A Distributed High Assurance Reference Monitor
Extended Abstract

Ajay Chandet, Drew Dead, and John Mitcheti

! DoCoMo Communications Laboratories USA, San Jose, CA 95110
2 Computer Science Laboratory, SRI International, Menlo Park, CA 94025
3 Computer Science Department, Stanford University, Stanford, CA 94305

Abstract. We presenbHARMA, a distributed high assurance reference monitor
that is generated mechanically by the formal methods tool PVS from a verified
specification of its key algorithm&HARMA supports policies that allow delega-

tion of access rights, as well as structured, distributed names. TOHaRMA,

we use it as the core reference monitor behind a web server that serves files over
SSL connections. Our measurements show that formally verified high assurance
access control systems are practical.

1 Introduction

One of the major landmarks in computer security research was the definition of the
reference monitor as a central location for access control decisions, and the associated
notion of a Trusted Computing Base (TCB)[1, 2]. The classic definition of a reference
monitor has three properties: (1) It is always invoked (equivalently, is unbypassable).
(2) It is tamper-proof. (3) It is verifiable. Much research over the last thirty years has
been done on the first [3] and second properties, but comparatively little research has
appeared on the verifiability of reference monitors. Given the importance of reference
monitor correctness, this state of affairs is highly regrettable. Bugs in the reference mon-
itor have a high probability of directly compromising the security goals of the system,
as they are in the control flow path for every access control decision. While a refer-
ence monitor for a file system or other resource is often part of the TCB, recent trends
in extensible operating kernels [4] and proof-carrying code [5] suggest that it may be
possible to move some portions of traditional reference monitor functionality out of the
TCB, as long as computations done outside the TCB can be checked within the TCB.
Formal methods can be difficult and time-consuming to use, and are considered im-
practical for many applications. Because of the difficulty of using formal methods, al-
ternative assurance techniques have been developed [6]. Unfortunately, alternative tech-
niques do not provide the same confidence in correctness as formal, machine-checked,
proofs. That formal methods remain the “gold standard” can be seen, for example, in the
Common Criteria. The paucity of general purpose operating systems evaluated at EAL7
(under any protection profile) shows the rarity of formally-verified reference monitors.

* This work is supported by DARPA through SPAWAR contract N66001-00-C-8015 and by
DOD University Research Initiative (URI) program administered by the Office of Naval Re-
search under Grant NO0014-01-1-0795.

In earlier work, we presented the design of a distributed reference monitor, along
with its formal verification [7]. In this paper, we use the PVS theorem proving sys-
tem [8] to turn our formalization into a mechanically-generatedfieddistributed ref-
erence monitoimplementationthat provides access control in credential chain check
and search modes. As a result, our implementation provably meets a formally speci-
fied definition of security, namely, soundness and completemess semantic access
control model. We use the PVS compiler, which takes a substantial subset of the PVS
specification language and generates Common Lisp.

To test the performance and functionality of the automatically generated reference
monitor, we manually wrote the code to link the reference monitor with cryptographic
libraries and administrative interfaces. These components were then integrated into a
HTTP server. While building the test system around the verified reference monitor was
not conceptually challenging, it was necessary to make a number of modifications and
extensions to the tools and utilities we used. In addition to providing a working system
that confirms our belief in the potential for verified components of a trusted comput-
ing base, we also produced improvements in a standard web server and cryptographic
library interface that will be useful for other projects.

2 Distributed Reference Monitor Architecture

The two fundamental concepts in our policy language are access control lists (ACLS)
and bounded delegation. Every resource has an associated ACL, which is a list of (sub-
ject, right, delegation bound) tuples. An ACL grants some subject a right on some ob-
ject, and also specifies how far (if at all) that subject can delegate this right by specifying
a non-negative integral delegation depth. As shown in previous work, the combination
of ACLs and delegation depth provides an attractive compromise between revocability
and decentralized control of rights [9]. Moreover, since delegation chains can be viewed
as proofs certifying access to a resource, we will use the terms “proof search” and “proof
check” for the delegation chain search and chain validity algorithms respectively.

Our policy supports structured distributed names. Names can refer to principals in
policies, and are generated by a grammar that is independent of the authorization con-
structs. In particular we support linked local name spaces as defined in SPKI/SDSI [10,
11], such asAlice ’'s Bob’s Doctor , which we denote byAlice .Bob.Doctor .
Names compile to keys, which may appear directly in policies and proofs submitted
by clients. With the addition of names, our policy language is expressive enough to
subsume the core authorization and naming primitives of SPKI/SDSI.

