
Reconstructing Trust Management

Ajay Chander
Computer Science Department

Stanford University

Stanford, CA 94305

Drew Dean
Computer Science Laboratory

SRI International

Menlo Park, CA 94025

John C. Mitchell
Computer Science Department

Stanford University

Stanford, CA 94305

Abstract

We present a trust management kernel that clearly separatesauthoriza-
tion and structured distributed naming. Given an access request and sup-
porting credentials, the kernel determines whether the request is authorized.
We prove soundness and completeness of the authorization system without
names and prove that naming is orthogonal to authorization in a precise
sense. The orthogonality theorem gives us simple soundnessand complete-
ness proofs for the entire kernel. The kernel is formally verified in PVS,
allowing for the automatic generation of a verified implementation of a refer-
ence monitor. By separating naming and authorization primitives, we arrive
at a compositional model and avoid concepts such as “speaks-for” that have
led to anomalies in logical characterizations of other trust management sys-
tems.

1 Introduction

Access control in distributed systems is challenging. Unlike centralized systems, a
resource owner may not know the identity of an access requester, and thus identity-
based access control in such systems can be very limiting. Authentication is not
the only issue in distributed systems; the dynamic nature of such systems encour-
ages the use of policy constructs like delegation and local naming, which must be
suitably supported in any practical distributed system. One early strand of work
in this area occurred in the development of the Taos operating system in the late
1980s and early 1990s, and included characterizations of policy language [23], log-
ical frameworks for understanding access control [2], and system integration [15].

1

Concurrent proposals such as Neuman’s proxy-based architecture[19] and the Dig-
ital distributed system security architecture [9] of Gasser, et al. also introduced the
notion of delegation in a world of autonomous, cooperating, peer entities. Inthe
mid 1990s, Blaze, Feigenbaum, and Lacy coined the term “trust management”[6]
to treat similar issues in an application-independent way.

In this paper, we will use the term “trust management” to refer to distributed
access control based on cryptographic keys, signed credentials, and local policies
[6, 5, 4]. One characteristic of trust management isdelegation: the owner of a
resource can empower another principal to grant bounded access rights to the re-
source. For example, owner Alice [10] may allow principal Bob to delegate access,
Bob may delegate this right to Charlie, and Charlie may then exercise this right.
Another characteristic of trust management is distributed naming. When Alice ex-
presses her policy about resources, she may refer to so-calledlocal namesthat she
defines herself, or refer to names that are globally known or defined byother prin-
cipals. For example, an employee at CompanyZ may refer toZ’s CEO’s assistant,
meaning the principal thatZ’s CEOdefines to be herassistant, whereZ’s CEOis
again the principal thatZ designates asCEO.

One fundamental source of complexity in trust management is the interaction
between deduction, signing, and distributed naming. Since trust managementau-
thorization is based on logical deduction, it is natural to try to formulate name
definitions in a logical manner and appeal to deduction for name resolution. Also,
trust management policies involve assertions by various principals, with digital sig-
natures used to verify that assertions were actually issued by authorizedprincipals.
However, previous efforts to harness logical characterizations of naming and sign-
ing have led to puzzling interactions and anomalies. Much ink has been spilled
examining the naming portion of SDSI [1, 11], for example, and more recentlyits
interaction with SPKI [12]. It has been pointed out by several authors [1, 3, 12]
that “surprising” conclusions may result from the addition of seemingly reasonable
logical access control rules to a system.

We believe, though, that the interaction between authorization, naming, and
correct signing of certificates, originally presented in SDSI [21] in a purely op-
erational way, should submit to a simple modular solution. Hence, we present
here a clean sheet design, with a simple formalization. Our state-transition model
borrows from our earlier work [7], where we developed a general access control
framework based on abstract system states, state transitions, and logicaldeduction
of access judgments. This framework was used to compare the expressive power
of trust management systems to access control list and capability systems, reaching
the conclusion that trust management combines the strong points of access control
list and capability systems by allowing subjects to delegate rights in a revokable
manner. As a labeled transition system, the model is also inherentlyoperationalas

2

opposed to theaxiomaticspecifications presented in previous work. A direct bene-
fit of this fact is an intuitive operational semantics for the transition system, which
is also close in spirit to actual implementations of access control mechanisms in
distributed systems.

