i
and pre-generationi sensors. For example, some sensors may be excluded because they are
detected to be compromised or misbehaving. When generationi + 1 is deployed, we want
them to obtain the group keyKg so that all sensors can participate in a common application.

Again, we assume that sensors are not compromised shortly after they are deployed.
After generation(i+ 1) sensors are deployed, there exists a time window during which all
generation(i+1) sensors can be trusted to behave correctly and no adversary can obtain the
secrets stored in these sensors. During this time window, old sensors can establish secure
local links with new sensors of generationi + 1 using XBG, and they can transmitKg
to them using the secure local links. To prevent a misbehaving old sensor from causing
generation(i + 1) sensors to use an incorrect group key, generation(i + 1) sensors can
exchange the group keys they receive among themselves to filter out incorrect group key(s),
assuming the majority of the group keys obtained from distinct (based on theRa values)
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pre-generation-(i+1) sensors are correct. Moreover, thanks to its inability to obtainSz;i+1
for another sensorZ, a misbehaving pre-generation-(i+1) sensor cannot masquerade asZ
in this process. Thus the misbehaving sensor cannot performa Sybil attack [5] to outnumber
the correct sensors by presenting itself as multiple pre-generation-(i + 1) sensors.

5 Using Secure Local Links

Once neighbors can communicate via secure local links, other security services can be
built inexpensively. As a simple example, chaining can be used to secure communication
between distant nodes. We present a group-key distributionprotocol built on top of the
secure local links.

An inexpensive way of adding security to a sensor network is to rely on a common group
key known by all the sensors. For example, this approach is supported by TinySec [11], a
link-layer encryption service for TinyOS. Using a global key, messages between sensors
can be encrypted for confidentiality, or protected against corruption by using a MAC. An
important advantage of this approach is that secure multicast is very efficient. The sender
of a multicast message encrypts the message and computes theMAC once using the group
key. Every recipient decrypts the message and checks the MAConly once.

A limitation of using a shared group key is that compromise ofa single sensor is suf-
ficient to obtain the key, which gives an adversary access to all network traffic. To recover
from such an attack, one needs the means to distribute a new group key to all group mem-
bers except those that are considered compromised. This canbe easily implemented by
exploiting the secure local links.

Our key refresh protocol provides this service. It can be initiated by any member of a
group, although it is typically done by a base station. The initiator generates a new, random
group key and optionally constructs a list of sensors to be excluded from the group. The
new key together with the exclusion list, a sequence number,and the initiator’s identity is
distributed via the secure local links to all sensors, except those on the exclusion list. First
the initiator securely sends a copy of the key and exclusion list to its good neighbors (i.e.,
those not on the list), using the pairwise key it shares with each of these neighbors.

A key-refresh message sent byA toB is of the following form:hKeyRefresh; B;A;O;N; fKggK1ab ; L;MACK2ab(: : :)i:
In this message,O is the originator of the new key, that is, the sensor that initiated the key
refresh,N is the group key’s sequence number,Kg the new group key, andL the exclusion
list. The message is protected by using the pairwise keyKab thatA andB set up during
bootstrapping. More precisely, the subkeyK1ab is used to guarantee confidentiality ofKg,
whileK2ab is used for authentication and integrity.
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WhenB receives such a key-refresh message, it checks the message integrity usingK2ab, and it checks whether the message is fresh, based on the sequence numberN and the
originator identityO. If both checks succeed,B accepts the new group key carried by the
message, and forwards it to all its neighbors exceptA and any sensor on the exclusion list.
This requires a re-encryption and MAC computation for each of B’s good neighbors.

This protocol distributes the new group key securely and robustly. As long as the good
group members are connected, the flooding-like procedure distributes the new key to all
good members in a robust manner. However, this procedure is expensive in terms of com-
munication and computation. The key-refresh message is decrypted once but encrypted
multiple times by each sensor, and sent in separate messagesto each neighbor. This may
not be a significant issue if the group key is not changed very often, but more efficient
solutions may be desirable.

Including the identity of the originator and a sequence number provides the means to
arbitrate between conflicting key-refresh messages, whichcan occur if multiple nodes ini-
tiate the protocol at roughly the same time. Key-refresh messages are totally ordered using
the lexicographic order on the pair(N;O). When a key-refresh message is received byB, it
is accepted and forwarded only if it is higher in the lexicographic order than all key-refresh
messages seen byB in the past.

