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Abstract

We address the problem of establishing a group key
amongst a dynamic group of users over an unreliable, or
lossy, network. We term our key distribution mechanisms
self-healingbecause users are capable of recovering lost
group keys on their own, without requesting additional
transmissions from the group manager, thus cutting back
on network traffic, decreasing the load on the group man-
ager, and reducing the risk of user exposure through traffic
analysis. A user must be a member both before and after
the session in which a particular key is sent in order to
be able to recover the key through self-healing. Binding
the ability to recover keys to membership status enables the
group manager to use short broadcasts to establish group
keys, independent of the group size. In addition, the self-
healing approach to key distribution is stateless, meaning
that a group member who has been off-line for some time is
able to recover new session keys immediately after coming
back on-line.

1. Introduction

One method for enabling secure multicast communi-
cation is the periodic distribution of a new key (called a
sessionkey) to group members. All messages exchanged
within the group during a fixed interval of time, or session,
are communicated securely through encryption under this
session key. We assume that, prior to the start of each ses-
sion, the group manager broadcasts a packet containing that

∗The majority of this work was completed while the author was a sum-
mer intern at Xerox PARC.

†The majority of this work was completed while the author was a sum-
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ployed by Xerox PARC.

session’s key (and perhaps, other information) to the group.
Because group membership is dynamic (that is, users may
be added and removed from the group periodically), the key
distribution broadcast targets only current group members.

The problem of distributing keys over areliablechannel
has received much attention (see, for example, [12, 20, 33,
39]). In this paper, we study a pragmatic variant of this
problem that has received much less attention–namely, how
to distribute session keys in a manner that is resistant to
packet loss.

In an unreliable network, the key distribution broadcast
for a particular session might never reach a user. Requiring
that each such user contact the group manager to request
a re-transmission would contribute to the traffic on a net-
work that might already be heavily burdened, and, when
group size is large, such re-transmissions could potentially
overwhelm the group manager. Furthermore, in some high-
security environments (e.g.,military applications) it can be
important that users avoid sending all but essential mes-
sages, lest they make themselves vulnerable by revealing
their location. Hence, we propose a solution that is nonin-
teractive.

SELF-HEALING KEY DISTRIBUTION. The central concept
of this paper is a type of noninteractive key distribution that
we call self-healing. The idea is that group members who
(due to network packet loss) do not receive a particular ses-
sion key via the key distribution broadcast, can recover the
session keyon their own. A group member accomplishes
this by combining information from any key distribution
broadcast preceding the lost packet with information from
any key distribution broadcast following it. In other words,
in order to recover a lost session key, the user must have
received key distribution broadcasts for any two sessions
which “sandwich” the session corresponding to the lost key
distribution broadcast. Hence, when self-healing key dis-
tribution is implemented for a sequence ofm sessions, it
is possible to miss all but the first and last key distribution



broadcasts, and still be able to recover all the session keys.
Basing session key recovery on the possession of sand-

wiching broadcasts allows us to use a flat, rather than hier-
archical, key management system. In such a system, each
personal key1 is known to exactly one user (enabling trace-
ability) and broadcasts are constructed in a stateless man-
ner. The cost of these benefits is an increase in communi-
cation overhead. However, because the keying information
is naturally decoupled from the content in the session key
setting, the overhead is incurred on the smaller payload, the
session keys, and so is quite reasonable. On the content,
a low-overhead reliability mechanism (e.g., forward error
correction) can be used.

Our key distribution schemes not only provide self-
healing, but the ability to revoke users from, and add users
to, the group, while being resistant to collusion attacks. If a
key distribution mechanism cannot be broken by any coali-
tion of up tot users, we say it is resistant to coalitions of
sizet.

APPLICATIONS. Self-healing key distribution appears to be
quite useful in high-security operations (such as the mil-
itary), where it is necessary to change session keys fre-
quently and to be able to revoke users quickly. Self-healing
key distribution works well here because the length of time
over which a user must buffer encrypted messages is short,
and revocation can be accomplished quickly with the broad-
cast of a single packet. In addition, the self-healing ap-
proach may be useful in commercial content distribution
applications in which the content is highly sensitive. For
example, during mergers and acquisitions extensive negoti-
ations involving many representatives from both sides may
take place. Frequent session key changes may be necessary
and the ability to revoke low-ranking parties during certain
exchanges is desirable. We emphasize that in any applica-
tion of self-healing key distribution the expected number of
consecutive sessions in which key distribution packets are
lost must be less than the number of sessions in between
any two intervals of membership for a particular user. This
appears to often be the case. For example, in group confer-
encing over the Internet, a burst of loss amongst the key dis-
tribution packets is likely to only cover an interval of time
on the order of seconds, however the length of time during
which a user may be revoked (to allow for discussion of sen-
sitive information, for example) will be at least on the order
of several minutes. The self-healing approach to reliable
key distribution is quite appropriate for such applications
because it is unlikely that a user will abuse self-healing by
leaving and rejoining the group within a short time period.

RESULTS. For applications such as those described above,
we show that with simple, polynomial-based secret shar-

1The personal keyis the collection of secrets that allows users to de-
crypt broadcast messages.

ing techniques, it is possible to achieve noninteractive resis-
tance to packet loss through small broadcasts. In particu-
lar, we provide an unconditionally secure construction with
broadcast overhead that is on the order of(t2m) log q bits,
where log q is the session key size,t is the collusion re-
sistance, andm denotes the number of sessions over which
self-healing is possible (which is closely correlated with an-
ticipated packet loss). Further, we show that it is possible
to achieve broadcasts of sizeO((t2 + mt) log q) bits, by
shifting a moderate amount of computation to the user’s
end. Each of these constructions provides forfast self-
healing (the core operation is simple polynomial interpola-
tion) over a fixed set ofm sessions and is resistant to collu-
sion. We discuss how to use modular exponentiation-based
secret sharing [16] to extend the lifetime of these construc-
tions by allowing users toevolvetheir personal keys from a
base set to an appropriate set of keys for the current set of
sessions. In all of these constructions, recovery from loss is
possible with no delay on the user’s part–after several key
distribution packets are lost, a single received key distri-
bution packet is sufficient to recover all the missed session
keys. The constructions are stateless; group members aren’t
penalized for being off-line for a period of time. This prop-
erty is important in wireless applications in which members
can quickly become off-line by moving out of broadcast
range. In addition, all of the personal keys in the system
are traceable. A consequence of the traceability and collu-
sion resistance is that the only way to break the system in a
long-term sense without risk of identification, is to form a
coalition of more thant users.

As part of our work, we introduce a new general tech-
nique for distributing unique keys to a select subset of users.
This result is of independent interest and is a useful exten-
sion of earlier techniques for distributing acommonkey to
a select subset of users [29].

Finally, we discuss the practical issues that must be
addressed when implementing a self-healing key distribu-
tion scheme. The core issue is parameter choices that are
both appropriate for the intended application and compati-
ble with existing network protocols. We illustrate the trade-
offs between the system parameters that exist while staying
within IP packet size constraints. Even if the parameters are
such that packet fragmentation is required (i.e.,the size con-
straints aren’t met) the fragments can be formed in such a
way that each is useful to a member whether or not any other
fragments are received. As a result, a member may still be
able to use the received packets to self-heal, or recover ses-
sion keys directly, even when the packets are fragments of
the actual key distribution broadcasts.

OVERVIEW. The rest of the paper is organized as follows.
In Section 1.1 we provide an overview of earlier work in the
areas of key distribution and multicast. Section 2 defines
most of the necessary terminology. Section 3 introduces



the new techniques of this paper: the self-healing mecha-
nism and the revocation mechanism. Section 4 discusses
our self-healing session key distribution scheme. In Sec-
tion 5 we show how to reduce the broadcast size by shifting
some computation to the user’s end. Section 6 describes
how to extend the lifetime of our approach. Section 7 dis-
cusses the practical issues encountered when implementing
this work, and Section 8 concludes the paper. Background
on the information theory concepts used and some security
proofs and lower bounds can be found in the appendices.

