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Abstract

We present a trust management kernel that clearly sepaatesriza-
tion and structured distributed naming. Given an accessestcgnd sup-
porting credentials, the kernel determines whether theagigs authorized.
We prove soundness and completeness of the authorizatsbensyvithout
names and prove that naming is orthogonal to authorizatioa precise
sense. The orthogonality theorem gives us simple soundmessomplete-
ness proofs for the entire kernel. The kernel is formallyifiedt in PVS,
allowing for the automatic generation of a verified implemtagion of a refer-
ence monitor. By separating naming and authorization pikies, we arrive
at a compositional model and avoid concepts such as “sdedksiat have
led to anomalies in logical characterizations of otherttraanagement sys-
tems.

1 Introduction

Access control in distributed systems is challenging. Unlike centralizedsgste
resource owner may not know the identity of an access requester,enid émtity-
based access control in such systems can be very limiting. Authentication is not
the only issue in distributed systems; the dynamic nature of such systems-encou
ages the use of policy constructs like delegation and local naming, which must b
suitably supported in any practical distributed system. One early strandréf w

in this area occurred in the development of the Taos operating system irte¢he la
1980s and early 1990s, and included characterizations of policy lgadR3], log-

ical frameworks for understanding access control [2], and systergrition [15].



Concurrent proposals such as Neuman’s proxy-based architgc®jiesnd the Dig-
ital distributed system security architecture [9] of Gasser, et al. alsauntea the
notion of delegation in a world of autonomous, cooperating, peer entitietheln
mid 1990s, Blaze, Feigenbaum, and Lacy coined the term “trust managelient”
to treat similar issues in an application-independent way.

In this paper, we will use the term “trust management” to refer to distributed
access control based on cryptographic keys, signed credentidlkcah policies
[6, 5, 4]. One characteristic of trust managementiesegation: the owner of a
resource can empower another principal to grant bounded acchsstdghe re-
source. For example, owner Alice [10] may allow principal Bob to delegatess,

Bob may delegate this right to Charlie, and Charlie may then exercise this right.
Another characteristic of trust management is distributed naming. When Adice e
presses her policy about resources, she may refer to so-tmdkdameghat she
defines herself, or refer to names that are globally known or definethiey prin-
cipals. For example, an employee at CompZnmygay refer taz's CEO’s assistant
meaning the principal tha's CEOdefines to be heassistantwherez’'s CEOis
again the principal that designates aSEQ.

One fundamental source of complexity in trust management is the interaction
between deduction, signing, and distributed naming. Since trust managament
thorization is based on logical deduction, it is natural to try to formulate name
definitions in a logical manner and appeal to deduction for name resolutlea, A
trust management policies involve assertions by various principals, withldiigjta
natures used to verify that assertions were actually issued by authprineipals.
However, previous efforts to harness logical characterizationsrofnggand sign-
ing have led to puzzling interactions and anomalies. Much ink has been spilled
examining the naming portion of SDSI [1, 11], for example, and more recistly
interaction with SPKI [12]. It has been pointed out by several authyr8,[12]
that “surprising” conclusions may result from the addition of seeminglyaeable
logical access control rules to a system.

We believe, though, that the interaction between authorization, naming, and
correct signing of certificates, originally presented in SDSI [21] in aelyuop-
erational way, should submit to a simple modular solution. Hence, we present
here a clean sheet design, with a simple formalization. Our state-transition mode
borrows from our earlier work [7], where we developed a genase¢ss control
framework based on abstract system states, state transitions, and degication
of access judgments. This framework was used to compare the exprpesier
of trust management systems to access control list and capability systantsnge
the conclusion that trust management combines the strong points of aon&ss ¢
list and capability systems by allowing subjects to delegate rights in a revokable
manner. As a labeled transition system, the model is also inheggrelationalas
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opposed to thexiomaticspecifications presented in previous work. A direct bene-
fit of this fact is an intuitive operational semantics for the transition systemhwhic

is also close in spirit to actual implementations of access control mechanisms in
distributed systems.

Having found the state transition modeling a useful comparative tool, in this pa-
per we address the interaction of naming and authorization primitives. Videat d
a name mean? How is authorization granted? Can we define a clear semantics fo
each of these constructs, and then combine them so that there are rieesif?

This paper makes several technical contributions. First, we preseess
graphsas a semantic model for reasoning about access; the interpretation of the
state transition model in an access graph is algebraic in flavor. We stag-by e
tablishing the robustness of our trust management authorization modeb\apgpr
soundness and completeness theorems. These theorems show that aesiimple d
tive characterization of authorization corresponds exactly to an agcagh-based
semantics of authorization assertions. Second, we address the semfamticeso
within the state-transition model, specifying the relevant system states, tragsitio
and judgments relevant to naming. A key idea in our treatment of names is to
identify the meaning of a name with an environment or a name space. A name
binding within a name space, on the other hand, assigns to a name a keytmrano
name. Our notion of environment is similar to its use in a programming language-
theoretic setting; we evaluate policy statements and local name defintions
specific environments, and define properties like globality in terms of quamtific
tion over environments. Our naming proposal is expressive enougiptioreafor
example, SDSI/SPKI naming [21].

With a clear modeling of both authorization and naming, we extend our au-
thorization mechanism to allow for structured distributed names, thus prapacin
trust management kernel. We model the kernel as a state-transition systam, c
bining the relevant parts of the previous models for authorization and na@ing
formal statement of the “no surprises” result is the commutativity theorem hwhic
informally states that the access decisions made in the kernel can be viewed-a
guential application of name resolution rules, followed by authorization thkgs
reason with keys. This result also provides soundness and compkethresems
for the entire kernel, thereby confirming our hypothesis that naming andrégh
tion compose cleanly. As a complementary result, we formally specify the power
of the naming abstraction by using simulation relations that compare authorization
actions in the full kernel with authorization actions referring only to keys. F
nally, we have formally verified the trust management kernel within the automated
theorem-proving system PVS, with the ability to generate proofs corrdgppio
allowed accesses. Our work thus forms the basis for the automatic genexfadio
verified implementation of a reference monitor in distributed systems.
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Our analysis presented us with some informal guidelines that we found use-
ful in evaluating ad-hoc logical rules. The first is captured by the commuittati
theorem. The other concerns adherence to scope; we found sexanaples of
rules in the literature where unclear scope extrusion results in uninteitse-c
guences. Our insistence on tracking scope in name and action definitainedn
us to disallow problematic rules [1] within our semantics, and to express ptnce
like globality.

The rest of the paper is organized as follows. Section 2 discusses/ikst
on the modeling of names. Section 3 summarizes the state-transition model, TM,
of trust management without names. Section 4 presents a graph-basautise
and proves soundness and completeness of the access judgmenSadasn 5
presents the structure and semantics of names used for naming resourgeac-
cess control constructs. We also mention how SPKI/SDSI haming can beserg
within our system. Section 6 presents the modely[ Extending the original state-
transition model with structured names. We formally show the orthogonality of
name and authorization resolution as a commutativity theorem, and use it to prove
soundness and completeness of the entire system in Section 7. We d@mgss s
inconsistencies that arise from incomplete semantics in Section 7.1. Sectien 8 de
scribes the PVS specification of our theorems, and of decision praxstiudecide
access. Section 9 presents our final conclusions.

2 Related Work

The most closely related work to this is the study of SPKI/SDSI haming and-autho
rization. Lampson and Rivest proposed SDSI in 1996 [21], introduttiaghotion

of privately defined names and name resolution of linked names. SDStiena
were adopted, among other things, into the merged SDSI/SPKI 2.0 prdpgsal
Abadi did the first formal study [1] of the SDSI hame resolution algorithmaa8l

by formally specifying the resolution rules in a logic, and showing that anyena
resolved by the SDSI resolution algorithm corresponded to a proof tieriggical
resolution rules. The logic was based on a possible world semantics thptétéer

the name definitiop — qas[[p] C [[q]], where[ p]] informally is the set of keys as-
sociated with[p]|. Abadi also used the logical relation “speaks-for” as an interpre-
tation of name binding. He pointed out that the addition of apparently rebkona
rules might result in undesirable conclusions from a security standpoaipekh
and van der Meyden followed Abadi’s work with two influential papers [fiI7] in
which they introduced LLNC, the logic of local name containment that intéspre
p — q as the more intuitivep] 2 [[q]] instead. They also separated “speaks-for”
from the semantics of naming, associating speaks-for with delegation ajrauth



ity. Their axiomatic characterization provides a useful specification of rahnib
is not directly connected to an actual implementation. Li [16] presented a logic
programming formulation of name resolution by encoding the process as a logic
program.

Authorization, on the other hand, has a longer history. One of the earast
els of access control was thecess matrixf Lampson [14], used for safety anal-
ysis by Harrison, Ruzzo, and Ullman [13]. Lipton and Synder [17] iniczdi the
Take-Grant model of access control, and our graph-based modetasria ways
similar to it. The granularity in these models was at the level of single objects
and subjects; the introduction of roles [22] provided a newer level stfattion in
access control. In parallel, authorization was also formally studied withirabpe
ing systems in the late 1980s and 1990s [23, 2], while delegation constaws h
been more recently studied in the context of distributed [19, 9] and pg@zeD
systems.