Shared reference monitor: operational mod@sir verified reference monit@HARMA
is parameterized over a finite set of rights whose meanings are not interpreted by the
reference monitor. The monitor can be used both in proof search and proof check mode.
In proof check mode, the reference monitor ensures that the given evidence is sufficient
to allow the requested access. In proof search mode, the reference monitor tries to con-
struct a proof of access from the given policy.

A system deployed in a distributed setting will not know the identities of its users
in advance, or have all the evidence required to generate the needed proof of access.

A proof search procedure needs to access policy statements made by several resource
owners (or principals). For this, we need guarantees on the validity of local policy state-
ments, when used elsewhere in the system. While some systems use signed certificates
to authenticate policy statementsiARMA supports the authentication of principals
through SSL, and allows for the collection of policy statements through secure HTTP
connections. Finally, name resolution for linked local names is done through remote
procedure calls over SSL. These calls are handled by “nameobjects”, which contain lo-
cal name definitions for the principal owning the nameobject. For example, to resolve
the nameAlice .Bob in the current context, a secure RPC call to the nameobject for
Alice returns the key foAlice .Bob. Nameobjects and the name resolution function

are specified within PVS, from which executable versions are automatically generated.

Access graphs: a general semantic modéle semantic model of access for this archi-
tecture is a forest of weighted, directed graphs, whose nodes are principals and edges
capture policy statements (credentials). Each graph is rooted at the associated resource.
The weights represent delegation depths. Given an access graph, a schjeetccess
aresourcéo, r) if a pathp exists in the graph from the node corresponding to the

node corresponding te, labeled with policy statements for the rightsuch that the

length of each subpath from a nodepilown tos is no larger than the weight associ-

ated with that node. The weight condition must be satisfied at every node in the path,
meaning that itl; andd;,, are weights of two consecutive nodes, thien; < d; — 1.

Proof engines for accesg/e implement the access control model using a proof system
that is sound and complete for the weighted graph semantics [firiVethat subject
can access the resoureer), by constructing aroof of the assertior\ccess(s, o, r, d).
Proofs start from the access policy and proceed using the proof rules in Table 1Fwhere
denotes provability in the system. Access policies are expressed with similar assertions.
The policy assertioMCL(A, B, r, d) addsA to the ACL for rightr on objectB, with
further delegation abilityl. The assertiobel(A, B, r, C, d) allows A to delegate a right
r on objectB, to principalC with further delegation depitti.

The inference rules are essentially straightforward. For example, Delledation
can be read as: il can access right on resourceB with the ability to delegate it
further at mostd + 1) times, and delegates the same right'twith a delegation bound
of d, thenC' can access righton B and can delegate it further up to a depthiofrhe
last two rules are needed for completeness: if you have the ability to delegate a right
times, you can also delegate that rightimes, for anyk < n.

(RootACL) ACL(A, B,r,d) F Access(A, B,r,d)
(Delegation Access(A, B,r,d + 1), Del(A, B,r,C,d) \ Access(C, B, r,d)
(Ord1) Access(A, B,r,d + 1) - Access(A, B, r,d)
(Ord2 Del(A, B,r,C,d + 1) Del(A, B,r,C,d)

Table 1. Logical rules for access judgments

Structured, distributed name®ur policy language also provides support for linked lo-
cal names, in the manner of SPKI/SDSI. In earlier work, we showed that soundness and

completeness for an access control system that includes naming follows logically from
a commutativity theorem [7] between authorization and naming constructs. Linked lo-
cal names are a special case of a general approach to composition, captured by the
commutativity theorem, that supports other policy constructs such as groups, roles, etc.
Our PVS effort includes a specification of linked local names and name resolution,
using which we formally prove the commutativity theorem. This allowed us to formally
demonstrate the soundness and completeness of the hame-extended proof system, in-
creasing confidence in an implementation that uses them directly. We note also that as a
result of the commutativity theorem, policies that contain names can first be compiled
into a policy containing only keys, to which the rules in Table 1 can then be applied.

