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Abstract

We present a new solution to the problem of determin-
ing the path a packet traversed over the Internet (called
the traceback problem) during a denial of service at-
tack. Previous solutions to this problem have suffered
from combinatorial explosion, and are unable to scale
to realistically sized networks. This paper reframes the
traceback problem as a polynomial reconstruction prob-
lem and uses techniques from algebraic coding theory to
provide robust methods of transmission and reconstruc-
tion. We also present an implementation of one promis-
ing parameterization that is efficient, backwards com-
patible, and incrementally deployable.

1 Introduction

A denial of service attack is designed to prevent legit-
imate access to a resource. In the context of the Inter-
net, an attacker can “flood” a victim’s connection with
random packets to prevent legitimate packets from get-
ting through. These Internet denial of service attacks
have become more prevalent recently due to their near
untraceability and relative ease of execution [8]. Also,
the availability of tools such as Stacheldraht [10] and
TFN [11] greatly simplify the task of coordinating hun-
dreds or even thousands of compromised hosts to attack
a single target.

These attacks are so difficult to trace because the only
hint a victim has as to the source of a given packet is
the source address, which can be easily forged1. Also,
many attacks are launched from compromised systems
so finding the source of the attacker’s packets may not
lead to the attacker. Disregarding the problem of finding
the person responsible for the attack, if a victim was able
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1Ingress filtering is helping to mitigate this problem by prevent-

ing a packet from leaving a border network without a source address
from the border network [12]. Attackers have gotten around this by
choosing legitimate border network addresses at random.

to determine the path of the attacking packets in near
real-time, it would be much easier to quickly stop the at-
tack. Even finding out partial path information would be
useful because attacks could be throttled at far routers.

This paper presents a new scheme for providing this
traceback data by having routers embed information ran-
domly into packets. This is similar to the technique used
by Savage, et al [19], with the major difference being
that our schemes are based on algebraic techniques. This
has the advantage of providing a scheme that offers more
flexibility in design and more powerful techniques that
can be used to filter out attacker generated noise and sep-
arate multiple paths. Our schemes share similar back-
wards compatibility and incremental deployment prop-
erties to the previous work.

More specifically, our scheme encodes path informa-
tion as points on polynomials. We then use algebraic
methods due to Guruswami and Sudan [13] for recon-
structing these polynomials at the victim. This appears
to be a powerful new approach to the IP traceback prob-
lem. We predict that our basic framework will lead to
useful variations and alternatives in the near future.

The rest of the paper is organized as follows: Sec-
tion 2 discusses related work, Section 3 contains an
overview of the problem and our assumptions, Section
4 presents our approach for algebraically coding paths,
Section 5 discusses the issue of encoding this data in IP
packets, Section 6 contains an analysis of our proposed
scheme, Section 7 discusses future work, and Section 8
concludes.

2 Related Work

The idea of randomly encoding traceback data in IP
packets was first presented by Savage, et al [19]. They
proposed a scheme in which adjacent routers would ran-
domly insert adjacent edge information into the ID field
of packets. Their key insight was that traceback data
could be spread across multiple packets because a large
number of packets was expected. They also include a
distance field which allows a victim to determine the
distance that a particular edge is from the host. This
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prevents spoofing of edges from closer than the nearest
attacker. The biggest disadvantages of this scheme is the
combinatorial explosion during the edge identification
step and the few feasible parameterizations. The work
of Song and Perrig provides a more in depth analysis of
the faults of this scheme [21].

There have been two other notable proposals for IP
traceback since the original proposal. Bellovin has
proposed having routers create additional ICMP pack-
ets with traceback information at random and a public
key infrastructure to verify the source of these pack-
ets [5]. Song and Perrig have an improved packet mark-
ing scheme that copes with multiple attackers [21]. Un-
fortunately, this scheme requires that all victims have a
current map of all upstream routers to all attackers (al-
though Song and Perrig describe how such maps can be
maintained). Additionally, it is not incrementally de-
ployable as it requires all routers on the attack path to
participate (although Song and Perrig note that it also
suffices for the upstream map to indicate which routers
are participating).

We refer the reader to Savage’s paper for a discussion
of other methods to detect and prevent IP spoofing and
denial of service attacks.

The algebraic techniques we apply were originally de-
veloped for the fields of coding theory [13] and machine
learning [3]. For an overview of algebraic coding the-
ory, we refer the reader to the survey by Sudan [23] or
the book by Berlekamp [7].