3 A State-Transition Model of Authorization

In earlier work [7], we proposed a new model of access control,cbasebstract
system states, state transitions, and logical deduction of access codtymignts.
The main idea is to identify a set of abstract system states, each containing the
kind of information that would be maintained in an access control system. The
important property of each state is the set of access requests that wilblwed
in it, and the access requests that will be allowed after subsequent auicinas
the transfer of a capability. The set of allowed access requests maydreled
directly in the state, as in access control lists, or derived from propertidse
state by some form of logical inference. In this framework, we comparesac
control mechanisms underlying trust management, access control listsyand
flavors of capabilities, by comparing the resulting labeled transition systeras (s
Appendix A) using traditional forms of simulation relations from programming
language and concurrency theory.

The general state-transition-based approach to the modeling of accesd ¢
mechanisms specifies the following:

1. A world state the part of the system configuration that is relevant to the
access control mechanism,

2. A set of possibleactions each defining a transition function from world
states to world states,

3. Anaccess judgmentvhich states when one object can access another. This



may be specified in the form of logical inference, equivalent to some imple-
mentable algorithm.

Given a world stat&Vs the judgment that subjestcan exercise the righiton
objecto is written asWS+ s— (o,r).

For the case of trust management without local name spaces, the model for
which we shall denote by TM, the world state consists of a&3seft objects, a set
R of rights, and two map8 (bounded root-ACL) an® (bounded Delegate):

A : OxR—2?(OxN)
D : OxRxO—?(OxN)

The mapsA andD capture the two ways through which access privileges are prop-
agated in this framework—either they are granted directed by the host ei@ec
the root ACL mapA, or they are delegated through other objects that hold the
access right, via the delegation mapEach of these methods provides for a dele-
gation depth that bounds further granting privileges, and we capturbythie set
N={0,1,...,} inthe co-domain of the two functions. Thus(dk,n) € A((o,r)),
thenos can access righton objecto, and can delegate that access right to another
objectoy that can then delegate it to a maximum effective depth efl. The
delegation action bps would be modeled afgy,n— 1) € D(0os,r,0). In general
if an objectos delegates its access righon o, then the set of such delegations is
captured byD(0s,r,0).

An action is specified by how it changes the components of the world state
w in which it is invoked. Table 1 summarizes the effects of actions for the trust
management model. The action Créateo) denotes the creation of objeatby
the creating objeab., and affects the componens A, andD of the world state.
Objectoc is given the rightre to edit 0's root-ACL, and the ability to delegate
that right to anyone it wishes to. No one else holds any other rightsatothis
point. The action Delet®) removes all instances of the objexfrom the sys-
tem, thereby removing it from the set of obje@sits root-ACLs from the map
A, and all delegated access rights to it from the agdn other words, the maps
A andD are updated by restricting their domains to the $éts- {0}) x R) and
(O—{0}) x Rx (O—{0}), respectively. The Ada,r,0s,d) action gives subject
0s the rightr on objecto with further delegation powerd and therefore affects
only theA-map component of the world state. Since this newly obtained right has
not yet been delegated, the mBpand other state components remain the same.
Similarly, the Removgo, r, 0s,d) action removes subjeot from the root-ACL cor-
responding to right on objecto. Finally, the actions Delegates, o,r,04,d) and
Revokéos,0,r,0q4,d) capture the delegation (or revocation, respectively) by object
05 of its access righto, r) to delegatee object;, with further delegation privileges
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O A D

Creatgog, 0) u{o} (Z’)’rﬁg : é)oc’ b (s,r,0) — 0

Add(o,r,0s,d) (o,r)— A(o,r)uU{os,d}

Removéo,r,0s,d) (o,r) — A(o,r) —{os,d}

Delegaté¢os, o,r,0q4,d) (0s,1,0) — D(0s,r,0)
U{Od, d}

Revokéos,0,r,0q,d) (0s,1,0) — D(0s,t,0)
_{Od7d}

Delet€o) —{o} | |

Table 1: Trust Management

d. Note that none of the actions changes the set of right¢hich is assumed to be
a fixed part of the system specification.

We specify the access judgment as a logical judgment in a proof system with
the four inference rules given below. To bootstrap the inferenceepsave trans-
late the world state into predicates. The mapandD of the world state can be
interpreted as set-membership predicafesl(s,o,r,d) is true iff (s,d) € A(o,r),
andDel(s,0,r,rs,d) is true iff (rs,d) € D(s,r,0). In other wordsACL(s,0,r,d) is
true iff subjectsbelongs on the root-ACL for the access rigbyr ), andDel(s, 0, r,rs,d)
is true iff subjects has delegated its access rigbtr) to subjectrs, with further
delegation allowed up to depthin both cases. In the system TM, subjeaan
access théo,r) pair iff it can produce a proof oAccess(s,o,r,d) for somed,
from the predicate equivalent of the world state and the following fourdniee
rules:

(RootACL) ACL(A,B,r,d) - Access(A,B,r,d)
(Delegation Access(A,B,r,d+1),Del(A B,r,C,d)

+ Access(C,B,r,d)
(Ord1) Access(A,B,r,d+1) - Access(A,B,r,d)
(Ord2 Del(A,B,r,C,d+1) - Del(A,B,r,C.d)

The first two rules capture the root ACL and delegation chain mechanispis- of
taining access, and the last two capture the “downward closure” pyopkedel-
egation depths. The idea of “downward closure” is very simple: if a stiogt
delegate a right up to depththen clearly that subject can also delegate the right up
to depths 01,... ,n— 1. Essentially, rules@rd1) and (Ord2) produce appropriate
predicates for an application of thB¢legation rule.

Notice that theA andD maps specify a simple access control policy language
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for the system TM, and the other components of the modeling provide the sup-
porting data structures and valid transitions thereof, and a logical myet®n of

the access semantics. Extending this to a more expressive policy langoalge w
entail augmenting the “state” in this state machine, and providing additional tran-
sitions and logical access judgment rules. However, our policy langsajeady
sufficient to capture access mechanisms in some significant trust managgsien
tems like SPKI/SDSI [21, 8] and KeyNote [4]. Since our focus in this paper

on the interaction between authorization and naming in general trust manaigeme
systems, we will use TM as a representative example for the analysis, edridie
extended to more expressive trust management systems. For furthbr alethe
model TM and its relationship to other access control mechanisms, the intereste
reader may look at [7].

4 Semantics

We present an intuitive semantics for the system TM that has an algebraic fla
vor: the idea is to map elements of the world state to appropriate carrier sets and
functions on them. In particular, we will have the carrier 8%, R, and the
functions

AY . OM xRY — 2(0M xN)

DM : O xR xO" — 2(0™ xN)
We will represent these mappings as edges in a graph, so that allonestesc
may be represented simply as valid access paths.

More formally, we define amodel as a directed labeleatcess graplO™ |E),
where the vertex sé? corresponds to the set of objects in the model, together
with an auxiliary seR™ that corresponds to the set of rights. Edges in the access
graph have labels of the forio,r,d), whereo € O™ ;r € R* andd € N. Thus,

E C O™ x (O x R™ x N) x O™ . We require that every access graph satisfy the
downward closure property (see Section 3):

(x,(0,r;,n+1),y) cE= (x,(0,r,n),y) € E.

Given a world stat®V/S we say that a modelr satisfiesNVS writtena/ =WS
if the following conditions hold:

1. For each elememtc O,r € R, there exist unique elemert& ¢ O™ ;1™ ¢
R, respectively.

2. The map# andD are captured by the edges of the access graph. Formally,

(sd)eAo,r) = (s,(0",r.d),0™)€cE
(rSad>ED(Sarao) = (rSMa(OMaerd)’SW[)GE



In other words, there is an edge from verigxo v if u is present on the
root ACL for the corresponding right on vertex or if v delegates a right
(on some other vertex) to. The edge itself is labeled with a tup(e,r,d)
specifying the object/right pair and further delegation povaers

Given a modeklv , a subjects can access right on objecto, written # =
s— (o,r), iff there exists a directedccess patlirom sto o marked with the label
(o,r,d) such that for every prefix of the path (including the entire path), the numbe
of edges in the prefix is 1+ d;, the delegation bound in the last edge of the prefix.

(o,r,d1) (or,di+1)
O+——§ ...« §«———S§11=S
The above condition is equivalent to requiring that an access path drtmo
be marked with the labelo,r,d) such that ifd; andd, are the depths associ-
ated with any two consecutive edges on the path, thed d; — 1. We say that
M = Access(s,o,r,d) iff the first edge of some access path frafh to 0 is
marked with(o™ ,r™  d).

Note that for any given world state, we can always construct a minimal imode
that provides concrete representations of exactly the objects and righésvirorld
state, and has no more edges in the access graph than required Ayl
maps.