3 Formal Verification of Reference Monitor using PVS

The first set of proofs within PVS ensure the soundness and completeness of our proof
rulesw.r.t. the semantic model of access graphs. These theorems petatability

within the proof system, denoted Iyy to truth in the access graph semantic model,
denoted by~=. Formally, we capture the set of local policies relevant to the access
control decision by thevorld state We denote the minimal access graph model corre-
sponding to a world state by M (w). Given a world statev, access grapt¥, subject

s, object/right pair(o,), we use the following notation:

w F s — (o0,r) = there exists a proof of accessingdo, r) using the logical rules
w E= s — (0,7) = s can acceséo, r) in the access graph model
G = w = all accesses provable inare also true of the access gragh

Given this, soundness and completeness can be stated as follows:

(S) whks—(0,r) = VG.(G Ew)=GEs— (or)
©C) YVGI[GEw=GEs—(or)=wks—(or)

In other words, soundness states that for any given worldstatebjects, and resource
(o,), if one canprovethats can access the righton objecto within the proof system,

then in all semantic models (access graphs) that satisfy the world state, subgatt
access the resourge,). Completeness can be understood as follows: let us assume
that for all access graphs, wheneverG satisfies the given world state, subjects

can access resourc¢e, r) in the access graph. Then there exisgga@of of s — (o,7)

within the proof system. These formally verified properties increase confidence in any
implementation of a reference monitor that uses these rules.

Correctness of algorithm&Ve obtain a verified implementation of our verified model

by specifying the proof search and check algorithms in PVS, from which PVS extracts
equivalent Lisp code. Thus, we avoid the implementation errors often associated with
hand-coded implementations of verified models (e.g., [12]). Either algorithm can be
invoked by the server or the client. Ideally, the client would use proof search (verified
or otherwise) to ensure that it can access the desired resource, and the server would
validate this proof using the verified proof check algorithm. This setup provides the

same efficiency benefits as proof-carrying code [13, 14]; instead of executable code

sent by the client, we have a verifiable proof corresponding to an access request.
Soundness for the proof check (equivalently, chain validation) algorithm ensures

that the logical proof of an allowed access will correspond to a valid path in the access

graph. Completeness for this algorithm ensures that whenever there exists a valid path

in the access graph, the proof check algorithm will validate the corresponding logical

proof. Formally, given an access grafhhat is a model of the world state, (G = w),

if there exists a path of G that is equivalent to a logical progf= w - s — (o,r),

then soundness and completeness for this algorithm can be stated as:

(PCS) check (w,p,s,o0,r) = VG.(G E w) = 3t.G |t s — (o,7)
(PCC)VG.(G Ew) = .G =+ s — (o,r) = Ip.check (w,p,s,o,r)

whereG =; s — (o,r) denotes that can access the resourer) in the access graph
G via the well-defined path

The proof search algorithm returns a proof-tree that can be checked against Table 1,
thereby ensuring soundness. Completeness of this algorithm shows that if the procedure
fails, then no path exists in the access graph for the access request. Using the same
terminology as above, soundness and completeness for this algorithm can be stated as:

(PSS) search (w,s,o,r) =witness (p) = VG.(G Ew) = .G |+ s — (o,r)
(PSC) search (w,s,o,r) =failled = Vt.=(G(w) =t s— (o,7))

Soundness and completeness imply that the PVS algorithms will match our expectation
of when an access should be allowed. We refer the reader to [7] for more details.

Code extraction from verified specificatighlarge subset of the PVS specification lan-
guage can be seen as a functional language, supporting common data types such as lists
and records, higher order functions, parametrization, and additional features such as
dependent types, that greatly simplify proof construction. From version 2.3, PVS can
generate Lisp code from the corresponding functional specification, which is guaran-
teed to meet the specifications if all proof obligations have been discharged. We use this
capability to generate implementations of the proof check and proof search algorithms
in DHARMA from their verified PVS specification. In addition to soundness and com-
pleteness, type correctness condition proofs ensure the termination of the recursively
defined proof check and search functions.

4 A Policy-driven Web-based File Server

Our PVS specification allowed us to automatically generate the verified reference moni-
tor DHARMA. To study its applicability, we instrumented a HTTP server withaRMA.

The enhanced server allows for editing of local policies, remote management of policy
databases, and access control via proof check and proof search.