1.1. Related Work

In [41, 31] two key distribution protocols that are re-
sistant to packet loss through noninteractive means are de-
scribed. Both are motivated by the single sender content
distribution setting and take a tree-based approach to key
distribution and achieve resistance to loss by appending ad-
ditional key update information to the packets thatfollow
a key distribution broadcast. In [41], resistance to packet
loss is ensured by using error-correcting codes to generate
information about past group keys. If a certain fixed num-
ber of packets is received after a lost one, it is possible for
the user to reconstruct the lost information. In [31], these
ideas are built upon to allow resistance to correlated packet
loss. Depending on the membership change(s) that trigger
the rekeying, “hints” for updated keys are attached to sub-
sequent data packets. The hints can be as small as half the
size of the keys themselves, but leave the user with signifi-
cant work to do in order to recover missed keys.

When redundancy is only usedafter each key distribu-
tion packet as in [41, 31], care must be taken to ensure that
new group members don’t receive enough packets to allow
recovery of keys to which they are not entitled. Special-
ized communication (perhaps including unicast) is thus nec-
essary to control what members receive. Achieving small
broadcast size with such specialized communication would
seem to necessitate the hierarchical key management sys-
tems from [39, 40], that are used in [41, 31]. One short-
coming of using this approach is that such systems are state-
ful, that is, as the keys in the tree are updated, an off-line
member quickly becomes shut out of the group and cannot
rejoin without assistance from the group manager. In addi-
tion, in a hierarchical key management system many keys
are known tosubsetsof users, and giving away such keys
allows outsiders to enter the system in a way that is diffi-
cult to trace. The approaches in [41, 31] differ significantly
from the approach taken here because the self-healing prop-
erty requires thatanypair of preceding and following pack-
ets be sufficient for recovering the lost key. With this self-
healing requirement, it is possible to communicate with all
group members through short broadcasts even though the
underlying set of personal keys is flat rather than hierar-

chical (each key is stored by one user), which has the ad-
vantage of permitting traceability. In addition, the flat key
structure doesn’t penalize members for being off-line for a
period of time. We note also that in [31] the keying infor-
mation is not decoupled from the content. Pairing the two
makes sense if the group manager is the only sender, but in
the multi-sender setting that we consider, doing so would re-
quire passing all messages through the group manager first,
as appending the necessary keying information in a secure
way requires knowledge of the users’ personal keys.

Key distribution is at the core of many multicast and
broadcast encryption [5, 17] schemes. Our constructions
rest on a new technique for distributing distinct keys that is
an extension of techniques for distributing common keys to
subsets of users due to Naor and Pinkas [29]. In addition,
our approach to the multicast problem is similar to the one
taken by Kronos [33], in that we also use periodic rekeying.
For other multicast and broadcast encryption techniques see
[11, 17, 20, 21, 22, 28, 32, 37]. Graph-based multicast con-
structions are given in [39, 40, 26], and a method for re-
ducing the number of update messages needed by a pre-
viously off-line member in such schemes is given in [30].
Lower bounds for communication and storage in multicast
schemes are proven in [12].

Because our goal is secure communication for large
groups, we take a broadcast-based approach to key distri-
bution. There are many other scenarios in which key dis-
tribution is needed. We briefly mention some of them for
completeness. Initially, key distribution was mostly studied
with the goal of establishing a shared secret between two
parties [7]. A generalization of the problem studied in [7],
that of establishing a shared key amongst a group of any
size, is studied in [23, 19] in roughly the same model. A
Diffie-Hellman based solution for authenticated key distri-
bution is given in [43]. The two party key distribution prob-
lem is studied in the computational setting in [14, 24, 42].
In [36, 9, 2, 8], interactive key distribution is studied. The
formal analysis of key distribution protocols is considered
in [18, 38]. Provably secure two party key distribution with
active adversaries is studied in [3, 4, 35, 6].

2. Definitions and Notation

In a key distribution scheme, a group manager seeks to
establish a newuniquekey with each user over a broadcast
channel (See Appendix C for a formal definition). In ases-
sionkey distribution scheme, a group manager seeks to es-
tablish a common key (the session key) with everyone in the
group at the beginning of each session, where a session is
simply a fixed interval of time. In each setting, the ability to
revoke users, and thus prevent them from learning new keys,
is important. We say a scheme hast-revocation capability
if it is possible to preventt users at a time from learning the



new session key. When distributing session keys, we also
consider the self-healing property, which states that a mem-
ber in three sequential (though not necessarily consecutive)
sessions can recover the session key corresponding to the
intermediate session by using information recovered from
the first and last of the three broadcasts. All of our schemes
are resistant to coalitions oft users. That is, anyt colluding
users (whether revoked or not) are unable to recover infor-
mation they are not entitled to.

We begin by defining the notation of this paper and the
unconditionally secure model of session key distribution.
Many of our definitions and results make use of information
theory concepts such as the entropy function,H(·). A brief
review of the necessary concepts is in Appendix A.

We consider a setting in which there is a group manager
andn usersU1, . . . , Un. All of our operations take place in
a finite field,Fq, whereq is a prime that is larger thann.
Each user,Ui, stores a personal key,Si ⊆ Fq (i.e.,Si may
be a subset of elements ofFq). We usek to denote a single
key (i.e., an element ofFq). We allow for the possibility
that individual keys may be related.

Definition 1 [Key independence]{ki}i∈{1,...,n} ⊆ Fq is a
set oft-wise independent keys, if for every subset oft dis-
tinct indices{i1, . . . it}, H(ki1 |ki2 , . . . kit) = H(ki1).

We denote the number of sessions bym, and the set
of users who are revoked in sessionj, and thus unable
to recover that session’s key, byR. If Ui 6∈ R, we say
Ui is a member(or, an active user). The session keys
{K1, . . . ,Km}, are generated independently at random.
Forj ∈ {1, . . . ,m}, the session key,Kj , is sent to the group
members through a broadcast,Bj , from the group manager.
For any non-revoked userUi, thejth session key,Kj , is de-
termined byBj andSi (the set of revoked users,R, will be
clear from context).

Because in a session key distribution scheme a user po-
tentially learns fromBj , information about session keys
other thanKj , it is helpful to introduce a variablezi,j to
represent all the informationUi learns through knowledge
of bothBj andSi. More precisely:H(zi,j |Bj , Si) = 0 but
H(zi,j |Bj , ) = H(zi,j) = H(zi,j |Si). For example, ifUi

is a group member, thenzi,j will include Kj and possibly
information on other session keys, whereas ifUi is revoked
thenzi,j contains no information onKj and may in fact be
the empty set.

We emphasize that it is important to prepare for all
types of collusion attacks when designing key distribution
schemes. If the scheme is such that sensitive information
is embedded in users’ personal keys (e.g.,[15]) a coalition
of users may be unwilling to share their personal keys and
consequently can only attack session keys. Such a coalition
could consist ofα revoked users who collude witht − α
new group members to recover session keys for sessions in

which none of the colluding users were members. Security
against such a collusion attack motivates our definition of
self-healing in Definition 2.

Definition 2 [Session Key Distribution]
Let t, i ∈ {1, . . . , n} andj ∈ {1, . . . ,m}.

1. D is a session key distribution scheme if the following
are true:

(a) For any memberUi, Kj is determined byzi,j ,
which in turn is determined byBj and Si

(H(Kj |zi,j) = 0 andH(zi,j |Bj , Si) = 0).

(b) For any set B ⊆ {U1, . . . , Un},
|B| ≤ t, and Ui 6∈ B, the users in
B cannot determine anything aboutSi

(H(Si|{Si′}Ui′∈B ,B1, . . . ,Bm) = H(Si)).

(c) What membersU1, . . . , Un learn fromBj can’t
be determined from the broadcasts or personal
keys alone (H(zi,j |B1, . . . ,Bm) = H(zi,j) =
H(zi,j |S1, . . . , Sn)).

2. D has t-revocation capability if given any setR ⊆
{U1, . . . , Un} where|R| ≤ t, the group manager can
generate a broadcastBj , such that for allUi 6∈ R, Ui

can recoverKj (H(Kj |Bj , Si) = 0), but the revoked
users cannot (H(Kj |Bj , {Si′}Ui′∈R) = H(Kj)).

3. D is self-healing if the following are true for any1 ≤
j1 < j < j2 ≤ m:

(a) For anyUi who is a member in sessionsj1 and
j2, Kj is determined by the set,{zi,j1 , zi,j2}
(H(Kj |zi,j1 , zi,j2) = 0).