4.1 Theorems

We show that the logical characterization of access in TM is sound andle@mp
w.r.t. the access graph semantics. These theorems have been formally verified a
part of our PVS effort; for more details see Section 8. Here we pregeithes of

the main proof strategies used in the PVS proofs.

THEOREM 4.1 Given an arbitrary world state WS, subjecat ©, object o= O and
rightr € R, WS- Access(s,0,r,d) = VM . % =WS= o = Access(s”,0™ 1 d)
foralld’ <d.

Proof sketch We proceed by induction on the structure of the proofV$H-
Access(s,0,r,d); for each proof rule, we combine the access pathw(iis ac-

cess graph) of the antecedent provided by the induction hypothesis wifladh
thatas = WSto obtain the access path of the consequent. The downward closure
property of the models allows us to extend the proof of each subcase tbian a
trary d’ < d, while also directly proving case®©¢d1) and Ord2). In PVS, we
carry out this induction using PVS’s support for induction over indetyidefined
datatypes. For each proof tree corresponding to a proof of acsegs;ovide an
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inductive construction of the corresponding path in the access grapipag of
the proof.

COROLLARY 4.2 (Soundness)Given an arbitrary world state WS, subject ©,
objectoc O and rightre RWS-s— (0,r) = VM .M =WS=M =s— (o,r).

Proof. Immediate from Theorem 4.1, and the definitiomof = s— (o,r).

THEOREM 4.3 (Completeness)Let WS be an arbitrary world state and letbsc
O,r eR. Then[Va .(M EWS = (M EsM — (0™ ,1r))] = WS- s— (o,r).

Proof sketchEach model that satisfieaVScontains the set®™ andR™ , and
has edges in the access graph corresponding to the Aapsd D of the world
state. Sincev s — (o™ ,r™), there exists a valid access path in the graph,
whose edges correspond to instances ofA6& andDel predicates that hold in
the world state. These can be combined in a straightforward manner using the
logical rulest to construct a proof oSt s— (o,r). Once again, we use PVS
induction over inductively defined paths. For each well-formed path —ithat
a path corresponding to valid access in the graph we construct theponding
proof tree. The base case for paths of length 1 uses the rule (RoatpG4gibly
with some applications of (Ord1). For paths of greater length, the indudiégn s
uses the (Delegation) rule, possibly with prior applications of rules (Oatt)
(Ord2).

5 Structured Names

Any practical trust management system must provide for some versionkeflin
private name spaces. Since naming constructs are independent afizaiibio
primitives, it should be possible to present a semantics for them sepaidteb-

over, it would be desirable that this semantics compose well with the semamtics fo
authorization, so that there are no “surprises” in a system that usesBudtire we
construct the combined system, we must consider the question: what dagwea
represent?

In real systems, names are ubiquitous: we use them to refer to varialles an
blocks in a program, to files on disk, to users on a machine, machines on@ketw
and so on, so that we may conveniently refer to them again. Each of these is
a memorable abstraction for the underlying representation in terms of memory
addresses (for variables), file and user identifiers in an operatitgnsysaumeric
IP addresses, and so on. In real life, too, we use names as a meaihar ttm
things such as people, streets, and cities. Each name is meant to be unammbiguo
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within a presumed domain of discourse: for example, Portland may denote one
city in Oregon and another in Maine. Similarly, the same variable may be used
more than once in a program, as long as it is unique within a block. In addition to
being associated with an identity, a name providesmtextfor referring to other
things; for example, “Powell Books, W Burnside St., Portland, Oregeférs to
a specific bookstore on “W. Burnside St., Portland, Oregon.” We cdedloat at
the very least names are an abstraction for things, intended to be memardble a
robust €.g, Joe’'s PhoneNumber), and define a context that may be used to refer
to other things.

Any practical access control policy must, then, be able to associate gesile
with names, instead of only with keys. This is desirable for a few important rea
sons:

1. Policies are often written in terms of people, and humans think about people
by name, not key.

2. A person’s key is likely to change over time. Keys get both inadvertently
lost (recoverable by no one) and maliciously compromised by attackees. Th
process of a person getting a new key should not require policy change

3. Names can represent nonatomic entities such as groups, making the policy
language expressive without compromising on succinctness.

These reasons all argue for policies to be expressed in terms of nashégyas.
However, actual execution environments for access control utilize ugaos
identifiers like user- and file-ids, public keys, and IP adresses to malsiates.
As in most trust management proposals, we focus on names as beingofidacsh
for keys in policies. Hence, we need a mapping from the surface syifitdoe o
policy language (which may reference names) to the keys used to deciglesac
requests.

We now add structured distributed names to our model as an indepenitent pr
itive, and present its semantics as separate from that of authorizatiSaction 6,
we show how the semantics of the two constructs compose. We first pithsent
syntax of the new constructs.

5.1 Keys

We denote the set of keys biy. Our modeling assumes that keys are globally
unigue identifiers, used to authenticate principals in a distributed systemckeys
be part of symmetric or public-key cryptography systems, and shouldysagis
curity requirements of the same. In particular, it should be hard to guesgyhe

11



associated with a principal; this is usually inversely proportional to the el

of the key length in bits. We will use this fact in our specification of AurlKey
action in Section 5.5 by assuming that a newly generated key is unique. The inte
tion is that every name in the system eventually resolves to a key. We assume the
existence of a distinguished key, which we shall use to denote a nonterminat-

ing name resolution process. Name resolution is an injective map and is formally
defined in Section 5.5.

5.2 A Simple Grammar for Names

We denote the set of names fay, which is a union of the set of local namas ,
and the set of global nameg; . The set of names( is distinguished from the set
of keysx, x N = 0.

Global Names We assume the existence of a set of universally recognized global
names\;. Such mechanisms exist in other naming schemes, for example, SDSI
provides for distinguished global names. A global naiemeant to have context-
independent semantics; we may assume that there exists a global name oracle,
GNO, that returns the unique meaning associated with a global name.

Local Names Any principal in a distributed system can define its own set of
names, creating a privateme spaceSuch names are calléatal namesThe set

of local names consists bfaise nameshosen from an appropriate languagg; (
say), anccompound namegeated throughnking; we use ‘.’ to denote the linking
operation. A local namkis therefore defined by

I :=Db|l.b

whereb € Al UA(;. For exampleJoe, Joe.PhoneNumber, Joe.PepsiCo, are all
local names. Note that the grammar is left recursive, and indicates thalraftir
to-right operational semantics of parsing a linked local name. To avoiflision
with global names, we assume that the set of base names excludesafie et

Fully Qualified Names Local names, by definition, require a context (name
space) in which to resolve them. We say that a namfelig qualified if there

is enough information such that it may be resolved without any further Relpy
qualified names are formally defined in Section 5.4.
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5.3 Groups and Roles

While names provide a useful level of abstraction over keys, some pdiiecsne
further succint and robust with extended naming abstractions. For éxasegu-
rity policies may refer to a collection of named individuals gooups A group is
simply a set of names. Groups afatic entities; the members of a group do not
change with time. For example, the grooiTS_Attendees_2002 refers to a fixed
set of named individuals. In this sense, a group expression can simglgwed
as a macro expansion into a list of names.

In addition, access patterns in many real-world situations cluster around-the
tion of arole [22]. A role, as opposed to a group, isignamiccollection of named
individuals. For example, the members of the griipS_Attendees change every
year. Arole thus provides another layer of abstraction between the gnpigéasng
in a policy statement and a key. We will see one concrete expression ofithis w
RoleObjects in the next section.

We note that there are several constructs that may be used to deriveyeitine
or role expressions. Example constructs include linking, globality, cotipmc
disjunction and other propositional connectives and functional opsrai&hile
each of these may be used to generate a group or a role, the semantendéfer
arises from theievaluation order groups are static, while roles are dynamic.

5.4 Name Spaces

In the “real world”, the entities that names represent have both identitytrend
authority to name other resources. Other pieces of information, like itsigecur
policy, may also be “owned” by the entity. We model the collection of information
held by an entity that is relevant to the name resolution process, barte space
The entity itself has a hame, which we consider to be semantically synonymous
with the entity’s name space.

From the point of view of naming, what information should an entity’s name
space contain? At the very least, it should be self-aware, that is, cdhtairame
of the entity and the key to which it corresponds. In addition, it should aonta
local name definitions for that entity. Therefore, we may think of a nameespac
as a record, which we call dameObject (Figure 1), with fields for these differ-
ent kinds of information. We assume that every name space has a distedjuish
element,SELF, that resolves to the current key of the owner of the name space.
While theseLFfield can have further structure., it can be a set of keys), our
analysis focuses on the interaction between naming and authorization @idd av
unnecessary complexity by assuming that it is a single key.