Having found the state transition modeling a useful comparative tool, in this pa-
per we address the interaction of naming and authorization primitives. What does
a name mean? How is authorization granted? Can we define a clear semantics for
each of these constructs, and then combine them so that there are “no surprises”?

This paper makes several technical contributions. First, we presentaccess
graphsas a semantic model for reasoning about access; the interpretation of the
state transition model in an access graph is algebraic in flavor. We start by es-
tablishing the robustness of our trust management authorization model by proving
soundness and completeness theorems. These theorems show that a simple deduc-
tive characterization of authorization corresponds exactly to an access-graph-based
semantics of authorization assertions. Second, we address the semantics of names
within the state-transition model, specifying the relevant system states, transitions,
and judgments relevant to naming. A key idea in our treatment of names is to
identify the meaning of a name with an environment or a name space. A name
binding within a name space, on the other hand, assigns to a name a key or another
name. Our notion of environment is similar to its use in a programming language-
theoretic setting; we evaluate policy statements and local name definitionsw.r.t.
specific environments, and define properties like globality in terms of quantifica-
tion over environments. Our naming proposal is expressive enough to capture, for
example, SDSI/SPKI naming [21].

With a clear modeling of both authorization and naming, we extend our au-
thorization mechanism to allow for structured distributed names, thus producing a
trust management kernel. We model the kernel as a state-transition system, com-
bining the relevant parts of the previous models for authorization and naming. Our
formal statement of the “no surprises” result is the commutativity theorem, which
informally states that the access decisions made in the kernel can be viewed as a se-
quential application of name resolution rules, followed by authorization rulesthat
reason with keys. This result also provides soundness and completeness theorems
for the entire kernel, thereby confirming our hypothesis that naming and authoriza-
tion compose cleanly. As a complementary result, we formally specify the power
of the naming abstraction by using simulation relations that compare authorization
actions in the full kernel with authorization actions referring only to keys. Fi-
nally, we have formally verified the trust management kernel within the automated
theorem-proving system PVS, with the ability to generate proofs corresponding to
allowed accesses. Our work thus forms the basis for the automatic generation of a
verified implementation of a reference monitor in distributed systems.

3

Our analysis presented us with some informal guidelines that we found use-
ful in evaluating ad-hoc logical rules. The first is captured by the commutativity
theorem. The other concerns adherence to scope; we found severalexamples of
rules in the literature where unclear scope extrusion results in unintended conse-
quences. Our insistence on tracking scope in name and action definitions enabled
us to disallow problematic rules [1] within our semantics, and to express concepts
like globality.

The rest of the paper is organized as follows. Section 2 discusses pastwork
on the modeling of names. Section 3 summarizes the state-transition model, TM,
of trust management without names. Section 4 presents a graph-based semantics
and proves soundness and completeness of the access judgment rules.Section 5
presents the structure and semantics of names used for naming resourcesand in ac-
cess control constructs. We also mention how SPKI/SDSI naming can be expressed
within our system. Section 6 presents the model TMN, extending the original state-
transition model with structured names. We formally show the orthogonality of
name and authorization resolution as a commutativity theorem, and use it to prove
soundness and completeness of the entire system in Section 7. We discuss some
inconsistencies that arise from incomplete semantics in Section 7.1. Section 8 de-
scribes the PVS specification of our theorems, and of decision procedures to decide
access. Section 9 presents our final conclusions.

2 Related Work

The most closely related work to this is the study of SPKI/SDSI naming and autho-
rization. Lampson and Rivest proposed SDSI in 1996 [21], introducingthe notion
of privately defined names and name resolution of linked names. SDSI’s names
were adopted, among other things, into the merged SDSI/SPKI 2.0 proposal[8].
Abadi did the first formal study [1] of the SDSI name resolution algorithm in 1998
by formally specifying the resolution rules in a logic, and showing that any name
resolved by the SDSI resolution algorithm corresponded to a proof usingthe logical
resolution rules. The logic was based on a possible world semantics that interpreted
the name definitionp 7→ q as[[p]]⊆ [[q]], where[[p]] informally is the set of keys as-
sociated with[[p]]. Abadi also used the logical relation “speaks-for” as an interpre-
tation of name binding. He pointed out that the addition of apparently reasonable
rules might result in undesirable conclusions from a security standpoint. Halpern
and van der Meyden followed Abadi’s work with two influential papers [11, 12] in
which they introduced LLNC, the logic of local name containment that interprets
p 7→ q as the more intuitive[[p]] ⊇ [[q]] instead. They also separated “speaks-for”
from the semantics of naming, associating speaks-for with delegation of author-

4

ity. Their axiomatic characterization provides a useful specification of naming but
is not directly connected to an actual implementation. Li [16] presented a logic
programming formulation of name resolution by encoding the process as a logic
program.