(b) For any disjoint subsetsB,C ⊂ {U1, . . . , Un}
where|B∪C| ≤ t, the set{zi′,j}Ui′∈B,1≤j≤j1 ∪
{zi′,j}Ui′∈C,m≥j≥j2 , contains no informa-
tion on Kj (H(Kj |{zi′,j}Ui′∈B,1≤j≤j1 ∪
{zi′,j}Ui′∈C,m≥j≥j2) = H(Kj)).

We considercomputationallysecure session key distri-
bution in Section 6. Because the definition of session key
distribution in the computational setting is a natural varia-
tion on the above definition, we do not include it here, but
provide it instead in Appendix E.

3. New Techniques

3.1. Self-Healing

The idea behind this technique is to use secret sharing
[34], to bind the ability of users to recover from packet loss
to the user’s membership status. From each broadcast, a
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Figure 1. The self-healing mechanism. From Bj−1, Ui recovers a share of Kj−2, the key Kj−1 and
shares for Kj , Kj+1 and Kj+2. From Bj+1, Ui recovers the same share of Kj−2, new shares of Kj−1 and
Kj , the key Kj+1 and the same share of Kj+2. As a result of Bj−1 and Bj+1, Ui now has complementary
shares of Kj and can recover Kj = 4, by self-healing, even though broadcast Bj wasn’t received.

user recovers the current session key and ashareof each of
the previous and future session keys. Hence, in each broad-
cast, a user learns either the actual key or a share of the
actual key for each of them sessions. The share ofKj that
is received in each sessionj1 < j is complementary to the
share ofKj that is received in each sessionj2 > j. Hence, a
user who is a member in both sessionj1 andj2 will be able
to reconstructKj , even ifBj isn’t received. Figure 1 repre-
sents the self-healing property in an intuitive way; the value
of the session key is ambiguous when each share is consid-
ered alone, but when the shares are combined, the value of
Kj becomes clear.

In order to provide resistance to collusion attacks, in the
self-healing key distribution schemes that are based on this
mechanism, the shares recovered by different users are dif-
ferent. The collusion resistance of a key distribution scheme
is correlated with the degree of dependence between the
shares recovered by the users in each period. We can ac-
complish any desired level of coalition resistance by us-
ing polynomials of sufficiently high degree to determine the
values of the shares.

Construction 1 A self-healing session key distribution
scheme (without revocation capability)

1. (Set-up) Lett be a positive integer. The group man-
ager chooses2m polynomials inFq[x], each of de-
gree t, h1, . . . , hm, p1, . . . , pm, and m session keys,
K1, . . . ,Km ∈ Fq, all at random. For eachj ∈
{1, . . . ,m}, define a polynomial inFq[x], qj(x) =
Kj − pj(x). For i ∈ {1, . . . , n}, userUi stores the
personal keySi = {i, h1(i), . . . , hm(i)} ⊆ Fq.

2. (Broadcast) In sessionj ∈ {1, . . . ,m}, the broadcast
is:

Bj = {h1(x) + p1(x), . . . , hj−1(x) + pj−1(x),
hj(x) + Kj ,

hj+1(x) + qj+1(x), . . . , hm(x) + qm(x)}

3. (Session Key and Shares Recovery in Sessionj) For all
i ∈ {1, . . . , n}, Ui recoversKj from broadcastBj by
evaluatinghj(x) + Kj at i and subtractinghj(i) (the
latter is part ofSi). Similarly,Ui recovers session key
shares{p1(i), . . . , pj−1(i), qj+1(i), . . . , qm(i)}. Self-
healing is then possible because in sessionj1 < j, Ui

recovers shareqj(i) and in sessionj2 > j, Ui recovers
sharepj(i), andpj(i) + qj(i) = Kj .



Adding a user to this scheme during sessionj′ is straight-
forward, provided the underlying field is sufficiently large.
The group manager sends a new member a unique identity,
i ∈ Fq, and the corresponding points on the polynomials
{hj(i)}j∈{j′,...,m}. However, Construction 1 has no revo-
cation capability. In Section 4 we describe how the con-
struction may be combined with Construction 2 to achieve
self-healing key distribution with revocation.

We prove the security of Construction 1 (Lemma 1) in
Appendix B.

Lemma 1 Construction 1 is an unconditionally secure,
self-healing, session key distribution scheme (with no revo-
cation capability).

User storage and broadcast size in Construction 1 are
both essentially optimal, as shown by the following lem-
mas. The proofs are in Appendix D.

Lemma 2 In an unconditionally secure, session key distri-
bution scheme, if userUi is entitled to allm session keys,
thenH(Si) ≥ mlog q, for eachi ∈ {1, . . . , n}.

Lemma 3 In an unconditionally secure, self-healing ses-
sion key distribution scheme,H(Bj) is Ω(mt) log q.

3.2. Revocation

In this section we describe a mechanism for distribut-
ing one set of distinct (but related) keys to a select subset
of users over a broadcast channel. Later, this mechanism
will allow us to add revocation capability to the self-healing
technique of Section 3.1. Note that the ability to distribute
distinctkeys to a subset of users is essential to self-healing
key distribution, because although our main goal is the dis-
tribution of common keys (i.e., session keys), we do this
reliably by also distributingsharesof keys, and these shares
must be distinct to ensure collusion resistance. The mecha-
nism we present here can be viewed as a generalization of
the Naor-Pinkas unconditionally secure method for estab-
lishing acommonkey over a broadcast channel, [29].

The keys distributed in this mechanism are each a point
on a polynomial. The size of the broadcast grows with the
square of the degree of collusion resistance desired, not with
the total number of users. Figure 2 illustrates the goals of
the key distribution mechanism.

Construction 2 A key distribution scheme witht-
revocation capability (and without self-healing)

1. (Set-up) Lett be a positive integer. LetN ∈ Fq, be an
element that is not equal to any user’s index. The group
manager chooses at random fromFq[x, y] a polyno-
mial, s(x, y) = a0,0 + a1,0x + a0,1y + . . . + at,tx

tyt.
For i = 1, . . . , n, user Ui stores the personal key,
(N, i, s(i, i)).

2. (Broadcast) The group manager chooses at random
a polynomial of degreet in Fq[x], f(x). Let W ⊆
{1, . . . , n}, |W | = t, consist of the indices of the users
that should not be allowed to recover a new key from
the broadcast. The broadcast consists of the following
polynomials:

{f(x) + s(N,x)} ∪ {w, s(w, x) : w ∈ W}

3. (Key Recovery) A userUi such thati /∈ W , can evalu-
ate each polynomials(w, x) at x = i to gett points on
the polynomials(x, i). Coupling these with his per-
sonal keys(i, i), Ui has t + 1 points ons(x, i) and
so is able to recover that polynomial and evaluate it
at x = N to recovers(N, i). Ui may then evaluate
(f(x) + s(N,x)) at x = i, subtract offs(N, i) and
recover a new individual key,f(i).

Because this technique is of independent interest, we
demonstrate its security before it is combined with the self-
healing mechanism. The proof of the following lemma may
be found in Appendix C.

Lemma 4 Construction 2 is an unconditionally secure key
distribution scheme witht-revocation capability.

Note that the keys distributed in Construction 2,
{f(1), . . . , f(n)} are (t + 1)-wise independent because
f(x) is of degreet. The size of the broadcast,B, in Con-
struction 2 isO(t2log q). The Naor-Pinkas scheme, which
is an unconditionally secure method of distributing a com-
mon key, has broadcast sizeO(tlog q), so moving from the
distribution of a single key to the distribution of a set of
(t+1)-wise independent keys has multiplied the broadcast
length byt.

4. Self-Healing Session Key Distribution

By combining the techniques of Sections 3.1 and 3.2,
we construct a session key distribution scheme that hast-
revocation capability and is self-healing.