Infrastructure We chose Franz’s Allegro Common Lisp and AllegroServe HTTP server
[15] as our research infrastructure. Due to AllegroServe’s provision of a hook for the
authorization of each HTTP request, integratingARMA was easy to do. We enhanced
the Allegro Common Lisp OpenSSL binding to support client authentication.

Enhancing the server witbHARMA We use AllegroServe’s authorizer framework to
integrateDHARMA with AllegroServe. Files are published in AllegroServe by associat-
ing one or more entities with the file. An entity is a Common Lisp object which handles
all requests for the file, and can have a number of attributes related to pre-loading,
caching, the time-out for serving the file, etc. Each entity also has a hook for an au-
thorizer object, which can be any Lisp function. When a client connects to the port on
which AllegroServe is listening, AllegroServe passes that connected socket to a free
worker thread that has access to the local policy. The worker thread locates the entity
that is associated with the request; if an entity is found and has an authorizer, it calls the
authorizer function to decide if this client should be allowed to access the selected file.

We instantiated the authorizer functions for the entities of each published resource
with our verifiedDHARMA proof search and proof check functions. Based on whether
or not the client has presented a proof, the appropriate function (proof check and proof
search, respectively) is invoked. The client’s public key, name, and URI of the requested
resource are passed to the function. We also need to authenticate the client, and perform
distributed name resolution when the presented proof contains linked local names.

Leveraging AllegroServe’s request protocol in this manner allows us to express the
security guarantees provided by the web server in terms of the security properties of
the reference monitabHARMA. The fact that AllegroServe is programmed in a func-
tional style in Lisp allowed us to quickly audit its source code and assure ourselves
that DHARMA is invoked beforeany resource is served by the enhanced web-server.
This source code audit is, of course, far short of a formal proof of security for the
DHARMA-enhanced AllegroServe. Such a proof would be important for production use
of a high-assurance system; however, it is outside the scope of this work. We also note
that the context in which AllegroServe operates may be vulnerable to other attacks; for
example, an attacker may gain root access to the machine and replaneARBIA -
enhanced web server with an insecure server. The research described here is focused on
providing assurance for a critical software component, the reference monitor, even as
we remain cognizant of other attacks on the larger system contaimngMA.

Managing local policy database# resource owner may not have all the certificates
required to decide on an access request. We provide the ability to add delegation policy
statements to &ocal policy database after authenticating the signer of the statement
against the subjects mentioned in the body of the statement. For example, to add the
statement which says thdtaddsB to its ACL for a particular right, it must be signed

by A. Checking signatures in this manner is equivalent to implementing the logical
operator “says” used in other treatments [16] of distributed authorizatisARMA
supports this by using a POST method over a SSL-secured HTTP connection. In addi-
tion to such peer exchange of credentials, a resource host can edit its own local policy
as reflected in the files and their authorizers published through AllegroServe.

Distributed name resolutiors mentioned earlier, our policy language supports linked
local names. Local name resolution is provided via nameobjects that are generated au-
tomatically from their PVS specification. Since PVS doesn’t have native support for
remote procedure calls, we provided this by meanssafraantic attachmend the PVS
specification. A semantic attachment is an external piece of code that is declared but not

defined within a PVS specification. The hand-written implementation of the semantic
attachment is linked with the PVS code generated for the nameobjects at the different
peer sites. This hand-written code was a few lines that set up Allegro Lisp RPC sockets,
connecting the PVS-generated local name resolution function on one nameobject to the
same function running on another nameobject. Our handling of nested RPC calls, such
as those involved in resolving the nameB.C, is iterative; this allows us to detect if a
specific nameobject is unresponsive, and provides a way of caching keys corresponding
to intermediate names such 4sB.

5 Measurements

To measure the cost of addimHARMA to a HTTP server, we performed a series of
measurements. First, to get a baseline, we compared the performance of AllegroServe
to Apache, both with and without SSL support. Then, we measured the cost of adding
either proof check or proof search while handling file requests. Finally, we measured the
cost of resolving linked local names in a distributed setting, as part of checking the proof
presented with the access request. This series of measurements allowed us to identify
the costs of individual additions to the original web server, and point to performance
limits as well as areas where optimization would produce the most benefit.