Authorization, on the other hand, has a longer history. One of the earliestmod-
els of access control was theaccess matrixof Lampson [14], used for safety anal-
ysis by Harrison, Ruzzo, and Ullman [13]. Lipton and Synder [17] introduced the
Take-Grant model of access control, and our graph-based model is insome ways
similar to it. The granularity in these models was at the level of single objects
and subjects; the introduction of roles [22] provided a newer level of abstraction in
access control. In parallel, authorization was also formally studied within operat-
ing systems in the late 1980s and 1990s [23, 2], while delegation constructs have
been more recently studied in the context of distributed [19, 9] and peer-to-peer
systems.

3 A State-Transition Model of Authorization

In earlier work [7], we proposed a new model of access control, based on abstract
system states, state transitions, and logical deduction of access control judgments.
The main idea is to identify a set of abstract system states, each containing the
kind of information that would be maintained in an access control system. The
important property of each state is the set of access requests that will be allowed
in it, and the access requests that will be allowed after subsequent actionssuch as
the transfer of a capability. The set of allowed access requests may be recorded
directly in the state, as in access control lists, or derived from propertiesof the
state by some form of logical inference. In this framework, we compare access
control mechanisms underlying trust management, access control lists, andtwo
flavors of capabilities, by comparing the resulting labeled transition systems (see
Appendix A) using traditional forms of simulation relations from programming
language and concurrency theory.

The general state-transition-based approach to the modeling of access control
mechanisms specifies the following:

1. A world state, the part of the system configuration that is relevant to the
access control mechanism,

2. A set of possibleactions, each defining a transition function from world
states to world states,

3. An access judgment, which states when one object can access another. This

5

may be specified in the form of logical inference, equivalent to some imple-
mentable algorithm.

Given a world stateWS, the judgment that subjects can exercise the rightr on
objecto is written asWS⊢ s→ (o, r).

For the case of trust management without local name spaces, the model for
which we shall denote by TM, the world state consists of a setO of objects, a set
Rof rights, and two mapsA (bounded root-ACL) andD (bounded Delegate):

A : O×R→ P (O×N)
D : O×R×O→ P (O×N)

The mapsA andD capture the two ways through which access privileges are prop-
agated in this framework—either they are granted directed by the host object via
the root ACL mapA, or they are delegated through other objects that hold the
access right, via the delegation mapD. Each of these methods provides for a dele-
gation depth that bounds further granting privileges, and we capture thisby the set
N = {0,1, . . . ,∞} in the co-domain of the two functions. Thus, if(os,n)∈A((o, r)),
thenos can access rightr on objecto, and can delegate that access right to another
objectod that can then delegate it to a maximum effective depth ofn− 1. The
delegation action byos would be modeled as(od,n−1) ∈ D(os, r,o). In general
if an objectos delegates its access rightr on o, then the set of such delegations is
captured byD(os, r,o).

An action is specified by how it changes the components of the world state
w in which it is invoked. Table 1 summarizes the effects of actions for the trust
management model. The action Create(oc,o) denotes the creation of objecto by
the creating objectoc, and affects the componentsO,A, andD of the world state.
Object oc is given the rightre to edit o’s root-ACL, and the ability to delegate
that right to anyone it wishes to. No one else holds any other rights too at this
point. The action Delete(o) removes all instances of the objecto from the sys-
tem, thereby removing it from the set of objectsO, its root-ACLs from the map
A, and all delegated access rights to it from the mapD. In other words, the maps
A andD are updated by restricting their domains to the sets(O−{o})×R) and
(O−{o})×R× (O−{o}), respectively. The Add(o, r,os,d) action gives subject
os the right r on objecto with further delegation powersd and therefore affects
only theA-map component of the world state. Since this newly obtained right has
not yet been delegated, the mapD and other state components remain the same.
Similarly, the Remove(o, r,os,d) action removes subjectos from the root-ACL cor-
responding to rightr on objecto. Finally, the actions Delegate(os,o, r,od,d) and
Revoke(os,o, r,od,d) capture the delegation (or revocation, respectively) by object
os of its access right(o, r) to delegatee objectod, with further delegation privileges