We denote the name space associated with maene( by [n]. We have that,
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] ]

SELF SELF
b ‘ SELF ‘ k ‘ N, N3 1
b n, R
b n,.n, //
Policy, rights specification, Policy, rights specification,
infrastructure hooks infrastructure hooks

Figure 1: The structure of a NameObject

for eachn e a¢,
[n] : NameObject
[n].SELF : K

We usen | as shorthand foffn].SELF, to denote the key to whichresolves.

We now have the machinery to define fully qualified names (FQNs): a FOQN
is a([[N],N.m) € NameObject x A( pair, wherem is shorthand for a local name
composed of base or global names via linking. A FQN is thus simply a local
name together with thidameObject context in which to resolve it. For example, in
Figure 1,([[n]],n.n;.nz) is a FQN. We denote the set of fully qualified namesray
Also, we adopt the convention thgiN]|,N) refers to the name spag@l] itself.

We will use the termg[[N], N.m) and[[N].minterchangeably.
Local name definitions in a name space can now be formally modeled as ele-

ments of the sefn; U ) x (X U# ). Alocal name definitiorb Ea represents
the elementb, n), and defines the base nalm& ben, wherenis a key or a FQN;
these are the only two sensible choices within our system. Requitimge a FQN
provides the starting point of the name resolution process, and modelspbe ex
tation that a local name is defined in a name space only if the name space owner
knows how to resolve it. There are some restrictions on local name definitions
first, each base name may be defined only once within each name spacgarCirc
definitions within the same name space, which by definition must involve a self-
referencing set of base names, are disallowed. Finalbyjgfa global name, then
it can be defined only in the name spd&NO]J. For robust policies, and without
losing expressive power, it is generally beneficial for the right-héhelaf a name
definition to be of the forni.b.

We note that the concept ofameObject can be generalized to other enti-
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ties that appear in local policies and credentials, such as keys, grmupses.
Keys present no difficulty, whereasGaoupObject can simply be a collection of
NameObjects. A RoleObject, which captures the dynamic nature of a role, is a
structure similar to the one in Figure 1, with pointers to otReleObjects, and
provides another level of abstraction between the local policy elemeriharey.
Local name definitions may now also be expressed in terms of these new entities

A NameObject or RoleObject would be most naturally implemented as a small
program that answers queries via Remote Procedure Call. Cryptografgyrity
protection is required, either via a secure RPC channel, or via digitally gigne
responses to name queries for such an implementation to be secure.

5.5 A State-Transition Model of Naming

In order to extend the authorization model with names, we must first cagore n
ing as an independent process within the state-transition model. Accordivegly
specify abstract system states that are relevant to name resolution sagiom
those states, and the name resolution process.

World State We define the world staté/S, to be the tuple
WS, = (K,B,G,L,NS

whereK is the set of keys is the set of base namés,is the set of global names
andL is the set of local names constructed from the BetedG using the grammar

in Section 5.2. These sets correspond directly to theset®;, A(;, anda’,, and

the allowed actions in this model will maintain this correspondence. The set of
name space$yS consists of records, each of which hasm Ffield that takes on

a value in the sek, and a set of mapping8JG) — (KU(NSx L)) that capture
local name definitions. We also denote the set of fully qualified nameés imhich
corresponds to the sgt described in Section 5.4/ = NSx L. The world state
thus captures the data structures of interest, namely, those that caergprames

as per our grammar, as well as local name definitions and identity within a name
space.

Actions  An action specifies a transition from one world state to another. The set
of possible actions corresponds to valid ways of modifying the data stesctioat
make up a world state. Moreover, each actiotloéal, and is carried out within a
specific name space. For a given world siatave specify the results of actian

that takes a given vector of argumefitsand is carried out in name spajfg|, by
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[nla(V;w). We assume that the components of the world state before the action
are given byK, B, G, L, andNS and byk’,B’,G',L’, andNS afterwards.

The set of allowed actions comprises adding and removing a global name
(equivalently, changing the name space of the global name oracle aijapety),
creating or deleting a name space, and modifyingstbier field or the set of map-
pings (local name definitions) in an elementM& Actions that correspond to
local name definitions are the most interesting, as they allow for the creation of
new local names and enable name resolution; we also examine some of the other
actions:

e AddKey Subjectns updates its identifying key to de
[ns]AddKey(k;w) = (K U {k},B,G,L,NS), where

NS = NS[ng]].SELF+— K]

Notice that by definition this action is allowed only in the name space of the subject
ns. This captures the fact that the private ki&yY say) is known only tas. We
assume that the generated kel not present irK; the chance of this happening

in a real system is usually exponentially low in the size of the key. The notation
used above foNS states that it is the same BS§ except at theseLF field of the
element[ng], which now has the valule

e AddGlobalName The global namey is added to the system, and is associated
with the keykg.

[GNOJAddGlobalNamég, kg; w) = (KU {kg},B,GU{g},L’,NS), where

NS = NS[[GNO].g - kg,

andL’ is the set of local names generated using theBetsdG|J{g}. Note that
a global name can be defined only by the global name oracle, and thuditite ac
above is well-defined only in the name spdGNQO].

e AddLND Subijectng creates or updates the local name definitid§ n. There
are two cases, based on whethés a key or a fully qualified name. F=k € %,

[ns]AddLND (b, k;w) = (KU {k},BU{b},G,L’,NS), where
NS = NS[ng].b— K,

andL’ is the set of local names generated using theBe}sb} andG. The action
creates (or updates) the fidbdn the name spacng], and gives it the valuk. If
n="feg,

[ns]AddLND (b, f;w) = (K,BU{b},G,L’,NS), where
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NS = NS[[ng].b — (Proj, f,Proj, )],

andL’ is as above. Consider parsiNg for the FQN([[N],N.m). The name space
[ns]] is updated at the value of the figbdwhich is a pair of the linked nanié.m,
and a pointer to the name spdf¥]); this is exactly the information behind the
local name definition.

Notice that name definitions are not defined without the name space that pro-
vides the evaluation environment, and thus we avoid scope extrusion mthiat
in conjunction with primitives like “speaks-for” have led to logical inconsisten
cies [1]. Moreover, there is a clear and direct interpretation of the lbgreaicate
“says”, used in other logical modelings [1] of local names, in this model. If a local

name definitiorb £ n belongs in a name spaog this may be represented as the
predicate[ng].SELF says (b gef n).

Naming Judgment Given a world stat&Vs,, we are interested here in the fol-
lowing naming judgment: what key does a name resolve to? This may be captured
as a logical judgment starting from a predicate equivalerti®fhere we define
the semantics of theame resolutioprocess,: ¥ — %, operationally. Given a
FON ([n],n.n1.nz...ng), we say that it resolves to the following key:

(In],n.nz ... )~ [[...[[n]-n]-nz2...].nk]].SELF

Notice that this corresponds to a left-to-right traversal of pointersesponding
to ny,ny... Nk in the appropriatdNameObjects. In case this process encounters
dangling pointers, or if one of the names ... , nx does not exist, we assume that
the evaluation process returns the key. Given a world statéVs,, the naming
judgment that a fully qualified namieresolves to the kel is writtenWS, Fp f ~»

k. In this case, we also ude| for k.

In addition to associating entities with keys, hames may be used to refer to
passive resources like files. Since we NeeneObjects to represent name spaces,
we say that theneaningof a name is the value of the corresponding instance vari-
able in the appropriatsameObject. Thus, theaneaningof a key-valued name is a
key, of a linked name-valued local name is the corresponding name syabef a
resource-valued name is the actual resource in question. Notice that iwiitheth-
tification, we may usén| to denote the meaning of a name as well. This allows us
to answer the naming judgment: what does a name mean?

Global Names A linked local name can also reference global names; we discuss
this special case of name resolution here. Global names have contepe it
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semantics, and thus are interpreted identically in all name spaces, that is,

V[, [In2]l € NS: g € 2 = [m.g] = [n2.g]l-

As a corollary, we get that the meaning of a global name in the empty enviragnmen
[a]], is well-defined. Since we assume the existence of a global name oracle, we
have that

v[n] €NS: g€ A = [g] = [GNO.g] = [[n.g].

Thus, any FQN of the forrfi]N],N.I.g.m),g € N is equivalent td[[GNO], GNO.g.m).
The following facts directly follow from the above definitions:

FACT 5.1 A FQN evaluates to the same key in any environment (name space).

FACT 5.2 Global names and compound names containing global names are FQNSs.
For a global name g and compound naimg.n, the corresponding FQN {gg]], n).

We note that previous proposals for modeling local names have focudéé o
meaning of a local namgefinition which is a separate construct from the name it-

self. In our modeling, a local name definitioie | in name spacgn| corresponds
to the fact that[[n]}, n.b) ~ |.SELF, itis an action that modifies a name space. How-
ever, the name itself denotes a name spa@valuation contextwhere evaluation
may be the resolution of linked local names to keys, or certificate procefgsing
deciding access. As described above, the context includes the iderttity wAme
(corresponding key pairs, say) and local name definitions. It may atbadia in-
formation about trusted certificate authorities and other information thatgthide
process of creating, distributing, and verifying certificate chains.