3 Overview

This paper addresses what Savage, et al call the ap-
proximate traceback problem. That is, we would like to
recover all paths from attacker to victim, but we will al-
low for paths to have invalid prefixes. For example, for
the network shown in Figure 1, the true path from the
attacker A1 to the victim V is R4R2R1. We will allow our
technique to also produce paths of the form R2R6R4R2R1

because the true path is a suffix of the recovered path.
Our family of algebraic schemes was motivated by

many of the same assumptions as used in previous work
with two notable additions (numbers 8 and 9).

1. Attackers are able to send any packet

2. Multiple attackers can act together

3. Attackers are aware of the traceback scheme

4. Attackers must send at least thousands of packets

5. Routes between hosts are in general stable, but
packets can be reordered or lost

6. Routers can not do much per-packet computation

7. Routers are not compromised, but not all routers
have to participate

8. It is difficult to change the marking algorithm used
by routers

9. It is easy to change the reconstruction algorithm
used by victims

We will focus discussion here on these last two as-
sumptions. The reasoning behind the others is well cov-
ered by Savage’s paper [19]. Changing the algorithm
used by routers to mark packets would require a hard-
ware change in deployed routers. This presents severe
problems in terms of cost, deployability, and access as a
router would need to be taken offline while a new piece
of hardware was inserted. On the other hand, the re-
construction algorithm will almost certainly be imple-
mented in software, which is (relatively) easily modi-
fied. Also, because the reconstructor only needs to be
running during an attack, taking it offline for upgrades
is not detrimental.

These last two assumptions motivate us to look for a
scheme which has acceptable performance at the present
as well as an ability to improve in the future with only
changes in the reconstruction step. We therefore have
chosen an algebraic approach rooted in coding theory,
namely that of polynomial evaluation. Over the past few
years, techniques have repeatedly become more power-
ful in this field and we have no reason to suspect this
will change in the near future. Current techniques al-
ready allow us to separate multiple paths and filter out
noise with acceptable bounding conditions [3, 23, 13].

4 Algebraic Coding of Paths

We will now present a series of schemes that use an
algebraic approach for encoding traceback information.
All of these schemes are based on the principal of re-
constructing a polynomial in a prime field. The basic
idea is that for any polynomial f

�
x � of degree d in the

prime field GF
�
p � , we can recover f

�
x � given f

�
x � eval-

uated at
�
d � 1 � unique points. Let A1 � A2 ��������� An be

the 32-bit IP addresses of the routers on path P. Let
fP

�
x �	� A1xn 
 1 � A2xn 
 2 � ����� � An 
 1x � An. We asso-

ciate a packet id x j with the jth packet. We then some-
how evaluate fP

�
x j � as the packet travels along the path,

accumulating the result of the computation in a run-
ning total along the way. When enough packets from
the same path reach the destination, then fP can be re-
constructed by interpolation. The interpolation calcu-
lation might be a simple set of linear equations, if all
of the packets received at the destination traveled the
same path. Otherwise, we will need to employ more
sophisticated interpolation strategies that succeed even
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Figure 1. Our example network.

in the presence of incorrect data or data from multiple
paths [6, 24, 13].

A naive way to evaluate fP
�
w � would be to have

the jth router add A jwn 
 j into an accumulator that
kept the running total. Unfortunately, this would re-
quire that each router know its position in the path and
the total length of the path. We could eliminate the
need for each router to know the total length of the
path (while still requiring each router to know its po-
sition in the path) by reordering the coefficients of fP:
A1 � A2w � A3w2 � ����� � Anwn 
 1. However, we can do
even better by sticking with our original ordering, and
using an alternative means of computing the polynomial.
Specifically, to compute fP

�
w � , each router A j multiplies

the amount in the accumulator by w, adds A j, and re-
turns the result to the accumulator, and passes the packet
on to the next router in the path (Horner’s rule [14]).
For example,

�������
0 � w � � A1 � w � A2 � w � A3 � w � A4 �

A1w3 � A2w2 � A3w � A4. Notice that the router doesn’t
need to know the total length of the path or its position
in the path for this computation of fP.

We will use this polynomial evaluation trick for all of
our algebraic schemes. What will vary is (a) whether
we use polynomials that capture the entire path or just a
fragment of the path, and (b) whether every router will
participate deterministically or non-deterministically to
outwit a malicious attacker.