Construction 3 Unconditionally secure self-healing ses-
sion key distribution

1. (Set-up) Lett be a positive integer, and letN be
an element ofFq that is not equal to any user in-
dex. The group manager choosesm polynomials
p1(x), . . . , pm(x) in Fq[x], each of degreet, and m
session keysK1, . . . ,Km ∈ Fq, all at random, and
defines a polynomial,qj(x) = Kj − pj(x), for each
j = 1, . . . ,m. For each j ∈ {1, . . . ,m}, the
group manager choosesm polynomials inFq[x, y]
at random,s1,j , . . . , sm,j , where fori = 1, . . . ,m,
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Figure 2. The Revocation Mechanism. For i = 1, . . . , n, Ui stores personal key (N, i, s(i, i)). After the
broadcast, a member Ui is able to recover a new key f(i), but learns nothing about f(j) for j 6= i. A
revoked user, Ui′ , learns nothing about any of the new keys, {f(i)}i∈{1,...,n}.

si,j(x, y) = ai,j
0,0 + ai,j

1,0x + ai,j
0,1y + . . . + ai,j

t,tx
tyt.

For i ∈ {1, . . . , n}, userUi stores the personal key:
Si = {N, i, s1,1(i, i), . . . , sm,1(i, i), s1,2(i, i), . . . ,
sm,2(i, i), . . . . . . , s1,m(i, i), . . . , sm,m(i, i)}

2. (Broadcast) LetA,R ⊆ {U1, . . . , Un}, |R| ≤ t, de-
note the active users and revoked users in session
j, respectively. The group manager choosesW =
{w1, w2, . . . , wt} ⊆ Fq such that the indices of the
users inR are contained inW , none of the indices of
the users inA are contained inW andN 6∈ W . The
broadcast in periodj ∈ {1, . . . ,m}, isB1

j∪B2
j , where:

B1
j = {pj′(x) + sj′,j(N,x)}j′=1,...,j−1

∪ {Kj + sj,j(N,x)}
∪ {qj′(x) + sj′,j(N,x)}j′=j+1,...,m

B2
j = {w`, {sj′,j(w`, x)}j′=1,...,m}`=1,...,t

3. (Session key and shares recovery in sessionj) For all
i ∈ {1, . . . , n}, Ui is able to recover the polynomial
sj,j(x, i) using{sj,j(w`, x)}`=1,...,t by evaluating the
polynomials atx = i and interpolating based on
the points(i, sj,j(i, i)) and{(w`, sj,j(w`, i))}`=1,...,t.
Then Ui recovers Kj by evaluating sj,j(x, i) at
x = N , and subtracting this value from(Kj +
sj,j(N,x))|x=i.

Additionally, Ui can interpolate to determine
{sj′,j(x, i)}j′=1,...,j−1,j+1,...,m and thereby recover

shares{pj′(i)}j′=1,...,j−1 and {qj′(i)}j′=j+1,...,m in
a similar manner.

Adding users to the group proceeds as in Construc-
tion 1. Provided the underlying field is sufficiently large,
the group manager adds a new member in sessionj′ by
simply giving the user a unique identity,i ∈ Fq, and
personal keys corresponding to the current and future ses-
sions{sj,`(i, i)}j∈{j′,...,m},`∈{j′,...,m} (keys corresponding
to past sessions are unnecessary).

Theorem 1 Construction 3 is an unconditionally se-
cure, self-healing session key distribution scheme witht-
revocation capability.

Proof: Recall that our goal is security against coalitions of
size at leastt. In the following we show this is true in the
context of Definition 2.

KEY DISTRIBUTION. A memberUi recoversKj and
shares of the other keys as described in Step 3, andzi,j =
{p1(i), . . . , pj−1(i),Kj , qj+1(i), . . . , qm(i)}, appears to be
a randomly distributed subset ofFq to an observer who has
only either broadcasts or personal keys. In addition, a set
of t users,B such thatUi 6∈ B, i 6∈ W , is unable to de-
terminesj′,j(i, i) for any j′ ∈ {1, . . . ,m}, because they
are only able to recover points on the polynomial,sj′,j(x, i)
for which x = i′ ∈ W (and i 6∈ W ) and the points on
the polynomial,sj′,j(i, x) for which x = i′ andUi′ ∈ B.
So, given that the degree of each polynomial ist, sj′,j(i, i)
still appears to be a randomly distributed value inFq to



the users inB. Since no information onsj′,j(., .) for any
j′ ∈ {1, . . . ,m}, is contained in other broadcasts, it follows
thatH(sj′,j(i, i)|{Si}i∈B ,B1, . . . ,Bm) = H(sj′,j(i, i)).

REVOCATION. It suffices to consider what a set oft re-
voked users,R, learn from the broadcast:∪Ui′∈Rzi′,j =
{sj′,j(i′, x) : Ui′ ∈ R, j′ = 1, . . . ,m}. Hence, for
i = 1, . . . , n, the revoked users know at mostt points on
the polynomials{sj′,j(x, i)} (and no points ifUi 6∈ R)
so each of the points{sj′,j(N, i)} appears to the revoked
users to be randomly distributed inFq. Because for all
j = 1, . . . ,m, and all i, the revoked users have no in-
formation of sj′,j(N, i), it follows that the revoked users
have no information onsj′,j(N,x), or consequently, onKj :
H(Kj |Bj , {Si′}Ui′∈B) = H(Kj).

SELF-HEALING . Recall from Step 3 of the construction
that for j1 < j < j2, a memberUi learnsqj(i) from Bj1

andpj(i) fromBj2 , hence,Kj = pj(i)+qj(i) can be recon-
structed from bothBj1 andBj2 . Now consider a set of users,
B, who are revoked in sessionsj andj2 > j but active in
sessionj1 < j, and a set of users,C, who are revoked in
sessionsj andj1 < j but active in sessionj2 > j. We show
that ifB andC are disjoint and|B∪C| ≤ t, then the collud-
ing usersB ∪C, are unable to recoverKj from broadcasts,
Bj1 andBj2 . In order to recoverKj , B ∪ C must recover
qj(i) fromBj1 andpj(i) fromBj2 , for somei. Because the
users inC are revoked in sessionj1, B ∪ C can only re-
cover{qj(i)}Ui∈B , and because the users inB are revoked
in sessionj2, B∪C can only recover{pj(i′)}Ui′∈C . Hence,
becauseB andC are disjoint and each of size at mostt, and
both pj(x) andqj(x) are of degreet, they cannot recover
Kj .

2
The broadcast size in the above construction isO((mt2+

tm) log q). Because Construction 3 is both a key distribu-
tion scheme witht-revocation capabilityanda self-healing
session key distribution scheme, a lower bound on broad-
cast size follows from lemmas in Appendix D:|B| ≥
max{t2 log q, mt log q}. Hence, there seems to be room for
improvement in the broadcast size of Construction 3.

5. Reducing Broadcast Size

In this section, we show how to reduce communication
overhead fromO((mt2 + mt) log q) to O((t2 + mt) log q),
while adding a moderate amount of additional computation
at the user’s end. The idea behind the reduction is to de-
crease the size ofB2

j in Construction 3 by broadcasting a
smaller set of polynomials,{sm,j(w, x))}w∈W , and mak-
ing public a pseudorandom permutationσ, with which each
user can efficiently generate the necessary remaining poly-
nomials,{sj′,j(w, x))}j′∈{1,...,m−1},w∈W . The fact thatσ’s
output is pseudorandom is useful, because it ensures that

with high probability, the entire collection of polynomials
will appear random,and hence, indistinguishable from the
collection generated entirely at randomly in Construction 3.
We emphasize however, that the choice of pseudorandom
σ is enabling but not absolutely necessary. Following the
construction, we discuss other approaches.

Because the smaller set of polynomials from which the
others are defined can only be specified once the set of re-
voked users, and hence the setW , is known, we also need
to modify the scheme to ensure that the personal keys allo-
cated to users in the set-up phase don’t introduce conflicts.

Before stating the construction, we introduce some new
notation to make the exposition simpler. For any polyno-
mial in Fq[x], f(x) = a0 + a1x + . . . + atx

t, and any
permutation ofFq, σ, let σ(f(x)) = σ(a0) + σ(a1)x +
. . . + σ(at)xt.

Construction 4 A variant of Construction 3 in which over-
head is reduced.