All measurements were performed on a dual Xeon machine, with 2GB of RAM,
running at 2.8GHz with hyperthreading enabled. The machine was running Redhat
Linux 7.3, kernel version 2.4.18. We used AllegroServe version 1.2.26, and Apache
version 2.0.47 with thenod.ssl module. Measurements used version 0.8 of the httperf
tool [17] that was slightly modified to support sending client certificates as per [18].

Distributed name resolutionWe found AllegroServe to be a well-architected, high-
performance web-server that performed well on our tests. We made three representa-
tive measurements, for file sizes of 8Kbytes (text page), 100Kbytes (image), and 1byte
(minimal HTTP payload processing time). Table 2 shows the throughput for the differ-
ent servers, for serving files of different sizes over HTTP and HTTPS connections.

To estimate the relative cost of adding a Lisp reference monitor to AllegroServe with
a C-based one, we compared the performancefoxRMA-enhanced AllegroServe
that does proof search over a policy database containing only ACLs, and ACL-based
access control in Apache using SSLRequire directives. For a set of 100 credentials,
we measured a 2.4% performance hit for AllegroServe, and 3.8% for Apache. These
numbers suggest that our measurements in the following sections reflect the intrinsic
cost of the algorithms, rather than the choice of Lisp for the reference monitor.

Adding proof checkFigure 1 measures the cost of verified proof checbHRRMA -
enhanced AllegroServe. This is a crucial measurement, as it is a fundamental guarantee
of assurance. A proof presented by a client will have to be validated by the verified
proof check code, irrespective of the algorithm used for proof search.

For our measurements, we varied the number of principals and the number of cre-
dentials (policy statements) in the generated policy database. The proof check algorithm
checks every step of the presented proof against this database, in addition to checking

Size of file
Protoco| Server |1B|8KB|100KB|
HTTP |AllegroServe613 430| 90
Apache (431]417| 104
HTTPS|AllegroServel28 101| 38
Apache (101 95| 54
ACL |AllegroServel25 99 | 38
Apache (96| 92 | 52

Table 2.Baseline performance (requests served / second) for AllegroServe and Apache

whether each pair of successive steps represents a valid application of one of the rules
in Table 1. The policy database is represented as lists within PVS; we can see the effect
of searching through longer lists as the number of credentials increases.

Our measurements show that verified proof check usimgrmMA scales very well.
For access control scenarios in corporations with up to 5000 credentials, the expected
performance hit is only 5% for an average file size of 8KB. If the average resource
size is higher, then even more credentials can be supported with the same penalty. An
optimization is to specify the policy database as a hashtable within PVS, which would
allow for nearly constant proof check time.

Adding proof searchProof search is the most expensive operatiatHARMA . Figure 1
measures the times for verified proof search for different combinations of policy and file
sizes. Our proof search algorithm is equivalent to a breadth first search on the size of the
access graph, and thus is linear in the number of credentials which may gé{ivas

in an access graph witl principals. In our measurements for both proof search and
proof check, we generated a policy database by limiting the degree of nodes in the
access graph to between 3 and 20, depending on the total number of principals. The
degree estimates how many other principals a given principal would add to an ACL for
a resource controlled by itself, and to how many principals it would pass on a delegated
access. In other words, a principal may have upto 20 other principals on itsak@L,

pass on rights to 20 principals for resources it doesn’t own.

In contrast with proof check, proof search over a database of 5000 credentials has
an expected performance penalty of about 40%. The contrast is more pronounced with
higher policy sizes; 15000 credentials corresponds to only a 17% performance penalty
for proof check inDHARMA, but 110% for proof search. These numbers for verified
proof search correspond to the best known algorithm for proof search in policies without
extended names [19], and thus reflect the complexity of the underlying algorithm, as
opposed to the performance of the generated code.

Adding name resolution via RPEinally, we considered the cost of resolving linked

local names through remote procedure call, when they appear in the proof presented
by the client. Setting up an SSL-secured channel over RPC incurred significant cost;
for scenarios in which the presented proof contaimel¢t onelinked local name, where

each name resolution request is handled by a different serdeRMA was only able

to handle 11 requests per second initiated by an individual client. The other extreme,
when all name resolution requests are handled by a single server using the same secured

—e— Proof Check (1B)
100 4 —m=— Proof Check (8KB)
80 % Proof Check (100KB)
60 - \
40 4 Proof Search (1B)
20 Moee o~
—p— Proof Search (8KB)
0 20000 40000 60000 80000 |_e— Proof Search
Number of Credentials (100KB)

Requests served/second

Fig. 1. Requests per second fbHARMA-enhanced AllegroServe

RPC channel, results inHARMA being able to handle 80 requests per second. Recall
that in the absence of name&siARMA can handle 125 requests per second.