This protocol is secure as long as the originator and all nonexcluded sensors are not
compromised. If one of the relaying nodes or the originator is compromised it could exploit
the protocol to effect denial of service. A possible protection against such compromises is
to require that the originator of all key refresh messages come from a trusted node, such as
a base station. This could be done using a protocol such as�-Tesla [14]. We are currently
investigating extensions of our protocols for authenticating distant nodes that could also be
used in this context. We are also examining monitoring mechanisms to detect misbehaving
nodes in a timely manner.

6 Implementation

We have implemented and experimented with the bootstrapping and key-refresh protocols
using Mica devices [9]. The Mica platform is based on an Atmel ATmega 103L or Atmega
128 microcontroller and the RF Monolithics TR100 radio transceiver. The microcontroller
is an 8-bit processor that runs at 4 MHz, and includes 4 kB of RAM and 128 kB of flash
program memory. Mica supports a variety of sensor boards with photo-diode, thermistor,
microphone and sounder, and magnetic and acceleration sensors. The radio has a fixed
frequency of 916.5 MHz and a range that can be varied from inches to hundreds of feets,
depending on power.

The Mica platform runs UC Berkeley’s TinyOS operating system [8]. TinyOS is a
modular operating system designed for small sensor platforms. In the TinyOS model, an
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application consists of a set of software components that interact using event passing and
a simple tasking mechanism. The TinyOS infrastructure provides a collection of low-level
components for interaction with sensor hardware, which canbe flexibly assembled and
integrated with application components. Since version 1.0, TinyOS and application com-
ponents can be written in NesC, an extension of the C programming language that supports
the TinyOS component and composition model. All our implementation was done with
TinyOS 1.0.

6.1 Radio Stack

Implementing our security protocols in TinyOS required significant extensions to the TinyOS
radio stack. In version 1.0, TinyOS actually provided two different radio stacks for the Mica
platform. One was the standard radio implementation that does not include any security. In
this implementation, radio messages consist of a header, a payload, and a cyclic redundancy
check (CRC) that is used to detect message corruption. The header includes fields such as
destination address, message type, and length. This version of the radio stack was not
suitable for our protocols because the message formats theyrequire do not match TinyOS
messages very well. For example, all our protocols use cryptographic MAC for authentica-
tion and integrity, which means that a CRC is unnecessary. Also, some of the header fields
required by TinyOS are not used by our protocols.

The second radio stack available with TinyOS is TinySec [10]. It provides link-layer
security based on a fixed network-wide key. In TinySec, the CRC is replaced by a MAC and
the payload is encrypted. This use of cryptography for securing radio communication could
address some of our needs but it is not sufficiently flexible for our protocols. TinySec relies
on a fixed key that is used for all messages and provides no interface for changing the key.
In our protocols, several keys are maintained for each neighbor of a sensor. Some messages
require different keys depending on the destination. Conversely, checking a received mes-
sage requires identifying the sender to find the correct pairwise keys to use. Furthermore,
some MAC computations that our protocols use require information that is not included
in the messages sent (e.g., the acknowledgments to ahello message during bootstrapping).
For these reasons, we need a radio stack that provides flexible per-message formatting and
encryption.

We have developed a new radio stack for TinyOS that provides these services. This
stack is an extension and combination of the standard TinyOSstack and TinySec. It pro-
vides four communication services that use the following four types of messages:� Plain messages in a format similar to that used by the standard TinyOS stack. Mes-

sages are sent in clear and a CRC is added for error detection.� Encrypted messages, similar to the format used by TinySec. The message payload is
encrypted, and a MAC is added for integrity and authentication.
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Stack bytes in ROM bytes in RAM
TinyOS 9440 356
TinySec 14630 1078
Our Stack 11818 914

Table 1: Code Size with Different Stacks� Authenticated messages: a variant of the TinySec format in which the payload is sent
in clear and a MAC is added.� Raw messages: intended to be formatted by the application. Araw message consists
of a single header byte that specifies the message length and apayload.