1. (Set-up) Lett be a positive integer, and letN be an ele-
ment ofFq such thatN 6∈ {1, . . . , n}. The group man-
ager chooses the session keysK1, . . . Km ∈ Fq, and
thet-degree polynomialsp1(x), . . . pm(x) ∈ Fq[x] all
at random. Note that this determines the polynomi-
als, q1(x), . . . , qm(x) as in Construction 1. In ad-
dition, for eachr, j ∈ {1, . . . ,m}, the group man-
ager defineshr,j(x) to be a randomly chosen poly-
nomial of degree2t in Fq[x]. For i = 1, . . . ,m, Ui

stores the personal key{N, i, hr,j(i)}r,j=1...,m. Fi-
nally, for j = 1, . . . ,m, the group manager chooses
a bivariate polynomial of degreet in each variable,
sm,j(x, y) ∈ Fq[x, y] at random, and a pseudoran-
dom permutation ofFq, σ. The permutationσ is made
public.

2. (Broadcast in session j) LetA,R ⊆ {U1, . . . , Un},
|R| ≤ t− 1, denote the set of active members and
the set of revoked users, respectively, in sessionj.
The group manager choosesW ⊆ Fq such that
|W | = t, the indices of the users inR are in W ,
the indices of users inA are not, andN 6∈ W .
Let W = {w1, . . . , wt}. For j′ = 1, . . . ,m the
group manager chooses{sj′,j(x, y)}j′ to be bivariate
polynomials inFq[x, y] of degreet in each variable,
such that for allj′ = 1, . . . ,m and i = 1, . . . , t,
sj′,j(wi, x) = σm−j′

(sm,j(wi, x)) The broadcast in
periodj ∈ {1, . . . ,m}, isB1

j ∪ B2
j , where:

B1
j = {pj′(x) + sj′,j(N,x)}j′=1,...,j−1

∪ {Kj + sj,j(N,x)}
∪ {q′j(x) + sj′,j(N,x)}j′=j+1,...,m

B2
j = {hj′,j(x) + sj′,j(x, x)}j′=1,...,m

∪ {wi, sm,j(wi, x)}i=1,...,t



3. (Session key and shares recovery in sessionj) First,
Ui recoverssj′,j(i, i) for j′ = 1, . . . ,m by eval-
uating {hj′,j(x) + sj′,j(x, x)} at x = i and sub-
tracting hj′,j(i). Each user then applies the pub-
licly known pseudorandom permutationσ to recover
{sj′,j(w1, x), . . . , sj′,j(wt, x)},j′∈{1,...,m−1}, using the

fact thatsj′,j(wi, x) = σm−j′
(sm,j(wi, x)). Recovery

of the session keys and the key shares then proceeds as
in Construction 3.

Adding users in Construction 4 is as simple as it is in
Construction 3. Provided the underlying field is sufficiently
large, the group manager adds a user in sessionj by giv-
ing the users a unique identifier,i ∈ Fq, and the keys
{hr,`(i, i)}r∈1,...,m,`∈{j,...,m}.

To see that the choice of a pseudorandom permutation
facilitates the construction, but is not essential, consider al-
gebraic attacks in which a userUi who legitimately learns
qj(i) (for example) and then, when revoked in sessionj1,
uses this knowledge to recoversj,j1(N, i) and then ex-
ploits an algebraic relationship betweensj1,j1(x, y) and
sj,j1(x, y) to learn session key,Kj1 . The algebraic rela-
tionship might be as simple as,sj,j1(N, i) = sj1,j1(N, i),
thenKj1 = Kj1 + sj1,j1(N,x)|x=i − sj,j1(N, i). Using
a pseudorandom permutation ensures that with high prob-
ability the resultingsj′,j(x, y) polynomials chosen by the
group manager in step 2, will be sufficiently different and
the construction will not be vulnerable to such attacks. Al-
though it is possible to accomplish this without a pseu-
dorandom permutation, it is not possible for all permuta-
tions. Consider the extreme case of the identity permuta-
tion. If σ is the identity permutation, then it is possible for
the group manager to choosesj′,j(x, y) = sm,j(x, y) for
j′, j ∈ {1, . . . ,m}. The resulting construction is vulnerable
to exactly the kind of attack we just described. At the other
end of the spectrum, it is also possible to use a truly random
permutation to reduce overhead. However, since this po-
tentially places a heavy computational burden on each user
(note that in Construction 3 the burdens of unconditional
security are only experienced by the group manager), we
don’t propose such an approach. Hence, we choose to use a
pseudorandom permutation in our construction, while not-
ing that there are other secure options.

The proof of security for this construction is in Ap-
pendix E. We state the theorem here for completeness.

Theorem 2 Construction 4 is a self-healing session key
distribution scheme witht-revocation capability.

6. Extending the Lifetime

After a set ofm sessions has expired in Constructions 3
and 4, some rekeying of the users is necessary before dis-
tributing new session keys. This is so because the state of

the system has changed as a result of the broadcasts. For
example, in each construction, portions of the personal keys
of the revoked users are made public. One solution to this
problem is to distribute a new set of secret keys to each
user, and proceed as before. Another solution is to use a
technique that originated in [16] and is used in [29], which
can be described as Shamir secret sharing in the exponent
of a generatorg, of a cyclic group,G. Moving operations
to the exponent allows each user toevolvetheir secret keys
from one set ofm sessions to the next, thus making the
schemelong-lived, meaning the scheme can continue with-
out any unicasts from the group manager. This is accom-
plished through the broadcast of random values at the end
of a set ofm sessions, by the group manager. Each user (re-
voked or not) is able to use the random values to calculate
their own new personal key. This results in significant band-
width savings over the naive approach of sending each user
a new personal key via unicast, because if each user stores
r keys, thenr random values must be sent, in contrast to
rn unicasts in the naive approach. The savings are reduced
by a constant factor, however, because the former approach
requires a larger underlying group size (roughly, 160 bits)
in order to ensure that the Decision Diffie-Hellman problem
is hard.

This technique is applicable to both Constructions 3 and
4. We demonstrate it here for Construction 3 only, because
the extension is somewhat simpler and all of the important
underlying ideas are illustrated.

The theorem following Construction 5 shows that the
construction is secure provided the Decision Diffie-Hellman
(DDH) assumption is hard. We informally state the assump-
tion here, referring the reader to [1] for a more precise and
detailed discussion and to [29, 10] for examples of proofs
of reduction to the DDH problem. DDH is defined for any
cyclic groupG and generatorg. The DDH assumption is
that it is difficult to distinguish between the distributions of
(ga, gb, gab) and(ga, gb, gc), wherea, b, andc are chosen
randomly in{1, . . . , |G|}. DDH is believed to be intractable
in groups of large prime order.

Before beginning the construction it is helpful to intro-
duce some additional notation. Givenf(x) = a0 + a1x +
. . . + atx

t ∈ G[x], let gf(x) = (ga0 , . . . , gat).

Construction 5 A Long-lived Variant of Construction 3.

1. (Initial Set-up) Lett be a positive integer,g a gen-
erator of a subgroupZp ⊆ F ∗

q , of prime orderp,
and N ∈ Zp be such thatN 6∈ {1, . . . , n}. The
group manager choosesm2 polynomials inZp[x, y] at
random,{sr,j(x, y)}r,j∈{1,...,m}, where for eachr, j,

sr,j(x, y) = ar,j
0,0 + ar,j

1,0x + ar,j
0,1y + . . . + ar,j

t,t x
tyt.

For i ∈ {1, . . . , n}, userUi stores the personal key:
Si = {N, i, s1,1(i), . . . , sm,1(i, i), s1,2(i, i), . . . ,
sm,2(i, i), . . . , s1,m(i, i), . . . , sm,m(i, i)}



2. (Set-up for theαth set of m sessions) The group man-
ager randomly chooses integersvα

1,1, . . . , v
α
m,m ∈ Z∗

q

and broadcastsgvα
1,1 , . . . , gvα

m,m . For i = 1, . . . , n, Ui

computes a new personal key,
{gvα

j′,jsj′,j(i,i)}j′,j∈{1,...,m}. The group manager ran-
domly choosesKα

1 , . . . ,Kα
m ∈ Zp and thet-degree

polynomialspα
1 , . . . , pα

m ∈ Zp[x]. Note that this de-
termines the polynomialsqα

1 , . . . , qα
m ∈ Zp[x] as in

Construction 3.