Our measurements show that name resolution during proof check imposes a signifi-
cant penalty, in the absence of a central name server. Thus, wherbugirgnA with a
different proof search algorithm that can handle names in credentials, we suggest com-
piling the final proof containing names to one that has only keys. This compiled proof
can then be validated against a database that contains the equivalent name-resolved
credentials, without compromising security.

DiscussionOur experience witibHARMA shows that the TCB can be augmented with

a verified reference monitor that provides proof check functionality, without significant
penalties. In addition to intranet scenarios discussed earlier, this benefit scales well to
wide-area services such as electronic subscription-based publishing as only the sizes
of local policy tablesn the presented proo&ffect the cost of proof check. However,
adding proof search to the TCB has significant cost, as a result of the complexity of
the proof search algorithm. For the case of credentials that contain names, the optimal
search algorithms are cubic in the numbecegdentialg[19, 20], which would further
worsen performance if included in the TCB. If the result returned by the search algo-
rithm is validated by the verified proof checker, then the search algorithm itself doesn’t
provide any additional assurance. Given the lower bounds on these search algorithms,
we suggest implementing the search algorithm as efficiently as possible outside the
TCB, and validating the result by the verified proof checker inside the TCB.

We notice from the name resolution measurements that there is a significant penalty
for making remote calls for name resolution. A system with greater delegation depth in
policies may have longer proofs of access on the average, which would multiplicatively
increase this name resolution cost. Since search algorithms with named credentials are
already more expensive, we suggest providing name-resolved proofs to the server while
accessing a resource. One option for the infrastructure to support this is for the princi-
pals in the system to attach name resolution credentials together with the authorization
credentials as part of the proof of access presented with the request. SPKI/SDSI-style
name credentials that attest to the (local name, key value) binding in a nameobject, can
be directly used for this purpose. Servers may also advertise “recency requirements” on

credentials that they are willing to accept, which can guide the rate at which principals
refresh their credentials. Another observation is that performance is much improved by
having a single name server, since the cost of secure channel setup is shared amongst
several name resolution requests. This points to an architecture with a few back-end
“resolution servers” available to alHARMA-enhanced web servers.

6 Related Work

Early work in formal methods, such as the Stanford Pascal Verifier [21], and Ina Jo [22]
employed separate specification and implementation languages. Gypsy [23] was an
early system that provided separate specification and implementation languages, and
a compiler from its implementation language to executable code. Approaches such as
Sannella’s Extended ML system [24] integrate axiomatic specifications with Standard
ML programs. The Design/CPN tool has been used to compile a colored Petri net speci-
fication of a centralized access control system into ML code [25], but lacks full verifica-
tion support. Some recent work in model checking system code [26, 27] has approached
the problem by extracting specifications from actual code.

There is a rich history of security kernel designs from the late 1970s and early
1980s, including the provably secure operating system PSOS [28] and the kernelized
secure operating system (KSOS), which was implemented in Modula-2,and specified
separatelyas a finite state machine. The PSOS-inspired KSOS went through several fu-
ture generations, and begot SCOMP [29] (KSOS-6), KSOS-11 [30], VIKING [31], and
the Secure Ada Target [32]. Gutmann presents the verification of a reference monitor
based kernel [33] using assertion-based testing tools and hierarchical design methods;
in comparison, we provide provable compliance to a formal definition of security.

Several access control systems with support for decentralized policies have been
built, though none provide strong assurance guarantees or report performance studies.
The two best known are PolicyMaker [34] and KeyNote [35], with SPKI/SDSI [11, 10]
being the most analyzed. Clarke [36] integrated an existing C language implementation
of SPKI/SDSI into the Apache HTTP server, but didn't provide actual system measure-
ments. We note that a very early version of linked local names appears in Reed’s Ph.D.
thesis [37]; his implementation is very similar to our implementation of nameobjects
and name resolution (see Section 4.) Proof-carrying authentication [14, 38] provides a
general-purpose higher-ordendecidabldogic for distributed access control, and is
implemented in the proof-checker Twelf[39], but is not formally verified.