We make a final point regarding the modeling of groups and roles in the state-
transition model. We may capture the difference between them by allowingrcerta
actions in one but not in the other. In particular, a change action (addsegmay
not be allowed on the data structure corresponding to groups, while jpeindtted
for roles.

5.6 Embedding SPKI/SDSI

The syntactical machinery to define names in our framework is generagbro
capture a variety of trust management language proposals; here wedbaex-
pressing SPKI/SDSI 2.0 [8]. SPKI derives its specification of local refmoen the
original SDSI proposal; names can be either “basic” or “compound”. ActBD S|
nameb in N's namespace is captured by the declaratiorinameb). The corre-
sponding name in our model would beb. Compound SDSI names, referenced
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through chaining, can be expressed by the “.” operator in our systém.cdm-
pound SDSI nama: (nameb ny ... ny) corresponds ta.b.n; ... ng in our model.

SPKI certificates capture identity (namekey), attribute (permission name),
or authorization (permission» key) mappings. Each certificate contains an issuer,
subject, delegation depth (either Oy, “authorization” expression, and validity
interval. Each certificate may be signed by an entity, and we consider thye bod
of the certificate to be a statement made inside the name space of that entity. An
identity certificate(n — k) can be expressed simply by associatingsker field
with k in the name spacfn]]. SPKI does allow a local name to be bound to more
than one key; as mentioned earlier, we can model this by allowing#he field
to be a set of keys. Attribute and permission certificates are special instahc
the authorization constructs in the model {|NBection 6), namelys — (o,r) and
Accessy(s,0,r,d) respectively, where subjects and object can be names or keys.
The SPKI authorization expression corresponds to the permission agsad
to express the abstragt, r) right, and may be application dependent. Validity in-
tervals specify whether a SPKI certificate may be used in the current ¢atigou
for deciding access, and are independent of naming and authorizatioaras.

6 Authorization and Naming

We now extend the basic trust management model TM to allow for distributed,
structured names. Recall that the basic access control judgment ahieelteer,

in a given world state, a subjestcan access right on objecto. The extension

to naming constructs effectively replaces the occurrences of subjébtsavre-
spondingNameObjects that contain their identifying keys. We assume that objects
are referenced unambiguously through subjects that own them. Tleare global
name spaces, and all actions and judgments take place in a particular context,
name space, of the appropriate subject. We present the differenpp#nes state
transition modeling below.

World State The world stateNS, of the trust management system [ N& de-
fined to be the tuple
WS\] — (WSh RaANa DN)

where WS, captures the data structures relevant to naming (Section 5.5.) Note
the parallel between this world state and the one for the model TM, in Section 3.
The mapsAy and Dy are counterparts of the magsand D of the system TM,
and capture root-ACL and delegation mechanisms of granting accegssctiesly
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(hereF is the set of fully qualified names WS,):

Ay ¢ FxR—=P(FxN)
Dn @ FxRxF—P(FxN)

We note the change in the domain and co-domain sets from the set of dDjg@ets
the system TM) td-. The context-independent semantics of fully qualified names
ensures that these global maps are meaningful.

Actions The actions of TN, can reference local names and are therefore inter-
preted in the context of a name space. As before, for a given worldstate
specify the results of actioa carried out in name spad]), that takes a given
vector of argumentg, by [n]a(V;w). We assume that the components of the world
state before the action are given Y&, R, Ay, andDy, and byWs/, R, A, and

Dy afterwards. Recall thiN].mis shorthand for the FQN[N], N.m). We focus
here on the actions that modify tihg andDy maps:

e Add(to root-ACL): Subjectns adds subject to the ACL associated with
rightr on objecto, with further delegation privileges up to depth

[ng]Addy(o,r, s, d;w) = (WS, R, Ay, Dn), where
Ay = An[(Ins]l-0,r) = An([In].o,r) U{([Ins]).s, d) }]

Note that the fully qualified names ensure that this local action updates the
global mapAy meaningfully.

e Removérom root-ACL): Subjecins removes subjec access to right on
objecto, given thains owns objecb.

[n]Remove(o,r,s,d;w) = (WS, R Ay,Dn), where
Ay = A[([Ins]l-0,r) = An([[n].o,r) — {([Ins]-s', d)}]

e Delegatéaccess right): Subjeat delegates its access rightn object([[S],s.0)
to delegatee subjeny, with further delegation poweik

[ns]|Dely([[S]-0,1,ng, d;w) = (WS, R An, Dy ), Where
Dy = Dn[(([ngf], SELF), 1, [$].0) = Dn(([[ns], SELF), 1, [[ST.0) U {([INs] -n, ) }]

e Revokédelegated access right): Subjestrevokes a delegated righton
([S],s.0), from subjeciny. The mapDy is appropriately modified:

[nsg]Revokey([S.0,r,ng,d;w) = (WS, R, Ay, DY), where
Djy = Dn[(([ns], SELA). 1, [8]-0) — Dny(([Ins]. SELA. 1, [€].0) — { ([Ins]-ng, )}
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Other actions allow for the modification of the name definitions in a hame
space, but these do not affect the authorization decision until theyemenced
via the actions above. The actions corresponding to modificatioNMdSf(see
Section 5.5) are included in the set of actions in .M

Access Judgment Given a world statev and a fully qualified object[[ng], ns.0),
we would like to decide whether a subjentan access right on this object. We
specify the access judgment in the system T &% a logical judgment, given the
following four inference rules. These access judgment rules areedieitiom the
rules of the base system TM (Section 3), with additional support for nafies,
we transform the world stad/S, into its (signed) predicate equivalent:

o ACLN([B].A, [B].0,r,d)g, holds iff ([B].A,d) € Ay([B].0,r), and
« Dely([A]. [B].o,, [A].C,d),, holdsiff ([A].C,d) € Dn(([[A], SELF), , [B] .0).

The first construct above expresses the additioA @ the root ACL associated
with the rightr on B; notice that this action is signed s key. The second
allows A to delegate its right on objecto to C; again this statement is signed with
A’s key.

(RootACLy) ACLN([[B].A, [B].o,r,d)g -nAccessy([B]l.A, [B].o,r,d)g,
(Delegatior,) Accessy([[All; [B].o, r7d+1)ByDeIN([[ [, [Bll.o,r, [A].C,d)y

FnAccessy ([[A].C, [[B].o,r d)Bl
(Ordly) Access([[A]l s, [B].o,r,d+1)g FnAccessy([[All-s, [B].o,r,d)g,
(Ord3y) Deln([Al, [B].o,r, [A].C,d+1) wNDeIN([[ [, [B].o,r, [A].C,d)a,

The first two rules capture the root-ACL and delegation chain mechanisms of
obtaining access to a right; the second rule in particular combines a siglegd-de
tion toC made byA, with access rights granted £oby B, into an access statement
for C vouched for byB. This rule therefore also acts as the equivalent of a logical
inference rule for theays predicate. The signhatures on the predicates provide in-
tegrity assurances by matching the signing key with the identity of the originating
name space. The last two rules capture “downward closure” of delagiiaths,
and produce appropriate predicates for application of the delegatianWw@esay
that subjecs’ can access righton object([[ns], ns.0) iff it can produce a proof of
Accessn([[ng].s, [ns].o,r,d),  for somed.

6.1 Compositionality

The system TN adds names to the authorization primitives in TM, and provides
logical rules that refer to both constructs. If we removed what we addéuht is,
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if we resolved all names to keys — the system J 8hould behave in the same way
as TM. On the other hand, the naming abstraction is powerful because ésmak
policies robust. We formalize these intuitions with the following two theorems:
the first states that any authorization action of J Ban be simulated by an action

of TM, given name resolution as an auxiliary single-step operation. Ttense
shows that changes made in a policy that references names cannqgitbeeda
with a bounded set of actions in a policy that references only keys. We thak
formal comparison using simulation relations between the two labeled transition
systems for TM and TN; some definitions can be found in Appendix A. For
more details on labeled transition systems and simulation relations, see [18]. We
start by defining a relation between world states of the two systems.

If WS, is a world state of the system T\Mwe useW$S, | to denote the corre-
sponding world state of the system TM wh&t@meObjects have been replaced by
their identifying keys, and the FQNSs in the domain and co-domain oAth®y
maps resolved to keys to obtain tAendD maps ofWS,|. We specify the trans-
lation formally below: given world stat®V/S§y = (WS,,R,Ay,Dy) of TMy, the
corresponding world sta®/'S, | of TM is given by(O,R A, D) where

1. For eacto € O, there exists alameObject [[n]] € NSsuch thafn].SELF= 0.
Recall thatWs, = (K,B,G,L,NS). Also, for eachNameObject [[n] € NS
there exists an € O such thaf[n]].SELF= o.

2. Foreacts,0€O,r e R deN, if (s,d) € A((o,r)), then there existdameOb-
jects [[ng]], [no]] such that[[ns]] |,d) € An(([[no] ,r)), and vice versa.