4.1 Full Path Encoding

The simplest scheme that uses this algebraic technique
encodes an entire path. At the beginning of a path, let
FullPath0 � j � 0. Each router i on the path calculates
FullPathi � j � �

FullPathi 
 1 � j � x j � Ai � mod p where x j is

a random value passed in each packet, Ai is the router’s
IP address and p is the smallest prime larger than 232 � 1.
The value FullPathi � j is then be passed in the packet,
along with x j, to the next router. At the packet’s desti-
nation FullPath will equal

�
Anxn 
 1 � An 
 1xn 
 2 � ����� �

A2x � A1 � mod p, which can be reconstructed by solving
the following matrix equation over GF

�
p � :����

�
1 x1 x2

1 ����� xn 
 1
1

1 x2 x2
2 ����� xn 
 1

2
...

...
...

. . .
...

1 xn x2
n ����� xn 
 1

n

�
			
�
����
�

A1

A2
...

An

�
			
� �

����
�

FullPathn � 1
FullPathn � 2

...
FullPathn � 3

�
			
�

As long as all of the xi’s are distinct, the matrix is a Van-
dermonde matrix (and thus has full rank) and is solvable
in O

�
n2 � field operations [17].

Assuming that we get a unique x j in each packet, we
can recover a path of length d with only d packets. The
downside, however, is that this scheme would require
log2

�
p � �
� log2

�
d ��� bits per packet (the first term is the

encoding of the running FullPath and the second term
is the encoding of the x j’s). Even for modest maximum
path lengths of 16, the space required (36 bits) far ex-
ceeds the number of bits available to us in an IP header.

We can trade off bits-needed for packets-needed by
splitting a router’s IP address into c chunks and adding� log2

�
c ��� bits to indicate which chunk was represented

in a given packet. We could also reduce the order of
the field, p, to the smallest prime larger than 2 � 32 � c � . If
we chose to split the 32 bit IP address into 4 chunks we
would need log2

�
257 � � log2

�
16 � � log2

�
4 � � 15 bits per

packet and 4d packets. While this is an improvement, a
better technique would be to have each router add all
of its chunks into each packet. So, instead of spreading



its c chunks among c packets by adding one coefficient
to the polynomial, each router would add c coefficients
to the polynomial in each packet. That is, each router
would update FullPath c times, substituting each chunk
of their IP address in order. The destination could then
trivially reconstruct the IP addresses by interpolating to
recover f̃P

�
x � � A1 � 1 � A1 � 2x � ����� � A1 � kxk 
 1 � A2 � 1xk �

����� � An � kxnk 
 1, where A j � 1 � A j � 2 ��������� A j � k are the succes-
sive chunks of A j. For c � 4, this technique requires only
log2

�
257 � � log2

�
16 � � 13 bits and 4d packets. This sec-

ond technique is thus clearly better. In Section 6 we use
a slightly different chunking strategy based on the Chi-
nese Remainder Theorem [2].

4.2 Random Full Path Encoding

The astute reader has probably noticed a serious flaw
in the above schemes; we require FullPath0 � j � 0. This
implies that there is some way for a router to know that it
is the “first” participating router on a particular path. In
the current Internet architecture there is no reliable way
for a router to have this information. We must therefore
extend our scheme to mitigate this problem.

In our revised scheme a router first flips a weighted
coin. If it came up tails the router would assume it was
not the first router and simply follow the FullPath al-
gorithm presented above, adding its IP address (or IP
address chunk) data. On the other hand, if the coin came
up heads, the router would assume it was the first router
and randomly choose a x j to use for the path. We will
refer to this state as “marking mode.”

At the destination, we would receive a number of dif-
ferent polynomials, all representing suffixes of the full
path. In our example network, packets from A1 could
contain R4R2R1, R2R1, or R1. From now on, we’ll refer
to each of these path suffixes as “virtual paths”, because
algebraically they are indistinguishable from full paths.
Discriminating these virtual paths would be a real night-
mare if we were not able to leverage the power of our al-
gebraic approach. It turns out that recovering these paths
is the well studied problem of reconstructing mixed al-
gebraic functions [3]. We can therefore simply appeal to
the current best algorithm for solving this problem. In
the future, as better algorithms are available they could
be implemented at the destination without changing any-
thing on the routers.