Thus, two of the communication services provided by our radio stack are the same as what
the TinyOS stack and TinySec provide. Authenticated messages are a simple variant of
TinySec messages. The raw-message interface gives the application full responsibility for
formatting and error checking. All four types of communication services are available
within the same radio stack, and can be accessed via different interfaces. By default, the
encrypted and authenticated message services use group keys that are fixed at compilation
time, but our radio stack provides an interface for changingthese keys at runtime.1

An application that sends a message via the raw-message interface is free to format the
payload in any way. Conversely, when a raw-message is received, the radio stack forwards
it to the application without performing any check. This interface gives the most flexibility
and it is the one we use for the bootstrapping and key refresh protocols.

Our radio stack reuses many components of TinyOS and TinySec, and attempts to re-
main compatible with them. For example, we use the same MAC algorithm as TinySec,
and we encrypt the payload in CBC mode using the cipher stealing technique also em-
ployed by TinySec. The block ciphers we use for computing MACs and for encryption are
also inherited from TinySec.

The size and performance of our radio stack are similar to theTinySec stack. Table1
shows the code size and RAM usage of the same example application compiled with the
TinyOS stack, the TinySec stack, and our new stack. The data was obtained with the
TinyOS 1.0 distribution. In this example, both TinySec and our stack used the SkipJack
block cipher. The application is one of the demo applications distributed with TinyOS; it
periodically increments a counter and sends its value on theradio. As could be expected,
using cryptography increases the code size and RAM usage of both our stack and TinySec,
compared with the nonsecure TinyOS stack, but the code size fits easily within the Mica

1This implementation was done using version 1.0 of TinyOS. A more recent version of TinySec [11] in-
cludes some of the same extensions as our radio stack.
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program memory. On the other hand, the RAM consumption is close to 25% of the total
Mica RAM, which may be a lot for certain applications. Several optimizations are possible
to reduce the memory used by the block cipher. For example, the SkipJack implementation
stores a constant table of 256 bytes in RAM. It is possible to move this table into ROM, at
the cost of a slight reduction in performance. With the tablestored in ROM, SkipJack is
about 7% slower than with the table in RAM.

6.2 Protocol Implementation

Our bootstrapping protocol is intended for authenticationand key distribution between
neighbor sensors in a network. We have implemented this protocol on the Mica platform
using the radio stack described previously. Thehellosand acknowledgment messages are
sent and received via the raw-message interfaces since theyrequire special formatting and
MAC construction.

The bootstrapping protocol is implemented by a NesC component calledSecure-
LinkManager. The main role of theSecureLinkManagermodule is to build a table
of authenticated neighbors. At the end of bootstrapping, the table contains the identity of
each authenticated neighbor and the two pairwise keys (i.e.,K1ab andK2ab) established with
this neighbor, and other bookkeeping data.

The bootstrapping protocol uses a different block cipher than those available with the
TinySec distribution, namely, AES. The main reason for developing a new cipher imple-
mentation was to reduce the memory space needed to store the pairwise keys. TinySec
provides implementation of two block ciphers — RC5 and SkipJack — but these imple-
mentations are optimized for speed. They use buffers to store intermediate data derived
from the cryptographic keys to speed up encryption and decryption. Storing this data re-
quires 128 bytes of memory for SkipJack and 104 bytes for RC5.This is too much if one
needs to store cryptographic material equivalent to two keys per neighbor. We have devel-
oped an AES implementation that requires less RAM. This implementation uses 128-bit
keys, has a block size of 128 bits, and is optimized for space.Using this implementation,
the neighbor table requires only 48 bytes per neighbor for storing cryptographic material.

All the cryptographic operations performed by theSecureLinkManager module
rely on this AES implementation. This includes MAC computation and generation of the
pairwise keys as discussed in Section3. In addition, we use the AES cipher for implement-
ing a secure pseudo-random generator for generating nonces. This generator is initialized
with a random AES key, that must be different for each sensor,and that is constructed when
the Mica nodes are programmed.

We have also developed a prototype implementation of the keyrefresh protocol of Sec-
tion 5. This protocol is used to change the group keys used by the TinySec-like services of
our radio stack. The implementation of this key-refresh protocol relies on the neighbor table
constructed by bootstrapping to flood key-refresh messages. These key-refresh messages
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are formatted at the application level and are transmitted via the raw-message interface of
the stack. The encryption and MAC applied to these messages use the pairwise key stored
in the neighbor table and thus employ our implementation of AES.

The whole code for bootstrapping and key refresh together with the radio stack occupies
around 17,000 bytes of program memory. The total RAM usage depends on the size of the
neighbor table. Assuming a table of as many as 10 nodes, an application requires 1753
bytes, which includes the neighbor table and the data structures and buffers used by the
radio stack.