3. For eachs,0,rs € O;r € Rd € N, if (r5,d) € D((s,r,0)), then there ex-
ist NameObjects [ng], [No], [Nr.]] € NS such that([n.]] |,d) € D(([ns] |
,I,[no]] 1)), and vice versa.

The theorems of Section 7 tell us that the sta&y andWS, | effectively allow
the same accesses in the two systems. The following theorem correlatéstrans
in one system to transitions in the other.

THEOREM 6.1 The systerit M can strongly simulate authorization actions of sys-
temTMy, given name resolution as a one-step operation.

Proof. Note that in order to define a simulation (Appendix A), we need to define a
correspondence functor from world states of § M TM. Since well-formed world
states are created by sequences of actions, we defimictively as follows:

f([ng] Addw(o.1. ¢, d;w) Add([Ing].o 1.1, [n].§ |, d: F(w))
f([ns]Remove(o,r, s, d;w) = Remové[ng.o |, ,[[ns]] s |,d; f(w))
f([Ins]

f([n]

ns|Dely([[sT.0,r,ng, d; w) = Delegaté[ns] |, ST |,r, [[ns].ng |, d; f(w))
ns|Revoke,([[s].0,r,ng,d; w) Revoke[ns] |, [s] |.r, [ns]l.ng l,d,f( )
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The correspondence functor defines the required binary relatiorebetworld
states of the two systems, as well as the translation between actions.

As a corollary, since corresponding states allow the same accessa®no u
pected authorizations are allowed by the authorization actions gf. TM

THEOREM 6.2 The systenTM cannot simulate naming actions M.

Proof. We show that a weak simulation cannot exist between the two systems.
Consider a world statevy of TMy, such that[n] € wy.NSand [n].SELF = k.

Also, let[[n] have rightr on every object irwy through theAy map. Let there be

N objects inwy. Letw be the equivalent state of TM, whee] is replaced wittk,

andk has rightr on every object through th& map. In order to simulate the TM
action[[n]AddKey(K’; wy) within the system TM, we have to perforth Remove
actions fork, oneCreateaction fork/, andN subsequenfAdd actions. The actions
involved depend on the privileges granted to the kaystatew, and thus no weak
simulation betweemw andwy can exist.

THEOREM 6.3 (Commutativity) For any world state Wg of the systenT My,
and access formula Q the following commutative diagram holds>(represents
name resolution):

WS — Qy

Ml lv

W& | T Onl

Proof. We proceed by induction on the structure of the pnopof WS Fy Qn. We
consider the last rule used pand show that the diagram holds for each possible
case. The proof of each of the four cases proceeds identically; wie aub the
case for(RootACLy) in detail. Suppos@CLy ([[B].A, [B].o,r,d)g Fn
Accessy([[B].A, [B].o,r,d)g,, and thatW$, n ([B],B.A) ~ ki, ([B],B.0) ~ k.

By the translation from world states in T\\ito world states in TM, the predi-
cateACLy([[B].A, [B].o,r,d)g, is true of WSy iff ACL(ka,kz,r,d) is true of WSy |.
Now we may proveQy |= Access(ki,ko,r,d) using the ruleRootACL of the
proof systemt-, and we are done. We note that this inductive proof is essentially
equivalent to a horizontal ladder-like constructive proof of the comnwittatilia-
gram above.

The commutativity theorem tells us that the application of name and authoriza-
tion resolution rules in any order produces the same final result; it is a stateme
about no “surprises” from the rulesgy. In particular, we may resolve all names
first to keys, and then use the rulego decide access, yielding the final result as
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a composition of the two operations. More generally, we posit the commutativity
theorem as a sanity benchmark for rules in access control systems ithiaineo
authorization and naming primitives: it should be possibledparateany access
proof into name and access resolution.

7 Semantics

We extend the semantic model defined in Section 4 to include distributed, struc-
tured names. Therefore, our semantics again has an algebraic flaeog, we map
elements of the world state to carrier sets and functions on them. We will denote
elements of the carrier sets by nodes in a graph, and the mappings agdgssh
This is conceptually close to a basis for an actual implementation for suckearsys
Formally, we define a model as a directed labeledess grapiiOy™ ,E), where
the vertex set corresponds to the set of (hamed) objects and keys inded Mo
access graph has two sorts of labeled edges, one related to name regaR#iY)
and the other to the delegation of authorizati&®{"). The intention is that the
vertices correspond to name spade€¥™€edges incident on a graph vertex corre-
sponding td[N]™ will describe name resolution provided by the name sgjate
and the incidenE2"" edges will correspond to th& andDy maps that reference
[N]. Following our treatment for the system TM, a semantic model also consists
of the carrier set® , B¥ , G* , andL™ which correspond to the rights, and base,
global, and local names allowed in the model.

Labels on graph edges allow us to combine them in order to resolve hames or
make an access decision:

Eath € O™ x ((BM x L) x R* x N) x Oy™
Ename C ONM ><LM XONM

The label on arE2Ut" edge tracks the fully qualified object on which the right is
being authorized, together with delegation degithThe label on arE"™€edge
tracks a portion of a linked local name that is yet to be traversed from tté de
nation vertex in order to resolve a local name definition in the name space of the
source vertex. Formall is the disjoint union of edge seE'@™¢and Eau™ We
require that models satisfy the downward closure property on all edged“if)
thatis,vx,y € O™ ,0€ BY xL¥ .r e R¥ \neN:

X, (0,r,n+1),y) € E"= (x, (o,r,n),y) € E&'"
y y

Given a world stat&VS, we say that a model/ satisfiesVSy, written v =
WS, if the following conditions hold:
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Figure 2: An example access grapf the heavy arrow is aB2'edge, while the
others are ire"@™€ Here, M = (0.s=u.s =Vv) — (o,r,d). Also, the global name
g maps to the kek,, andw | = k;. Notice thatE"@™m€edges flow in the direction of
name resolution whil&2""" edges flow in the direction of authorization resolution.

1. Foreachelemefttce K,r e R be B,ge G,| €L, there exist unique elements
KM ¢ O™, r™ e RY o™ ¢ BM g™ € G 1 ¢ L™ respectively.

2. For each name spaffd]inWS,.NS there exists a vertefN]™ in the access
graph.

3. The access graph has a distinguished ve@esuch that for each element
g € GwhereGNO(g) =Kk,

(6,9,k) € EMame

In other words, the distinguished vertéof the access graph resolves the
global nameg in a manner consistent with the world state, and in particular
with the name space of the global name oracle. We note that the evaluation
of global names can be considered separately from the access taph,
providing a distinguished vertex allows us to capture the entirety of name
resolution within the framework oE"™€ edges in the access graph, and
thus we include it here.

4. The local name definitions 8¥/S, are captured by the edge $¥PM€of the
access graph. Formally,

(b= e [N] = ([N]™,b¥ k) Ename
BE (NN e [N] = (IN]™, (b ,170),[N]*) € Ename
(bE(INTNY) € [N] = (IN]¥ b, [N™) € Ename



In other words, a local namie defined to be a kek must correspond to
an EN@Me edge in the access graph with lalbdf . Here, we also allovb
to be SeLF, and thus each vertex in the graph must haveE&H"® edge,
labeled withsELF, to its identifying key. A local hame definition fdy in
terms of another nami'.| is represented by aB"@™€ edge between the
corresponding vertices labeled by the pdit’,1* ). The name resolution
process is guided further frofiN’]™ by the structure of* . Notice that if

| = ¢, the empty string, then the labgl is used instead as shorthand.

5. The map9\y andDy are captured by the edge §'!" of the access graph.
Formally,

(Ind)-$.d) € Au(Ing-o,r) = (8, (6,r ), [ng]* ) € E2h
(Ins]-na.d) € Dy (([Ins], SEL). . [8]-0) = (1, (6,1 ,d), [n] ™ ) € E2n

where s, riy and G are the vertices obtained by following the appropriate
E"ameedges starting frorfins]™ or s as the case may be.

We say that a vertexcan access righiton another verteg, writtena/ =y s—
(o,r), iff there exists a directedccess patlof E2“" edges fronsto o labeled with
the tuple(o,r,d) such that for every prefix of the path (including the entire path),
the number of edges in the prefix4s1+ d;, the delegation bound in the last edge

of the prefix.

O (07r7d1) Sﬂ_ — S (07r7di+l) S+1 — S

LeEmMMA 7.1 (Model Compilation) For any world state W$of TMy and model M,
IM . [MEWS <= M'=EWS [|AMEys— (0,1) <= M’ =s|— (0],r)]

Proof. Construct the access graph of the madslélfrom the access graph of the
modelM by replacing the vertices corresponding to name spaces with the keys in
their seLF fields, and the labelg[ng]].o,r,d) on theEa" edges by([[ng].o0 |,r,d).

The calculation off[ns].0 | consists of traversing the approprigE82™€ edges.
Since the world stat®/S] is a replacement of the names\WS, by the keys

to which they resolve, the lemma follows immediately.