The algorithm we will use in our analysis is due to
Guruswami and Sudan [13]. If we have N total pack-
ets, it allows us to recover all virtual paths of length
d for which we have at least

�
N
�
d � 1 � packets. For

example, if we assume that we analyze 10 � 000 pack-
ets at a time and want to recover all virtual paths of
length 17 or less, we would need to ensure that we re-
ceive 400 packets from each virtual path. Generally,

we would need to expect packets from a router at dis-
tance d with a probability of no less than

�
N
�
d � 1 ��� N.

Since the probability of getting a packet from a router
∆ hops away is p

�
1 � p � ∆ 
 1, where p is the proba-

bility that a router is in marking mode, we come up
with the inequality p

�
1 � p � ∆ 
 1 � �

N
�
d � 1 ��� N. We

would like to recover paths of length d so this becomes
p
�
1 � p � d 
 1 � �

N
�
d � 1 ��� N. Unfortunately, this in-

equality has only negative and imaginary solutions for
any of the values of N and d that interest us.

To remedy this problem, we change our marking strat-
egy slightly. Whenever a router receives a packet, it still
flips a weighted coin. But now, instead of simply going
into marking mode for one packet when the coin comes
up heads, the router will stay in marking mode for the
next τ packets it receives. The router should do this coin
flip for each pair of interfaces and not as a global state.
Our goal now is not to recover all virtual paths in one
run, but instead to recover only a few paths per run. To
accomplish this we should choose τ ��� Nd � ε where
ε is a factor designed to allow small overlaps in routers
on the same path both being in marking mode. Our tests
have shown that ε can be small compared to � Nd.

To analyze this scheme we simulated thousands of
runs of 10 � 000 packets each through a paths of length
48, which we feel is a reasonable upper bound on ex-
pected path lengths. The results of these tests show that
the optimum choice for p in this scenario is around 10 
 5.
Even with an “optimum” probability, we find that we
must receive more than 100 � 000 packets in order to re-
construct even more moderate length 35 virtual paths.

An even bigger problem than the number of packets
needed to reconstruct these paths is that attackers can
cause more false paths than true paths to be received
at the victim. This is due to the fact the our choice of
a small p creates large number of packets in which no
router on the packet’s path is in marking mode. The at-
tacker can thus insert any path information he wishes
into such packets. Because the attacker can generally
find out the path to his victim (using traceroute, for ex-
ample) he can compute FullPath0 � j � �

FakePath j � xn
j
�

Anxn 
 1
j

� ����� � A0 � mod p. This choice will cause the
victim to receive FullPath j � FakePath j. When trying
to reconstruct paths, the victim will have no indication as
to which paths are real and which paths are faked. Two
solutions to this problem are to increase p or to store
a hop count in the packet that each participating router
would increment. Increasing the probability makes it
even harder to receive long paths, so we do not think
that is a viable option. Adding a hop count would pre-
vent an attacker from forging virtual paths that are closer
than its actual distance from the victim but would require� log2

�
d � � more bits in the packet. While either of these



Bits per packet Polynomial Degree Bits for Accumulator Bits for Randomness� 32 � c � � � � 1 � � 1 � 32 � c � log2
� � 32 � c � � � � 1 ���

19 3 16 2
15 5 11 3
12 7 8 3
11 11 6 4
10 13 5 4
9 15 4 4

Table 1. Parameterizations of Random Partial Path Encoding (all assume
� � 1)

solutions may be appropriate in some situations, we feel
that the scheme presented in the next section is a better
alternative.

4.3 Random Partial Path Encoding

Our final scheme is a further generalization of the ran-
dom full path encoding method. We add another param-
eter,

�
, that represents the maximum length of an en-

coded path. The value of
�

is set by the marking router
and decremented by each participating router who adds
in their IP information. When the value reaches 0, no
more routers add in their information. For example, in
the full path encoding scheme

� � ∞, while
� � 1 would

represent encoding of edges between routers.
The purpose for this change is to decrease the max-

imum d used in the reconstruction bound ( � N
�

for
0 �

�
� ∞) in order to reduce the number of packets

needed out of a given set or packets to recover a route.
Of course we do not get anything for free; this adds� log2

� � � 1 ��� bits to the packets. On the other hand,
we now have p

�
1 � p � x 
 1 � �

N
� � 32 � c � � � � 1 � � 1 � � N

which does have solutions that are interesting to us. Ta-
ble 1 shows some of these interesting combinations.