3. (Broadcast in session j of theαth set of m sessions)
Let A,R ⊆ {U1, . . . , Un}, |R| ≤ t, denote the active
users and the revoked users, respectively. The group
manager choosesW ⊆ Zp such that|W | = t, the
indices of the revoked users are contained inW and
the indices of the active users are not, andN 6∈ W .
The broadcast in periodj ∈ {1, . . . ,m}, is B1

j ∪ B2
j ,

where:

B1
j = {gpj′ (x)+vα

j′,jsj′,j(N,x)}j′=1,...,j−1

∪ {gKα
j +vα

j,jsj,j(N,x)}
∪ {gqj′ (x)+vα

j′,jsj′,j(N,x)}j′=j+1,...,m

B2
j = {w, gvα

j′,jsj′,j(w,x)}w∈W,j′∈{1,...,m}

4. (Session key and shares recovery)
Ui recovers {gvα

j′,jsj′,j(N,i)}j′∈{1,...,m}

using {gvα
j′,jsj′,j(i,i)}j′∈{1,...,m} and

{gvα
j′,jsj′,j(w,i)}w∈W,j′∈{1,...,m}. This enablesUi

to recover thejth session keygKα
j and the shares,

{gpα
j′ (i)}j′=1,...,j−1 and{gqα

j′ (i)}j′=1,...,j−1.

Note that2t + 1 users can pool their personal keys and
reconstruct{s`,j(x, x)}`,j , and then these users are able to
retrieve session keys for the lifetime of the scheme. Hence,
even with this long-lived self-healing scheme, occasionally
“re-starting” the scheme by securely sending each user a
fresh personal key, is desirable.

The proof of security for this construction is in Ap-
pendix E. We state the theorem here for completeness.

Theorem 3 Construction 5 is a computationally secure,
long-lived, self-healing session key distribution scheme with
t-revocation capability.

7. Practical Issues

A number of practical issues need to be addressed before
deploying the constructions of this paper in real-world ap-
plications. First, we need to consider the scenarios in which
self-healing key distribution schemes would be applied and
determine the system parameter values that are appropriate
for these scenarios. Then, we need to ensure that an efficient

implementation of our schemes – with the chosen parameter
values – is possible.

The work described in this paper is part of a larger
project investigating secure group communication for large,
dynamic groups. In particular, the project is concerned with
groups with 10,000 (or more) members, in which member-
ship may change frequently (possibly every few seconds).
Our schemes are well-suited for this setting because the sys-
tem parameters affecting broadcast size are either indepen-
dent of the number of members (as is the case form, the
number of sessions, and the key size,log q, whose value is
determined by the necessary cryptographic strength, which
is typically much larger than the group size) or grow much
more slowly (as does the collusion resistance,t). The ac-
tual session length will vary according to the key size used
and the rate of change in group membership. In practice,
we anticipate it will be in the range of a few seconds to a
minute.

We determined thatq (recall, all operations are in the
finite field Fq) should be at least264, i.e., a 64-bit num-
ber. This ensures that we can broadcast session keys
K1, . . . ,Km that are also 64 bits long. Presumably, these
session keys will be used in a symmetric cipher such as
AES, for which a 64-bit key currently provides reasonable
security for a short-lived session key.

The maximum packet size in an IPv4-based network is
64KB. Figure 3 shows possible values form and t, given
this constraint. We note that larger broadcasts are less likely
to reach their destinations: If we assume packets are lost in-
dependently at random at a rate of 1%, and consider a key
distribution broadcast made out of 45 such packets (frag-
ments)2, then there is a 36% chance that one fragment, and
hence the broadcast as a whole, will not reach its destina-
tion. If the loss rate reaches (a fairly high) 5%, then the
probability that our 64KB broadcast goes through is only
10%. In other words, recipients will see only every tenth
broadcast. Choosingm to be between10 and20 should ad-
dress this problem as users will, in fact, very likely be able
to recover missed session keys through self-healing.

Fixing m to be between10 and20 leaves us with values
for t between15 and20 for Construction 3, and even larger
values for Construction 4. The dynamic nature of the group
supports providing only a moderate degree of collusion re-
sistance. Because the group is dynamic, collusions formed
in a previous session may not be as useful in the current
one (e.g., if a member is now revoked, and hence, doesn’t
have useful information on the current session key), so a
certain amount ofnewcollusion may be necessary in each
session. The difficulty in forming useful collusions within
a short time period reduces the needed degree of collusion
resistance. Therefore, the above mentioned values fort and

2Most IP stacks will break large UDP packets down to 1500-byte
Ethernet-packet-sized fragments.
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Figure 3. Possible values for m and t, given a maximum broadcast size of 64K.

m should be adequate for most applications.
If the high likelihood of broadcast loss and the associated

high latency for key recovery (i.e., it may take a few ses-
sions until we learn the key of a lost broadcast) associated
with Construction 3 is unacceptable for a given application,
there are two straightforward solutions. First, the applica-
tion can use Construction 4 and/or use smaller values fort
andm. This will decrease the size of the broadcast substan-
tially, and lower the probability of broadcast loss (in which
case a smallerm is sufficient). Second, an implementation
in which the group manager broadcasts them − 1 shares
for previous and future keys, and the current session key,
independently, can be used (i.e., the group manager per-
forms the fragmentation). With such an implementation,
m smaller broadcasts are used to send the same information
as is currently done in one broadcast. Every single one of
the smaller broadcasts has a higher probability of reaching
its target, and the receivers can still use the subset of shares
they receive to self-heal on some of the missed broadcasts.

One concern about the schemes presented here is that
they are defined over a fixed period ofm sessions, and
hence, session keys corresponding to sessions late in the
sequence are more vulnerable to packet loss because there
is less opportunity to form a “sandwich” of received pack-
ets. This may also be true of session keys correspond-
ing to the beginning sessions (although, if unicasts are al-
ready being used to distribute personal keys, it might make
sense to send the first key distribution packet via unicast,
as well). By makingm a bit larger, we can ensure that
with high probability each user will either receive, or be
able to recover via self-healing, most of the session keys.
However, there is still the issue of distributing new personal
keys to each in member in order to deploy the self-healing
key distribution for a new round ofm sessions. In Sec-
tion 6 and Appendix E, we discuss a way to eliminate the
need to individually re-key every group member after ev-
erym sessions. Furthermore, we are also currently working
on sliding-windowversions of the schemes presented here,

in which any two packets that “sandwich” a session suffi-
ciently closely, can be used to recover that session’s key.

8. Open Problems

We have shown that self-healing key distribution pro-
vides reliable multicast session key distribution in a manner
that is stateless and conducive to traceability. A reasonable
degree of resistance to both adversarial coalitions and net-
work packet loss can be achieved with overhead of just a
single UDP packet per session. In addition, members who
experience packet loss can recover missed session keys ef-
ficiently upon receipt of a single additional packet. Many
open questions remain. We have presented constructions in
which the number of sessions,m, contributes linearly to the
broadcast size. It would be interesting to explore compu-
tational versions of self-healing key distribution further, as
in this setting it may be possible to remove them term en-
tirely. In addition, it’s unclear whether the degree oft in the
broadcast size can be reduced.

In a sliding-window variation of this approach, users are
able to recover any lost session key, provided bursts of loss
amongst the key distribution packets are of length less than
m. When self-healing is implemented over a fixed set of
m sessions, there is a reduced resistance to loss for session
keys associated with the last few sessions–sliding window
self-healing corrects this problem by ensuring that mem-
bers recover information about session keys in a window of
constant size around the current session, no matter what the
actual session number is. Many of the techniques of this pa-
per can be used to implement a sliding window self-healing
scheme. The fact that new personal keys are needed with ev-
ery session presents an interesting problem. The techniques
of Section 6 provide one solution, but since the cost of the
modular exponentiations involved may be prohibitive, it is
interesting to look for other alternatives.
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A. Information Theory Tools

In this section we give a brief overview of the informa-
tion theory tools we use. For details on the topics presented
here, we refer the reader to [13].

Let X be a random variable that takes values in the
the finite setX , according to the probability distribution
{p(x)}x∈X . Theentropyof X is defined to be:

H(X) = −Σx∈X p(x) log p(x)

The log above is to base two, hence entropy can be ex-
pressed in bits. Intuitively, entropy is a measure of the
amount of information contained in a random variable. For



example, the entropy of a variable who’s value is deter-
mined by a random coin flip is 1; it contains one bit of
information as the coin can be heads or tails.