6

O A D

Create(oc,o) ∪{o}
(o, re) 7→ (oc,1)
(o, r) 7→ /0 (s, r,o) 7→ /0

Add(o, r,os,d) (o, r) 7→ A(o, r)∪{os,d}
Remove(o, r,os,d) (o, r) 7→ A(o, r)−{os,d}
Delegate(os,o, r,od,d) (os, r,o) 7→ D(os, r,o)

∪{od,d}
Revoke(os,o, r,od,d) (os, r,o) 7→ D(os, r,o)

−{od,d}
Delete(o) −{o} | |

Table 1: Trust Management

d. Note that none of the actions changes the set of rightsR, which is assumed to be
a fixed part of the system specification.

We specify the access judgment as a logical judgment in a proof system with
the four inference rules given below. To bootstrap the inference process, we trans-
late the world state into predicates. The mapsA andD of the world state can be
interpreted as set-membership predicates;ACL(s,o, r,d) is true iff (s,d) ∈ A(o, r),
andDel(s,o, r, rs,d) is true iff (rs,d) ∈ D(s, r,o). In other words,ACL(s,o, r,d) is
true iff subjectsbelongs on the root-ACL for the access right(o, r), andDel(s,o, r, rs,d)
is true iff subjects has delegated its access right(o, r) to subjectrs, with further
delegation allowed up to depthd in both cases. In the system TM, subjects can
access the(o, r) pair iff it can produce a proof ofAccess(s,o, r,d) for somed,
from the predicate equivalent of the world state and the following four inference
rules:

(RootACL) ACL(A,B, r,d) ⊢ Access(A,B, r,d)
(Delegation) Access(A,B, r,d+1),Del(A,B, r,C,d)

⊢ Access(C,B, r,d)
(Ord1) Access(A,B, r,d+1) ⊢ Access(A,B, r,d)
(Ord2) Del(A,B, r,C,d+1) ⊢ Del(A,B, r,C,d)

The first two rules capture the root ACL and delegation chain mechanisms ofob-
taining access, and the last two capture the “downward closure” property of del-
egation depths. The idea of “downward closure” is very simple: if a subject can
delegate a right up to depthn, then clearly that subject can also delegate the right up
to depths 0,1, . . . ,n−1. Essentially, rules (Ord1) and (Ord2) produce appropriate
predicates for an application of the (Delegation) rule.

Notice that theA andD maps specify a simple access control policy language

7

for the system TM, and the other components of the modeling provide the sup-
porting data structures and valid transitions thereof, and a logical representation of
the access semantics. Extending this to a more expressive policy language would
entail augmenting the “state” in this state machine, and providing additional tran-
sitions and logical access judgment rules. However, our policy languageis already
sufficient to capture access mechanisms in some significant trust management sys-
tems like SPKI/SDSI [21, 8] and KeyNote [4]. Since our focus in this paperis
on the interaction between authorization and naming in general trust management
systems, we will use TM as a representative example for the analysis, whichcan be
extended to more expressive trust management systems. For further details on the
model TM and its relationship to other access control mechanisms, the interested
reader may look at [7].

4 Semantics

We present an intuitive semantics for the system TM that has an algebraic fla-
vor: the idea is to map elements of the world state to appropriate carrier sets and
functions on them. In particular, we will have the carrier setsOM , RM , and the
functions

AM : OM ×RM → P (OM ×N)

DM : OM ×RM ×OM → P (OM ×N)

We will represent these mappings as edges in a graph, so that allowed accesses
may be represented simply as valid access paths.

More formally, we define a modelM as a directed labeledaccess graph(OM ,E),
where the vertex setOM corresponds to the set of objects in the model, together
with an auxiliary setRM that corresponds to the set of rights. Edges in the access
graph have labels of the form(o, r,d), whereo ∈ OM , r ∈ RM andd ∈ N. Thus,
E ⊆OM × (OM ×RM ×N)×OM . We require that every access graph satisfy the
downward closure property (see Section 3):

(x,(o, r,n+1),y) ∈ E⇒ (x,(o, r,n),y) ∈ E.