THEOREM 7.2 (Soundness)Given an arbitrary world state W fully qualified
subject = F, object oc O and rightre RWS§+s— (o,r) = Vv .m0 EWS =
M =s— (o,r).
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Proof. GivenW§, F s— (o,r), it follows from Theorem 6.3 thalV§, | s |—
(o],r). Supposem = WS, and letar ' be the model given by Lemma 7.1. Then,
M’ =WSy |, and by soundness of (Corollary 4.2), we get thatvr ' =s |—
(o], r). The result now follows from Lemma 7.1.

THEOREM 7.3 (Completeness).et W& be an arbitrary world state and lets
F,oeOandreR. Then[vam .(M =WS) = (M =s—(o,r))]=WHFs—
(o,r).

Proof. Given anym = WS, it follows from Lemma 7.1 and the hypothesis of
the theorem thaiar .’ EWS | Av' E=s|— (o |,r). From the completeness
of the rules-(Theorem 4.3), we get thavS, |- s|— (o |,r). Theorem 6.3 now
gives usW§ - s— (o,r).

7.1 Avoiding Inconsistencies

A key benefit of a separate understanding of naming and authorizatios &bih
ity to evaluate new rules that may refer to either or both of these constrocts, f
consistency.

A case in point is Abadi’s “converse of globality” axiom, which when com-
bined with linking [1] leads to undesirable inferences about namessla global
name, ando is any local name, then the axiom states that (p'sg). In other
words, it allowsp the ability to bind the global namgto p'sg. This axiom is
not true under our semantics since global names cannot be redefinedlindme
spaces other than that of the Global Name Oracle (see Section 5.4.)

Another problematic axiom in Abadi’s formulation is the “symmetry” axiom:
(p—0d) = (q— p). Again, this axiom is not true in our semantics (Section 5)
since two local name definitior[sd:efq andq def p can never occur within the same
name space.

Since we associate the meaning of a name consistently with a name space, all
our actions are meaningful only within a name space. In addition, all statements
used as predicates in the access judgment are vouched for by spritiis eper-
haps as signatures with the keys associated with their names. The principle of
remembering scope seems to have been violated surprisingly often in ladesl r
for access control. For example, in designing an access control logltsfabuted
documents [3], the authors point out two ruléSpnt) and(Del), earlier candidates
for which were found to have undesirable consequences. In botis,cas appro-
priately modified version of the rule was substituted. Both rules containeol& sc
violation; this could have been detected directly instead of in an ad-hoc manne
We strongly advocate adherence to scope as a guideline in designind to¢gsa
for distributed systems.
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8 Formally Verified Executable Specifications in PVS

So far, we have described a theoretical model of trust management virthutisd,
structured name spaces for subjects and shown soundness, congsleaeigecom-
positionality. We would like to carry over this clean modeling to a trusted imple-
mentation with the help of formal verification tools that provide guaranteeseon th
properties of real functions used in the implementation. Our goals are twofold
first, to increase assurance by providing machine-checkable prbofs main re-
sults, so that a logical inference engine like Prolog may use the inferateseas
input in general decision procedures to decide access; seconayvtdegpspecial-
ized executable procedures for deciding access for which corssctherantees
can be made within a formal system. We thus provide the basis for a formally ver
ified reference monitor that sits at the heart of a larger system that pperstior
policy languages, revocation mechanisms, and credential storage aitniton.

Our choice to use the Prototype Verification System (PVS) [20] was mativate
by two reasons: from version 2.3 onward, PVS provides the ability toueedenc-
tions on ground terms; these functions can be shown to satisfy desineerfies
within PVS, and the compiled LISP code linked to C or Java. Second, atttess
local expertise accelerated the process of using a new tool. While totattuess
relies on the correctness of PVS, the Common LISP compiler, and its associate
runtime system, we believe that a completely automatic translation from specifi-
cation to code will still yield substantially greater assurance than a manual tran
scription. In addition, our implementation in PVS produces proofs as witaegse
allowed accesses, which may be independently audited.

Figure 3 shows an architecture schematic, where the client (Alice, sdygsvis
to access file “data.doc” on the resource host. She presents hestredthecertifi-
cates that, in conjunction with the host’s policy, will constitute a proof of acces
The host application provides access control by consulting a locallyingrrust
management daemon that manages the local name space and policy, afidrhas in
mation about certificate directories to query for fresh certificates, amwt s@his
daemon collects Alice’s certificates with some of its own and produces a pfroof
access, or decides that access should be denied. The proof id fasaegh the
PVS access checker, which makes sure that the proof is well-formete lcase
of our example trust management systemJ, vhis proof would use the rulesy,
and PVS would check that the proof was valid. In addition, we have shibean
commutativity theorem for the rulésy in PVS, which increases our confidence in
the meta-validity of the proof, and therefore in the system itself.

Specification We make use of PVS parametrized theories and datatypes to en-
code world states, proofs, and graphs. The parameters are the typgcfs and
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+ certs

A
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Figure 3: System Architecture and PVS

rights, so that specific instantiations of our theory can be used with ainedes
representation of real objects and rights. World states are representedords
with fields ob,r, A, andD corresponding to the syntactic componedi®R, A, and

D respectively (Section 3). We further condition thendD maps such that the
image of any element referencing an object in the world state specifiesluplyt®
within the world state. In the PVS code below, “object” and “right” specifyetyp
containing at least one element. The notatin .#| denotes that “preWS” is a
record with the given fields; PVS uses thé bperator to reference elements of a
record. Set membership is denoted using parentheses, for exarnphét'l) is
equivalent td.1 € w.ob. The PVS type “WS” represents world states, as a subtype
of preWS, and contains elememtsof preWS such that the objects referenced in
the co-domain of thé andD maps lie inw.ob.

object TYPE+
right TYPE+
preWS TYPE =
[# ob: sef object,

r: sef right],

A: [[ object rightl — sef[ object naf]],

D: [[ object right, objeci — sef[ object naf]] #]
Dom(w: preWS: sef[ object naf] = {t: [ object naf | w ob(t'1)}
WS: TYPE = {w: preWS| V (o1, 02 (W ob), ( r: (wr)):

(WA(01, r) CDomw)) A (WD(og, r, 02) C Dom(w))}
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We specify semantic models as directed labeled graphs in PVS; for thissgurpo
we created a small parameterized theory of such graphs. A well-forntedrpa
model, defined by the inductively defined predicate “wfp” on paths esponds to
legitimate access in the semantic model. In the following PVS code, xgrequtel
is part of a theory of labeled graphs parameterized on the type of veatiddabels
in the graph. The type “preG” is a record consisting of the set of vertexdges,
and labels in the graph. The PVS type “graph” denotes those elegefigreG
where the edges join elements @fertices with labels from the setlabels. A
model is simply a graph with objects for vertices and labels of the farmd).

xgraphmode[ V: TYPE+, L. TYPE+]: THEORY
preG TYPE = [# vertices sefV], edges sefedgd, labels sefl] #]
graph TYPE = {g: preG| V (e ( ¢ edge)):
(g vertice3( € 1) A (g verticed( € 2) A (g labelg( € 3) }

model TYPE = {G: graph |

V (u: ( G vertice3, r: rightt d: na): G'labelgu, r, d)}
wfp(p: path M: model w: WS, s O: (wob), r:(wr), d nad:

INDUCTIVE bool

We specify proofs within our logical system as the abstract datatypeoof pr
trees, a datatype with constructors corresponding to the empty proofpplieaa
tion of the four access rules (Section 3), and the definition oAk predicate.

prooftred object TYPE+, rightt TYPE+]: DATATYPE
BEGIN
EmptyProof empty?
predacl(s. object O: object r: rightt d: nad: acl?
preddel( s. object O: object r: right, r.s. object d. nai: del?
rule_rootac( rootaclpremiss prooftred: rootacl?
rule_delegatiofil_del. prooftree r_del prooftreg: delegation?
rule.ord1( ord1lpremiss prooftred: ordl?
rule_.ord ord2 premiss prooftreg: ord2?
END prooftree

wit(t: prooftreg w. WS, s O: (wob), r: (wr), d nad:
INDUCTIVE bool

As the reader may see, this datatype has constructors for predicaitatefiand
for the logical inference rules used to combine them. A well-formed proef tre
defined by the predicate “wft” on proof trees, corresponds to a vabdff the
predicateAccess(s,0,r,d) using our proof rules. The predicates “modatcess?”
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and “infer?” check whether there exist valid proofs of access withirsémeantic
and syntactic models, respectively.

modelsaccessM: model w: WS, s, O:( w ob), r:wr), d:na): bool
=4 (p: path: wfp(p, M, w, s, O, r, d)

inferAw. WS, s O (wob), r:(wr), d na)d) bool
= 34 (t: prooftred: wft(t, w, s, O, r, d)

The PVS soundness and completeness theorems will relate well-formedrpaths
the access graph and well-formed proof trees.