We also makes use of the concepts of conditional en-
tropy and joint entropy. LetY be a random variable that
takes values in the the finite setY, according to the prob-
ability distribution{q(y)}y∈Y . Theconditional entropyof
X givenY is:

H(X|Y ) = Σy∈Yq(y)H(X|Y = y)

To define joint entropy, we need the concept of a joint prob-
ability distribution. Let the probability that random variable
(X, Y ) takes on the value(x, y) wherex ∈ X andy ∈ Y be
denoted byr(x, y). Thejoint entropyof X andY is then:

H(X, Y ) = −Σx∈XΣy∈Yr(x, y) log r(x, y)

The chain rule for entropy state is stated below without
proof (see [13]).

Theorem 4 (Chain Rule) LetX1, . . . , Xt be random vari-
ables with joint probability distribution denoted by
{r(x1, . . . , xt)}.
ThenH(X1, . . . , Xt) = Σt

i=1H(Xi|Xi−1, . . . , X1).

We introduce a technical lemma that follows naturally
from the properties of the entropy function.

Lemma 5 Let X, Y , Z denote random variables. If
H(X|Y, W ) = 0 and H(X|Z,W ) = H(X), then
H(Y |Z) ≥ H(X).

Proof:

H(Y |Z) = H(Y |Z) + H(X|Y,W, Z)
= H(X, Y,W,Z)−H(Z)−H(W |Y,Z)
= H(Z) + H(W |Z) + H(X|Z,W )

+ H(Y |X, Z, W )−H(Z)
− H(W |Y,Z)

= H(X) + H(W |Z) + H(Y |X, Z, W )
− H(W |Y,Z)

≥ H(X) + H(Y |X, Z, W )
≥ H(X)

2

B. Proof of Security for Construction 1

Lemma 1 Construction 1 is an unconditionally secure,
self-healing, session key distribution scheme (with no revo-
cation capability).

Proof:
Part three of the Construction 1 describes how mem-

ber Ui recoversKj from Bj . Because the polynomials
{hj(x)}j∈{1,...,m} are chosen randomly, no information
about
zi,j = {p1(i), . . . , pj−1(i),Kj , qj+1(i), . . . , qm(i)} can be
learned from the broadcast without the help of personal
keys, and because{pj(x)}j∈{1,...,m} and {Kj}j∈{1,...,m}
are chosen randomly, no information onzi,j can be deter-
mined from{hj(x)}j∈{1,...,m} without any broadcasts.

The construction is self-healing because for1 ≤ j1 <
j < j2 ≤ m, andi ∈ {1, . . . , n}, Kj can be reconstructed
fromBj1 , Bj2 andSi as follows:

pj(i) = (hj(x) + pj(x))|x=i − hj(i)
qj(i) = (hj(x) + qj(x))|x=i − hj(i)

Kj = pj(i) + qj(i)

Finally, because there are no revoked users in this
scheme, attacks in which colluding users attempt learn ses-
sion keys they aren’t entitled to, aren’t relevant.

2

C. Key Distribution and the Proof of Security
for Construction 2

In a key distribution scheme,D, the group manager seeks
to establish a new keyki ∈ Fq, with each userUi over a
broadcast channel. We state the definitions important to un-
conditionally secure key distribution in words below and, in
each case, provide the corresponding information theoretic
equation for clarity. Following the definition is a proof of
security for the key distribution scheme of Construction 2.

Definition 3 [Key Distribution.] Lett, i ∈ {1, . . . , n}.
1. D is a key distribution scheme if the following are true:

(a) For any memberUi, ki is determined bySi and
B (H(ki|B, Si) = 0).

(b) For any set B ⊆ {U1, . . . , Un} such that
|B| ≤ t, and any userUi 6∈ B, the users
in B are not able to learn anything aboutki

(H(ki, Si|{Si′}U ′
i∈B ,B) = H(ki, Si)).

(c) No information on {ki}i∈{1,...,n} is learned
from either the broadcast or the personal keys,
alone (H(k1, . . . kn|B) = H(k1, . . . kn) =
H(k1, . . . kn|S1, . . . , Sn)).

2. D has t-revocation capability, if given any setR ⊆
{U1, . . . , Un} such that |R| ≤ t, the group man-
ager can generate a broadcastB, such that for all
Ui 6∈ R, Ui can recoverki (H(ki|B, Si) = 0),
but the revoked users cannot recover any of the keys
(H(k1, ..., kn|B, {Si′}Ui′∈R) = H(k1, ..., kn)).



Lemma 4 Construction 2 is an unconditionally secure key
distribution scheme witht-revocation capability.

Proof: A memberUi recovers the new keyki as described
in step three Step 3 of the construction. To prove resis-
tance to collusion, first consider a set oft colluding users
A, and a memberUi 6∈ A. We show that it is impossi-
ble for coalitionA to learnf(i) because knowledge off(i)
implies knowledge ofs(N, i) and the coalition has no in-
formation on the latter value. As described in Step 3 of
the construction, the users inA can determines(x, `) for
everyU` ∈ A. In fact,∪U`∈Azi,j = {s(x, `) : U` ∈ A}
Hence,A knows the following points on the polynomial
s(N,x): {s(N, i) : i ∈ A}. Becauses(N,x) is a polyno-
mial of degreet and the colluding users only havet points
on it, s(N, i) still appears to be randomly distributed to the
colluding users, and so,f(i) appears to be randomly dis-
tributed toA: H(f(i)|f(x) + s(N,x), {(w, s(w, x)) : w ∈
W}, {(`, s(`, `)) : ` ∈ A}) = H(f(i)).

In addition, note that ifA consists entirely of revoked
users then the coalition knows onlyt− 1 points on each of
the polynomials{s(x, `) : ` ∈ A}, which implies thatf(`)
also appears randomly distributed toA for every` ∈ A. 2

D. Lower Bounds

KEY DISTRIBUTION WITHOUT REVOCATION We prove
lower bounds on communication and user storage in un-
conditionally secure, self-healing session key distribution
schemes (see Definition 2). The bounds agree with the in-
tuition that a user must have independent pieces of secret
information for each session, and that the size of the broad-
cast messages is correlated with the number of sessions and
the collusion resistance. Construction 1 is essentially tight
with both of these bounds.

Lemma 2 In an unconditionally secure session key distri-
bution scheme, if userUi is entitled to allm session keys,
thenH(Si) ≥ m log q, for eachi ∈ {1, . . . , n}.

Proof: Since H(K1, . . . ,Km|B1, . . . ,Bm, Si) = 0 and
H(K1, . . . ,Km|B1, . . . ,Bm) = H(K1, . . . ,Km), it fol-
lows from Lemma 5 thatH(Si) ≥ H(K1, . . . ,Km).
The session keys are chosen independently at random, so,
H(K1, . . . ,Km) = H(K1) + . . . + H(Km) = m log q,
and the result follows. 2

The following result relates the size of the broadcasts in
each session to the number of sessions and the collusion
resistance.

Lemma 3 In an unconditionally secure, self-healing ses-
sion key distribution scheme (with no revocation),H(Bj) is
Ω(mt) log q.

Proof: First note thatH(Bj) ≥ H(z1,j , . . . , zn,j) follows
from Lemma 5 and the following two equalities:

H(z1,j , . . . , zn,j |Bj , k1, . . . , kn) = 0
H(z1,j , . . . , zn,j |k1, . . . , kn) = H(z1,j , . . . , zn,j)

So, it suffices to prove a lower bound onH(z1,j , . . . , zn,j).

H(z1,j , . . . , zn,j) ≥ H(z1,j , . . . , zt,j)
= H(z1,j) + H(z2,j |z1,j)

+ . . . + H(zt,j |zt−1,j , . . . , z1,j)

Applying Lemma 5 once again and using the fact that,
due to self-healing, for1 ≤ s ≤ t:

H(Kj+1, . . . ,Km−1|zs,j , zs,m) = 0
H(Kj+1, . . . ,Km−1|z1,j , . . . , zs−1,j , zs,m) =

H(Kj+1, . . . ,Km−1)

It follows that
H(zs,j |z1,j , . . . , zs−1,j) ≥ (m− 1− j) log q.