Of course, if
�

is less than the true path length, then
reconstruction finds arbitrary subsequences of the path
(not just suffixes as in Full Path encoding). The recon-
structor still has some work to do to combine these sub-
sequences properly. Thus reconstruction in this scheme
has an algebraic step followed by a combinatorial step.

In section 6, we will be looking at the parameteriza-
tion where

� � 1 and d � 5. This encodes edges be-
tween adjacent participating routers at a cost of 15 bits
per packet. In the next section, we will discuss where to
fit the 15 bits of information in an IP packet.

5 Encoding Path Data

We now need a way to store our traceback data in IP
packets. We will try to maximize the number of bits
available to us while preserving (for the most part) back-
wards compatibility.

5.1 IP options

An IP option seems like the most reasonable alter-
native for storing our path information. Unfortunately,
most current routers are unable to handle packets with
options in hardware [4]. Even if future routers had this
ability, there are a number of problems associated with
this approach as presented by Savage, et al [19]. For all
of these reasons we have concluded that storing data in
an IP option is not feasible.

5.2 Additional Packets

Instead of trying to add our path data to the existing
IP packets, we could instead send the data out of band
using a new protocol that would encapsulate our data.
While this may have limited uses for special cases (such
as dealing with IP fragments), a general solution based
on inserting additional packets requires a means of au-
thenticating these packets. This is because, presumably,
the number of inserted packets is many orders of mag-
nitude less than the number of packets inserted by the
attacker. Thus, because we assume that an attacker can
insert any packet into the network, the victim can be del-
uged with fake traceback packets, preventing any infor-
mation to be gained from the legitimate packets.

5.3 The IP Header

Our last source of bits is the IP header. There are sev-
eral fields in the header that may be exploited for bits,
with varying tradeoffs. As shown in Figure 2, we have
found 25 bits that might possibly be used, although we
think that a subset of these bits would better meet our
goal of preserving backwards compatibility.

5.3.1 The TOS Field

The type of service field is an 8 bit field in the IP header
that is currently used to allow hosts a way to give hints to
routers as to what kind of route is important for partic-
ular packets (maximized throughput or minimized de-
lay, for example) [1]. This field has been little used
in the past, and, in some limited experiments, we have
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Figure 2. The IP Header. Darkened areas represent underutilized bits.

found that setting this field arbitrarily makes no measur-
able difference in packet delivery. There is a proposed
Internet standard [15] that would change the TOS field
to a “differentiated services field.” Even the proposed
DS field has two unused bits, however, there are already
other proposed uses for these bits (e.g. [18]).

5.3.2 The ID Field

The ID field is a 16 bit field used by IP to permit recon-
struction of fragments. Naive tampering with this field
breaks fragment reassembly. Since less than 0 � 25% of
all Internet traffic is fragments [22], we think that over-
loading this field is appropriate. A more in-depth discus-
sion of the issues related to its overloading can be found
in Savage’s work [19].

5.3.3 The Unused Fragment Flag

There is an unused bit in the fragment flags field that
current Internet standards require to be zero. We have
found that setting this bit to one has no effect on current
implementations, with the exception that when receiving
the packet, some systems will think it is a fragment. The
packet is still successfully delivered however, because it
looks to those systems as though it is fragment 1 of 1.

Our Selection

As shown in Figure 3, we chose to use 15 bits out of
the ID field. Since we needed more than 9 bits, we had
to use at least part of the ID field and using only part
of the ID field and part of another field would not have
provided us with any benefits.

5.4 IPv6

Since IPv6 does not have nearly as many backwards
compatibility issues as IPv4, the logical place to put
traceback information is a hop-by-hop option in the IPv6
header [9]. However, schemes such as those presented

here are still valuable because they use a fixed number of
bits per packet thereby avoiding the generation of frag-
ments.

6 Analysis

A major advantage of our approach is the amount of
flexibility available in choosing a scheme. There is a rich
space of algebraic alternatives to Savage’s design. We
have chosen a particular parameterization to implement
for the purpose of analysis, but we note that our choice
is certainly not the only practical alternative and under
different assumptions and design criteria would not be
the ideal choice.

We will use 15 bits out of the ID field of the IP header
to store our data. As mentioned above, this choice
breaks IP fragmentation, but due to the prevalence of
MTU path discovery and the decline of fragmentation
in general we feel this is an acceptable tradeoff. A pro-
posed work-around to allow fragmentation by using ad-
ditional packets has also been proposed [19].