Soundness and CompletenessSince soundness and completeness theorems re-
fer to models that satisfy a given world state, we provide the function toactsmodel”
that constructs the minimal model satisfying a world state, and the function “mod-
elsws?” that checks if a given model satisfies a given world state.

constructmode( w: WS): model =
(# vertices :=w ob,
edges := constructdgesw),
labels := construclabelg w) #)
Li: LEMMA V (w: WS): modelswsq constructimode( w), w)

For soundness, given a well-formed proof tree, we show the existdrtbe cor-
responding well-formed path in any model satisfying the world state (whicth mus
contain the constructed model.) This is done by using PVS support fortinduc
over inductively defined data types, “prawée” in this case.

Soundness THEOREM
vV (w. WS s O (wob), r:(wr) d nabd:
inferAw, s, O, r, d =
(V (M: mode): modelswsqiM, w) =
modelsaccessM, w, s, O, r, d))
Completeness THEOREM
vV (w. WS s O (wob, r:(wr) d nab:
(V (M: mode): modelswsiM, w) =
modelsaccessM, w, s, O, r, d) = inferdAw, s, O, r, d)

For completeness, given a model satisfying the world state and a well-fqratied

in it, we prove the existence of the corresponding well-formed proof sfemying

that access is derivable within the proof rules. The proofs proceessing PVS
induction on the structure of paths in the graph. For both these theorems, the
predicates “modelsaccess?” and “infer?” provide the existential witnesses (path
and proof, respectively) to induct over.
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Specialized decision procedures as PVS functionsThough the soundness and
completeness procedures give us guarantees about our progfamtetheir use

in an automated logical inference system, in practice we would like to direct the
search for a proof (or a path in the corresponding access grajlg) sfEecialized
heuristics. PVS’s ability to generate executable code does not presanrkyfay
specifications that use finite sets. Hence, we chose lists as an alterpptigsen-
tation for the world state componer®s R, and map# andD, in order to define
executable functions that use them as arguments.

evalonlist(w: WS.list, 1: list[ objecl | sublis{l, w' ob),
O:. in_objectgw), r: in_rightw), d: naf); RECURSIVE prooftree =
CASES | OF null: EmptyProof
cong X, y): LET p. prooftree =
LET pA: prooftree = inA(deleteobjectgw, y), X% O, r, d) IN
IF empty? pA) THEN
evalon list( deleteobjectg w, cong x, V)),
find_delegatorédeleteobjectgw, y), x, O, r, d), O, r, d+1)
ELSE pA
ENDIF
IN IF empty? p) THEN evalon.list( Deletdw, x), y, O, r, d)
ELSE p ENDIF
ENDCASES
MEASURE length( 1)

The PVS function above searches for a proof of access given ld wiate and
an access request. It is defined as a recursive function on the sie wforld
state, lengtfl), which decreases with each recursive call. It first tries to see if
the requested access is simply an application ofR@otACL) and Ord1l) rules
(“in _A"), else it recurses on potential delegators (“fiddlegators”). An “Emp-
tyProof” proof tree is returned if neither of these cases finds a piessentially,
the function performs backward search from the goal, and returnsof fpee that
can be checked for well-formedness, thereby showing soundnéle decision
procedure. Completeness of this procedure follows from an induative pn the
structure of paths, which shows that if no path is returned by the proeethen
no well-formed path can exist in the access graph.

Actions In order to use PVS functions on ground terms that represent actual
world states, we may either write them out by hand, or create them usingrezszs

of actions. The latter method is more robust, and has the benefit of creatlhg w
formed world states. Therefore, we created a separate theory toysecdffect
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of actions on the world state (Table 1), as well as an “initial” world state cangin
only a “supervisor” object. A reachable world state is one that can lohegkonly
through an arbitrary sequence of actions, and it makes sense to applatén
functions only on such states.

There were two main technical difficulties while doing the PVS proofs: first,
since access in a model happens either via a root-ACL mechanism, orhhaoug
delegation chain ending in a root-ACL, we needed a way to distinguish thesedg
in the model that correspondedAandD maps, respectively. A more challenging
issue was to deal with the “downward-closure” of the delegation depéhr(des
(Ord1) and (©Ord2), Section 3). This corresponds to a nested induction on delega-
tion depths within the outer induction on proof trees and paths, which weréakcto
out into two separate lemmas.

In addition, we experimented with various representations of the data sgsictu
and lemmas in our theory to optimize the human effort involved in proving the main
theorems. This included trying out dependent types forAfamd D maps in the
world state, inductively defined proof-tree and path types, varyingtification
order on the lemmas so that built-in PVS proof commands could be used optimally,
and factoring out common subproofs. The valuable tool experiencedaiith
the proof of the soundness theorem directly helped us to achieve aiedalar
decomposition of the completeness theorem, and its proof was also accowhplishe
much more quickly.

Our soundness and completeness theorems make no assumptions on the size o
world states or models. Our induction hypothesis uses the corresporupnezn
subpaths and subproof trees, and does not constrain their sizexddting nature
of these proofs, however, informed our theory by requiring us toipear in-
formal assumptions, such as the downward closure property on apegs (see
Section 4.1), which we had initially left unspecified.

Incorporating names in PVS The second part of our PVS implementation ex-
tends the base system with naming constructs, and its specifications antkpleof
niques are very similar to those described above. We encode the worldostate
namesWS,, using the PVS record type with five fields corresponding to the syn-
tactic components of the world state. Name resolution is implemented as a recur-
sively defined function that uses the local name definitions (represastadps) in
elements of the set of name spaces. The world state for the combined sydtem T
is then defined by adding a set of rights, and the ndgpandDy on fully qualified
names. The proof rulgsy are represented as an inductive datatype that captures
the predicates used in constructing proofs and the inference rulesrfuriging
them. Semantic models are constructed as access graphs, suitably instaitiated
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name spaces and keys as vertices, and a tag on the edges to distinguishitbem.
commutativity theorem uses PVS induction on proof trees inyTavid constructs
corresponding proof trees of TM.

The interested reader may find further details on our PVS effort, including
complete theory specifications, tetp://www.csl.sri.com/programs/
security/jcs/toc.html

9 Conclusion

We have designed and formally verified a trust management kernel, fohwie
separation of naming and authorization led to a clean and simple formalization.
This kernel acts as a reference monitor that determines whether a givessa
request is authorized based on policy and supporting credentials. Hetegs
graphs as a semantic model, we show soundness and completeness ofdhe auth
rization system without names. The orthogonality of naming and authorization is
captured precisely in a commutativity theorem, which also gives us simple-sound
ness and completeness proofs for the entire kernel. The kernel islfipragfied

in PVS, allowing for the automatic generation of a verified implementation of a
reference monitor. By separating naming and authorization primitives,nve at

a compositional model and avoid primitives such as “speaks-for” tha peoven
troublesome in the past. The simplicity of the soundness and completenefss proo
for the full system suggests that a composite approach can be extendeddo-

ing about other features of a trust management system such as policadgng
constructs and revocation.

Using PVS, we can automatically generate executable code for the ederen
monitor core from our formal specification. We believe tNateObjects can be
effectively implemented via small Java programs that act as XML RPC server
Much of this code will be mechanically generated. For cryptographicrigcu
there are off-the-shelf TLS implementations in Java as well. While there is still
room for error, the assurance level of this system should be sub#itahtgher
than most: we have a formally verified specification, safe programming lgegua
a well-analyzed cryptographic protocol, and only a small amount of hatidwr
code.
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A Simulation Relations

A Labeled Transition System (LTS) over a set of actidwsis a pair(Q,7 ) con-
sisting of

1. A set of stateg,

2. Aternary relationr C (Q x Actx Q) called the transition relation

Elementsp,a, p') of the transition relation are also denotedmﬁ‘» p.
DEFINITION A.1 Strong (one-step) simulation relation

Let L = (Q,7T) be an LTS over a set of actiofsct, and let2’ = (Q’,7’) be
another LTS over the set of actioAst. Let Sbe a binary relation between and
Q’, SC Q x Q'. Further, let be a mapping from actions iAct to those inAct.
ThenSis called a strong simulation relation overand £’ if, wheneverpSp, if

p-2 g, then there existy € Q' such thap/ i g andqSd. We say thap' strongly
simulatesp if there exists a strong simulati®such thapSp.

DEFINITION A.2 Weak (many-step) simulation relation

Let L = (Q,7) be an LTS over a set of actiosct, and let2’ = (Q',7’) be
another LTS over the set of actioAst. Let Sbe a binary relation betweap and

Q', SC Q x Q. Further, let be a mapping from actions ict to sequences of
one or more actions iAct. ThenSis called a weak simulation relation over
and.’ if, wheneverpSp, if p-> g, then there existg € Q' such thayy/ e g and
gSd. Itis assumed thd{a) depends only on and is independent gf andp'. In
other words, the action in the first LTS is always simulated by the sequence of
actionst(a) in the second LTS. We say thptweakly simulate9 if there exists a
weak simulatiorSsuch thatpSp.
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