7 Conclusions

Building on our previous work on the formal analysis of access control policies, we
used PVS to generatevarifiedreference monitor. We theéntegratedthis monitor into

a web server that checks SSL certificates, resolves names against a set of hierarchical
local namespaces, and determines whether to allow an access request. The timing re-
sults in Section 5 show that the verified system has acceptable performance in proof
check mode when certificate chains are supplied as input. For greater efficiency, we can
replace the verified proof search function with hand-coded C, since the output of the

search process is a certificate chain that is checked by our verified reference monitor.

The results of Section 5 suggest that an architecture with a few public name resolution

servers mitigates the cost of setting up per-name secure connections in a distributed ac-
cess control system, making the performance of the verified chain validation acceptable

in the presence of linked local names.

References

1. Lampson, B.: Protection. In: Proc. of the 5th Annual Princeton Conference on Information
Sciences and Systems, Princeton University (1971) 437—443

2. U.S. D.O.D.: Trusted Computer System Evaluation Criteria (‘Orange Book’). (1983)

3. Rushby, J.: Noninterference, transitivity, and channel-control policies. Technical Report
SRI-CSL-92-02, SRI International (1992)

4. Engler, D.R., Kaashoek, M.F., O'Toole Jr., J.: Exokernel: an operating system architecture
for application-level resource management. In: Proc. of the 15th ACM Symposium on Op-
erating Systems Principles (SOSP '95), Copper Mountain, CO (1995) 251-266

5. Necula, G.C., Lee, P.: Safe kernel extensions without run-time checking. In USENIX, ed.:
2nd Symposium on Operating Systems Design and Implementation (OSDI '96), October
28-31, 1996. Seattle, WA, Berkeley, CA, USA, USENIX (1996) 229-243

6. Vecellio, G., Thomas, W.: Issues in the assurance of component-based software. In:
Proc. of the 2000 Workshop on Continuing Collaborations for Successful COTS De-
velopment (ICSE2000), (Limerick, Irelandwwsel.iit.nrc.ca/projects/cots/
icse2000wkshp/Papers/14.pdf

7. Chander, A., Dean, D., Mitchell, J.C.: Reconstructing trust management. Journal of Com-
puter Securityl2 (2004) 131-164

8. Owre, S., Shankar, N., Rushby, J.M., Stringer-Calvert, D.W.J.: PVS Language Reference,
Version 2.3. SRI International. (1998jtp://pvs.csl.sri.com/

9. Chander, A., Dean, D., Mitchell, J.: A state-transition model of trust management and access
control. In: Proc. of the 14th IEEE Computer Security Foundations Workshop. (2001) 27-43

10. Ellison, C., Frantz, B., Lampson, B., Rivest, R., Thomas, B., Ylonen, T.: SPKI certificate
theory. RFC 2693 (1999)

11. Rivest, R., Lampson, B.: SDSI-A Simple Distributed Security Infrastructintgp://
theory.lcs.mit.edu/ rivest/sdsill.html (1996)

12. Anderson, J.P.: Computer security technology planning study. Technical Report ESD-TR-
73-51, U.S. Air Force, Electronic Systems Division, Deputy for Command and Management
Systems, HQ Electronic Systems Division (AFSC), L. G. Hanscom Field, Bedford, MA
01730 USA (1972) Volume 2, pages 58—69.

13. Necula, G.C.: Proof-carrying code. In: Conference Record of POPL '97: The 24th ACM
Symposium on Principles of Programming Languages, Paris, France (1997) 106-119

14. Appel, AW, Felten, E.W.: Proof-carrying authentication. In: ACM Conference on Computer
and Communications Security. (1999) 52-62

15. John Foderaro: AllegroServe — A Web Application Server (Franz. Inchttp:(/
allegroserve.sourceforge.net/)

16. Abadi, M., Burrows, M., Lampson, B., Plotkin, G.: A calculus for access control in dis-
tributed systems. TOPLAS5(1993) 706-734

17. Mosberger, D., Jin, T.: httperf: A tool for measuring web server performance. In: First
Workshop on Internet Server Performance, ACM (1998) 59-67

18. Rescorla, E.: An introduction to OpenSSL programming, Part |. Originally appeared in the
Linux Journal;http://www.rtfm.com/openssl-examples/partl.pdf (2001)