As shown in Figure 3, 11 bits are used as an accumu-
lator, 3 bits are used as random data, and one bit is used
for signaling. This means that all arithmetic in the ac-
cumulator will be done in GF

�
2039 � (2039 is the largest

prime � 211). The signaling bit will allow a router to tell
the next router that it should add its values into the ac-
cumulator. That router will also reset the signaling bit.
This corresponds to random partial path encoding with� � 1.

Each router must precompute three 11 bit chunks
based on its 32 bit IP address, Z. Let z1 � Z mod 2027,
z2 � Z mod 2029, and z3 � Z mod 2039. Since 2027,
2029, and 2039 are all prime and 2027 � 2029 � 2039 �
232, we will be able to reconstruct the value of Z by in-
voking the Chinese Remainder Theorem [2].

With a probability of 1 � 25, a router will set the 3 ran-
dom bits (let’s call this value xi), set the accumulator to
z3x2

i � z2xi � z1 mod 2039, and set the signal bit. The
rest of the time it will check to see if the signal bit is set.
If so, it will incorporate its values (y1, y2, and y3) using
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Figure 3. We choose to use 15 bits from the IP header

Horner’s rule and clear the signal bit, thus completing
the calculation of z3x5

i � z2x4
i � z1x3

i � y3x2
i � y2xi � y1

mod 2039. This procedure is presented in pseudocode
in Figure 4.

6.1 Packets Needed

The receiver sees the values of evaluated degree 5
polynomials; z3x5

i � z2x4
i � z1x3

i � y3x2
i � y2xi � y1, for

example. Our goal is to recover the IP addresses of the
routers (Z and Y in our example) from this data. Us-
ing the method of [13], we will need to have

�
1 � 25 � � 1 �

1 � 25 � d 
 1 � � 5N � N to recover edges distance d away
from us if we analyze N packets at a time. Therefore, N
must be greater than 5 � ��� 1 � 25 � � 1 � 1 � 25 � d 
 1 � 2 for us to
expect to get edges distance d away. Figure 5 shows the
number of packets needed for different values of d.

In our simulations, we were able to recover paths of
length 25 over 98% of the time by analyzing 20 � 000
packets at once, which agrees with our analytic result.
In recent denial of service attacks, Yahoo reported re-
ceiving over 1 gigabyte of data per second2. Even if ev-
ery packet was of the largest possible size, Yahoo would
have received more than enough packets in under 2 sec-
onds. We realize that most sites do not have the band-
width of Yahoo, but we still think that most sites would
be able to recover interesting paths in far less than a
minute. We also note that our scheme will be able to
take advantage of any new algorithm for decoding Reed-
Solomon codes to improve these results without any
router modifications. If more than one path is present
in the data, the Guruswami-Sudan algorithm might not
find all the paths from a single sample of 20,000 pack-
ets. Repeating the reconstruction on different samples

2http://abcnews.go.com/sections/tech/
DailyNews/yahoo000209.html

might be needed. Trying to find all paths from a single
sample would require an increase in the sample size that
was quadratic in the number of paths.

6.2 Router Performance

At the baseline, this scheme is already rather effi-
cient for routers, requiring only normal ALU operations,
compares, and a random number generator. We can,
however, use some precomputation to improve this situ-
ation considerably.

We only need to have our degree 5 polynomial evalu-
ated at 6 points in order to recover it, so we will treat the
random value 6 as 0 and 7 as 1. This should not cause
us any trouble as long as all routers agree on the change,
because the coupon collector’s problem tells us that we
would expect to get all 6 values in far fewer packets than
are required by our multiple path reconstructor. Even
the smallest routers should be able to precompute and
store the 6 possible values that would need to be inserted
when they are in marking mode (these values require
only 12 bytes of storage). If we are storing these val-
ues already, we should also include an extra multiplica-
tion by the random value because that is the first thing
that the next router would have to compute. At the vic-
tim we would, of course, have to divide by the random
value for all packets that still have their signal bit set.
This reduces the work needed at the second router to,
at most, 2 random number generations, 2 compares, 2
shifts, 5 adds and a reduction modulo 2039. It is worth
noting that this could easily be accomplished using com-
binational logic in an ASIC or custom chip. For larger
routers it would probably make sense to precompute a
lookup table with all possible second hop values.