Note that for1 ≤ s ≤ t the following two equalities also
hold (again, by self-healing):

H(K2, . . . ,Kj−1|zs,j , zs,1) = 0
H(K2, . . . ,Kj−1|z1,j , . . . , zs−1,j , zs,1) =

H(K2, . . . ,Kj−1)

Hence, from Lemma 5 it is also true that
H(zs,j |z1,j , . . . , zs−1,j) ≥ (j − 2)H(Kj). Combining
these two lower bounds, it follows that for1 ≤ s ≤ t− 1,
H(zs,j |z1,j , . . . , zs−1,j) ≥ (m

2 − 2)H(Kj), and so,
H(Bj) ≥ t(m

2 − 2) log q. 2

E. Proofs of Security for Constructions in the
Computational Setting

In this appendix we prove the security of Constructions 4
and 5.

Theorem 2 Construction 4 is a self-healing session key
distribution scheme witht-revocation capability.

Proof: Because∀ j′, j, the degree ofhj′,j(x) is 2t, it takes
the collusion of2t + 1 users to compromise the scheme
through knowledge of those polynomials. Hence, this mod-
ification of Construction 3 does not reduce the collusion re-
sistance. Once each user has calculated their personal keys



{sj′,j(i, i)}j′={1,...,m}, broadcast,Bj of Construction 4, is
indistinguishable from broadcast,Bj of Construction 3, to
a polynomial time adversary, becauseσ is a pseudorandom
permutation. Consequently, the properties of self-healing
and t-revocation capability are inherited from Construc-
tion 3. Hence, it suffices to show that there exist polynomi-
als, {sj′,j(x, y)}1≤j′≤m, that satisfy the constraints of the
construction. This follows because for eachj′ = 1, . . . ,m,
B2

j providest(t + 1) equations in the(t + 1)2 coefficients
of sj′,j(x, y). Further, these equations are linearly indepen-
dent, sot + 1 of the coefficients may be chosen at random
and the remaining coefficients are determined by the equa-
tions. For completeness, we list those equations for a par-
ticular j′ ≤ j, where

sj′,j(x, y) = c0,0 + c0,1x + c1,0y + . . . + ct,tx
tyt

and

∀w ∈ W, sm,j(w, x) = bw
0 + bw

1 x + . . . + bw
t xt.

sj′,j(w1, x) = (c0,0 + c1,0w1 + . . . + ct,0w1
t) + . . .

. . . + (c0,t + c1,tw1 + . . . + ct,tw
t
1)x

t

= σm−j′
(bw1

0 ) + σm−j′
(bw1

1 )x + . . .

. . . + σm−j′
(bw1

t )xt

...

sj′,j(wt, x) = (c0,0 + c1,0wt + . . . + ct,0w
t
t) + . . .

. . . + (c0,t + c1,twt + . . . + ct,tw
t
t−1)x

t

= σm−j′
(bwt

0 ) + σm−j′
(bwt

1 )x + . . .

. . . + σm−j′
(bwt

t )xt

2
Before proving the final theorem, we state the definition

of computationally session key distribution in this setting
for completeness.

Definition 4 [Session Key Distribution]
Let t, i ∈ {1, . . . , n} andj ∈ {1, . . . ,m}.

1. D is a session key distribution scheme if for any mem-
berUi, Kj can be efficiently computed fromB andSi,
although if either the set ofm broadcasts or the set of
n personal keys are considered separately, it is com-
putationally infeasible to computeKj (or other useful
information) from either set. In addition, it is computa-
tionally infeasible for a set oft users,B, to determine
a personal key of a user outside ofB.

2. D has t-revocation capability if given any set of re-
voked usersR ⊆ {U1, . . . , Un} such that|R| ≤ t, the

group manager can generate a broadcastBj , such that
for all Ui 6∈ R, Kj can be efficiently computed fromBj

andSi, but it is infeasible to computeKj fromBj and
{Si′}Ui′∈R.

3. D is self-healing if the following are true for any1 ≤
j1 < j < j2 ≤ m:

(a) For anyUi who is a member in sessionsj1 and
j2, Kj can be efficiently computed from the set,
{zi,j1 , zi,j2}.

(b) For any disjoint subsetsB,C ⊂ {U1, . . . , Un}
where |B ∪ C| ≤ t, it is infeasible to com-
pute Kj from the set{zi′,j}Ui′∈B,1≤j≤j1 ∪
{zi′,j}Ui′∈C,m≥j≥j2 .

Theorem 3 Construction 5 is a computationally secure,
long-lived, self-healing session key distribution scheme with
t-revocation capability.

Proof: The self-healing property andt-revocation capabil-
ity within any set ofm sessions, follow from Construc-
tion 4. Hence, it suffices to show that to a polynomial time
adversary, Construction 5 is as secure as restarting Con-
struction 3 after everym sessions with new secret keys for
all users, provided DDH is hard.

For simplicity of exposition we consider the casem = 1
in detail, and sketch the proof for largerm.

Note that whenm = 1, the scheme reduces to using the
key distribution mechanism of Section 3.2 to distribute the
session key. We simplify the notation for this case and write
theαth broadcast as:

B = {gKα+vα(s(N,x)), gvα(s(w1,x)), . . . , gvα(s(wt,x))}

We show that ift revoked users can determine the ses-
sion key, then there exists a DDH oracle. To see this, note
that a coalition oft users,U1, . . . , Ut, who are revoked in
theαth iteration of the construction, and so aren’t entitled to
Kα, can be modeled as an algorithmAi, for somei ∈ Zp,
that takes as input polynomially many (inβ) (2t+1)-tuples,
(gvβ , gvβs(1,1), . . . , gvβs(t,t), gvβs(N,1), . . . , gvβs(N,t)), and
a challenge (t + 2)-tuple: (gvα , gvαs(1,1), . . . , gvαs(t,t), γ).
Ai is successful if it has a nonnegligible advantage in de-
termining whetherγ = gvα(s(N,i)) or a random element of
Zp.

Algorithm Ai can be used to produce an algo-
rithm A′

for solving a variant of DDH in which the
problem is to distinguish between the (2t + 3)-tuples,
(ga, gb1 , . . . , gbt+1 , gab1 , . . . , gabt+1) and
(ga, gb1 , . . . , gbt+1 , gac1 , . . . , gact+1), where
a, b1, . . . , bt+1, c1, . . . , ct+1 are chosen randomly in
Zp. We denote the challenge tuple associated with this



DDH variant by (ga, gb1 , . . . , gbt+1 , γ1, . . . , γt+1). Be-
cause this variant is at least as hard as DDH, showing
that algorithmAi provides an algorithm for solving the
variant suffices to prove the construction is secure (when
m = 1) assuming DDH is hard.A′

works as follows.
A′

first generates polynomially many randomvβs and
random values to correspond tos(1, 1), ...s(t, t). Us-
ing the portion of the challenge that representsgs(N,x),
(gb1 , . . . , gbt+1), A′

can determinegs(N,1), . . . , gs(N,t),
and fromγ1, . . . , γt+1, A′

can determine a candidate for
ga(s(N,i)) which we denote byy. A′

inputs toAi the tuples
(gvβ , gvβs(1,1), . . . , gvβs(t,t), gvβs(N,1), . . . , gvβs(N,t))
for all β, and the challenge,(ga, gb1 , . . . , gbt+1 , y) and
outputs the answer provided byAi. Note thats(x, y) is
not over-constrained becauseN 6∈ {1, . . . , n}, and so
the inputs toAi are consistent. To see what advantage
this givesA′

recall thatAi returns “yes” if it believes
y = ga(s(N,i)). So, a positive answer fromAi only shows
that gf(x) = (gb1 , . . . , gbt+1) agrees withga(s(N,x)) at
x = i. This implies thatf(i) ≡ a(s(N, i))modp. There
are pt such polynomials,f(x) ∈ Zp[x], of degreet and
only one of them isa(s(N,x)), hence the probability
that a randomly chosen polynomial, that’s different from
s(N,x), agrees withs(N,x) at x = i, is pt−1

pt+1 < 1
p . This

implies that the advantage ofA′
is at least(1 − 1

p ) times
the advantage ofA.

To extend the proof tom > 1, note that because each of
the polynomials in the set{sr,j(x, y)}r,j∈{1,...,m} are cho-
sen independently at random, the proof technique can es-
sentially be repeatedm times to show thatt revoked users
are unable to determine anything aboutgsj′,j(N,x) for anyj′,
j, if DDH is hard. 2