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Clarke, D., Elien, J.E., Ellison, C., Fredette, M., Morcos, A., R.L.Rivest: Certificate chain
discovery in SPKI/SDSI. Journal of Computer Secu8itf2001) 285-322

Li, N., Winsborough, W., Mitchell, J.C.: Distributed credential chain discovery in trust man-
agement. Journal of Computer Secufity(2003) 35-86

Luckham, D.C., German, S.M., von Henke, F.W., Karp, R.A., Milne, P.W., Oppen, D.C.,
Polak, W., Scherlis, W.L.: Stanford Pascal Verifier user manual. CSD Report STAN-CS-79-
731, Stanford University, Stanford, CA (1979)

Locasso, R., Scheid, J., Schorre, D.V., Eggert, P.R.: The Ina Jo Specification Language
Reference Manual. System Development Corporation, Santa Monica, CA. (1980)

Good, D.I., London, R.L., Bledsoe, W.W.: An interactive program verification system. |IEEE
Transactions on Software Engineerih@l975) 59-67

Karhs, S., Sannella, D., Tarlecki, A.: The definition of Extended ML: a gentle introduction.
Theoretical Computer Sciendd3(1997) 445-484

Mortensen, K.H.: Automatic code generation method based on coloured petri net models ap-
plied on an access control system. In: Lecture Notes in Computer Science: 21st International
Conference on Application and Theory of Petri Nets (ICATPN 2000), Aarhus, Denmark,
June 2000. Volume 1825., Springer-Verlag (2000) 367-386

Chen, H., Wagner, D.: MOPS: An infrastructure for examining security properties of soft-
ware. In: Proc. of the 9th ACM Conference on Computer and Communication Security,
Washington D.C. (2002) 235-244

Chen, H., Wagner, D., Dean, D.: Setuid demystified. In: Proc. of the 11th USENIX Security
Symposium, San Francisco, CA (2002) 171-190

Neumann, P.G., Boyer, R.S., Feiertag, R.J., Levitt, K.N., Robinson, L.: A provably secure
operating system: The system, its applications, and proofs. Technical Report CSL-116, 2nd
Ed., SRI International (1980)

Fraim, L.J.: SCOMP: A solution to the multilevel security problem. IEEE Compl€er
(1983) 26-34

Berson, T., Barksdale, G.: KSOS: Development methodology for a secure operating system.
In: National Computer Conference, AFIPS Conference Proc. (1979) 365-371 Vol. 48.
Hartman, B.: A Gypsy-based kernel. In: Proc. of the 1984 IEEE Symposium on Security
and Privacy, Oakland, CA (1984) 219-225

Boebert, W.E., Kain, R.Y., Young, W., Hansohn, S.: Secure Ada target: Issues, system design,
and verification. In: Proc. of the 1985 IEEE Symposium on Security and Privacy, Oakland,
CA (1985) 176-190

Gutmann, P.: The Design and Verification of a Cryptographic Security Architecture. PhD
thesis, Department of Computer Science, University of Auckland (2000)

Blaze, M., Feigenbaum, J., Lacy, J.: Decentralized trust management. In: Proc. of the 1996
IEEE Symposium on Research in Security and Privacy, Oakland, CA (1996) 164-173
Blaze, M., Feigenbaum, J., Keromytis, A.D.: KeyNote: Trust management for public-key
infrastructures. In: Proc. of the 1998 Security Protocols Workshop. Volume 1550 of Lecture
Notes in Computer Science. (1999) 59-63

Clarke, D.E.: SPKI/SDSI http server / certificate chain discovery in SPKI/SDSI. Master’'s
thesis, Massachusetts Institute of Technology (2001)

Reed, D.P.: Naming and synchronization in a decentralized computer system. Technical
Report MIT/LCS/TR-205, Massachusetts Institute of Technology (1978) Also Ph.D. thesis.
Bauer, L., Schneider, M.A., Felten, E.W.: A general and flexible access-control system for
the web. In: Proc. of the 11th USENIX Security Symposium, San Francisco, CA (2002)
Pfenning, F., Salrmann, C.: System description: Twelf — A meta-logical framework for
deductive systems. In: Proc. of the 16th International Conference on Automated Deduction
(CADE-16), Trento, Italy, Springer-Verlag LNAI 1632 (1999) 202—206