We implemented this scheme under FreeBSD 4.0 on a
Pentium II running at 333 MHz. Using RC4 [20] as the



At each router:
let Z � the router’s IP address
let z1 � Z mod 2027
let z2 � Z mod 2029
let z3 � Z mod 2039
foreach packet p

let r be a random number from
�
0 � � 1 �

if r �
�
1 � 25 � then

let x be a random integer from
�
0 � � 7 �

set p � accumulator � �
z3x2 � z2x � z1 � mod 2039

set p � f lag � 1
set p � random � x

else
if p � f lag then

set p � accumulator � �
p � accumulator � p � x � � z3

set p � accumulator � �
p � accumulator � p � x � � z2

set p � accumulator � �
p � accumulator � p � x � � z1

set p � accumulator � p � accumulator mod 2039
set p � f lag � 0

Figure 4. Marking algorithm executed by each router

random number generator, the scheme executed in less
than 50 clocks per packet. When routing packets across
a 100 Mbit/sec Ethernet, there was no measurable dif-
ference in throughput between the modified and unmod-
ified kernels (more than 95 Mbit/sec worth of packets
were routed in both cases).

6.3 Reconstruction Performance

The reconstruction algorithm due to Guruswami and
Sudan [13] can be implemented in a number of ways.
The most straightforward implementation would take
time O

�
n15 � to recover all edges for which we received

at least � 5n out of n packets. However, this drops
to O

�
n3 � time by requiring only slightly more packets:�

5n
�
1 � δ � out of n, for any δ � 1. By scaling δ ap-

propriately, this allows us to trade off computation time
(and memory) for accuracy. A recent algorithmic break-
through by Olshevsky and Shokrollahi would reduce our
reconstruction time even further, to O

�
n2 � 5 � [16]. More-

over, this new algorithm is highly parallelizable (to up
to O

�
n � processors), which suggests that distributing the

reconstruction task might speed things up even more.
These reconstruction times compare quite favorably in

the multiple attacker scenario to the O
�
m8 � time required

by Savage [19], where m is the number of routers at a
given distance from the victim.

6.4 Resistance to Attack

While this metric is the most important in evaluating
a traceback scheme it is also the most difficult to an-
alyze. Our scheme seems to be resistant to all of the

same attacks as the scheme proposed by Savage, et al
and even with current algorithms for filtering mixed data
can deal with multiple attackers more robustly. One ma-
jor difference between these schemes is our decision not
to include an explicit hop count which allows Savage’s
scheme to deny an attacker the ability to insert packets
closer than his distance to the victim. We would note
that this only prevents the insertion of edges closer than
the closest attacker. An attack on this would be to have
multiple attackers at different distances and use the close
attackers to “hide” the routes of packets from those at-
tackers farther away. Our scheme also suffers from this
problem, but not as severely because of the built in noise
filtering of the Guruswami-Sudan multiple path recon-
struction algorithm. We think that simply by compar-
ing the frequency at which an edge is marked to the ex-
pected marking probability of the edge, we can detect
false edges closer than the attacker, so long as the near-
est attacker is at least a few hops away. This technique
has worked well in our simulations.

Our schemes could also make use of the HMAC tech-
niques discussed by Song and Perrig to ensure that edges
are not faked, but this would require us to either use ad-
ditional space in the packets to store the hash or lose our
incremental deployment properties [21]. If we decided
to make one of these tradeoffs, our scheme should be
comparably secure against multiple attackers.

7 Future Work
One important open problem is to find better varia-

tions of our Random Full Path tracing schemes. Perhaps
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Figure 5. Number of packets needed to recover different length paths

an approach based on algebraic geometric codes [13]
would be successful. We have been unable to find a
variation that immediately improves on combinatorial
approaches in all situations, but it seems intuitively plau-
sible that one should exist. More generally, it would be
interesting to more carefully explore resource and secu-
rity tradeoffs for more of the many parameterizations of
our methods.

8 Conclusions

We have presented a new algebraic approach for pro-
viding traceback information in IP packets. Our ap-
proach is based on mathematical techniques that were
first developed for problems related to error correct-
ing codes and machine learning. Our best scheme has
improved robustness over previous combinatorial ap-
proaches, both for noise elimination and multiple-path
reconstruction. Another key advantage of our schemes
is that they will automatically benefit from any improve-
ment in the underlying mathematical techniques, for
which progress has been steady in recent years.
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