6.3 An Example Application

We have tested our bootstrapping and key refresh implementations in a demonstration ap-
plication: a perimeter monitoring scenario in which sensors along a perimeter communicate
sensor readings (in our case, light levels) via an ad hoc network of other nodes. The routing
layer is an implementation of destination-sequenced distance-vector (DSDV) routing [13]
written for TinyOS by Intel Research’s heterogeneous sensor networks project [15].

During normal operation, sensor readings are sent along dynamically updated multihop
paths to a base station. However, the routing protocol is vulnerable to malicious route
update messages. For instance, a compromised “black hole” node can falsely advertise that
it is close to the base station, and then not forward sensor readings. Even in the case where
messages are signed with a group key (as in TinySec), all sensor measurements can be
thwarted by a single malicious node that knows the group key.However, with the fallback of
pairwise keys obtained via bootstrapping, we can — if we knowthe identity of the malicious
node — refresh the group key to trusted nodes only. After a straightforward assembly of
the TinyOS components for bootstrapping, key refresh, and routing, our implementation
successfully demonstrated this capability. A screenshot of this application is shown in
Figure1.

7 Related Work

Because of resource constraints, most of the key-management and distribution protocols
developed for standard networks are not applicable to large-scale sensor networks. Readers
are referred to [3] for a more detailed discussion of how the resource constraints impact
security. We review recent work on key management for sensornetworks.

Eschenauer and Gligor [6] and Chan et al. [4] have proposed key-management schemes
based on random key predistribution. A subset of keys is randomly selected from a large
key pool and distributed to each sensor before deployment. Secure communication chan-
nels can be established by using common keys shared by neighbor nodes. Through random
graph analysis and simulations, the authors show that random key predistribution can ensure
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Figure 1: Perimeter monitoring demonstration.

with high probability that the network is connected via secure links. For example, given a
network with 10,000 sensors, where each sensor can directlycommunicate with 40 sensors
and stores a random key set of size 250 obtained from a key poolof size 100,000; then, the
network is almost certainly connected. However, it is not clear whether such schemes can
be used for sensors with very limited memory such as the Mica platform. As network size
increases, one must either increase the number of keys givento each sensor or decrease the
size of the key pool to ensure with high probability that the whole network is connected.
Assigning too many keys to each node is impractical for sensors with limited memory, and
reducing the size of the key pool has an impact on security. With a small key pool, ac-
cess to a few sensors may be sufficient to compromise a large number of communication
links. On the other hand, a random predistribution scheme can be combined with our boot-
strapping protocol. Instead of assuming that all nodes share common bootstrapping keysbk1 andbk2, one could predistribute a small number of keys randomly chosen from a key
pool. This would make the protocol partially resilient to compromise of a node during the
bootstrapping window.

Other approaches such as SPINS [14] rely on a trusted base station for distributing keys
between sensors. A major part of the SPINS protocols is a veryefficient approach for au-
thenticating multicast messages that originate from the base station. SPINS also introduced
a link-layer encryption and authentication algorithm called SNEP. This algorithm adds very
little overhead over unencrypted messages but it requires both ends of a communication
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link to maintain consistent counters. This may be difficult to ensure if the radio link is
unreliable. TinySec [11] is an alternative security service, developed in the TinyOS frame-
work, to add security in sensor networks. TinySec assumes that all sensors share common
cryptographic materials, and as discussed in this report can be enhanced using our boot-
strapping and key-refresh protocols. Our implementation borrows many of its components
from TinySec.

8 Conclusion

We have presented a collection of lightweight protocols forauthentication and key distribu-
tion in resource-constrained sensor networks. These protocols have been implemented on
a representative sensor platform. They require only inexpensive cryptographic primitives
and use little memory. Security is achieved by taking advantage of bounded periods of
trust, just after sensors have been deployed, to quickly andcheaply establish pairwise keys.
Bootstrapping keys that enable sensors to authenticate during this trust period are used only
within that time, and erased after pairwise keys have been exchanged.

In future work, we are planning to extend these protocols to support authentication and
key exchange between distant nodes. The challenge is to develop protocols for this purpose
that are as economical as possible, while ensuring securityeven if some of the nodes in a
network have been compromised.
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