Given a world stateWS, we say that a modelM satisfiesWS, writtenM |= WS,
if the following conditions hold:

1. For each elemento∈O, r ∈ R, there exist unique elementsoM ∈OM , rM ∈
RM , respectively.

2. The mapsA andD are captured by the edges of the access graph. Formally,

(s,d) ∈ A(o, r) ⇒ (sM ,(oM , rM ,d),oM) ∈ E
(rs,d) ∈ D(s, r,o) ⇒ (rs

M ,(oM , rM ,d),sM) ∈ E

8

In other words, there is an edge from vertexu to v if u is present on the
root ACL for the corresponding right on vertexv, or if v delegates a right
(on some other vertex) tou. The edge itself is labeled with a tuple(o, r,d)
specifying the object/right pair and further delegation powersd.

Given a modelM , a subjects can access rightr on objecto, writtenM |=
s→ (o, r), iff there exists a directedaccess pathfrom s to o marked with the label
(o, r,d) such that for every prefix of the path (including the entire path), the number
of edges in the prefix is≤ 1+di , the delegation bound in the last edge of the prefix.

o
(o,r,d1)
←−−−− s1← . . .← si

(o,r,di+1)
←−−−−− si+1 = s

The above condition is equivalent to requiring that an access path froms to o
be marked with the label(o, r,d) such that ifd1 and d2 are the depths associ-
ated with any two consecutive edges on the path, thend2 ≤ d1− 1. We say that
M |= Access(s,o, r,d) iff the first edge of some access path fromsM to oM is
marked with(oM , rM ,d).

Note that for any given world state, we can always construct a minimal model
that provides concrete representations of exactly the objects and rights inthe world
state, and has no more edges in the access graph than required by theA andD
maps.

4.1 Theorems

We show that the logical characterization of access in TM is sound and complete
w.r.t. the access graph semantics. These theorems have been formally verified as
part of our PVS effort; for more details see Section 8. Here we presentsketches of
the main proof strategies used in the PVS proofs.

THEOREM 4.1 Given an arbitrary world state WS, subject s∈O, object o∈O and
right r ∈R,WS⊢Access(s,o, r,d)⇒∀M .M |= WS⇒M |= Access(sM ,oM , rM ,d′)
for all d′ ≤ d.

Proof sketch. We proceed by induction on the structure of the proof ofWS⊢
Access(s,o, r,d); for each proof rule, we combine the access path (inM ’s ac-
cess graph) of the antecedent provided by the induction hypothesis with the fact
thatM |= WSto obtain the access path of the consequent. The downward closure
property of the models allows us to extend the proof of each subcase to an arbi-
trary d′ ≤ d, while also directly proving cases (Ord1) and (Ord2). In PVS, we
carry out this induction using PVS’s support for induction over inductively defined
datatypes. For each proof tree corresponding to a proof of access,we provide an

9

inductive construction of the corresponding path in the access graph asa part of
the proof.

COROLLARY 4.2 (Soundness)Given an arbitrary world state WS, subject s∈O,
object o∈O and right r∈R,WS⊢ s→ (o, r)⇒∀M .M |= WS⇒M |= s→ (o, r).

Proof. Immediate from Theorem 4.1, and the definition ofM |= s→ (o, r).

THEOREM 4.3 (Completeness)Let WS be an arbitrary world state and let s,o∈
O, r ∈R. Then,[∀M .(M |= WS)⇒ (M |= sM → (oM , rM))]⇒WS⊢ s→ (o, r).

Proof sketch. Each modelM that satisfiesWScontains the setsOM andRM , and
has edges in the access graph corresponding to the mapsA andD of the world
state. SinceM |= sM → (oM , rM), there exists a valid access path in the graph,
whose edges correspond to instances of theACL andDel predicates that hold in
the world state. These can be combined in a straightforward manner using the
logical rules⊢ to construct a proof ofWS⊢ s→ (o, r). Once again, we use PVS
induction over inductively defined paths. For each well-formed path — thatis,
a path corresponding to valid access in the graph we construct the corresponding
proof tree. The base case for paths of length 1 uses the rule (RootACL), possibly
with some applications of (Ord1). For paths of greater length, the induction step
uses the (Delegation) rule, possibly with prior applications of rules (Ord1)and
(Ord2).

5 Structured Names

Any practical trust management system must provide for some version of linked
private name spaces. Since naming constructs are independent of authorization
primitives, it should be possible to present a semantics for them separately.More-
over, it would be desirable that this semantics compose well with the semantics for
authorization, so that there are no “surprises” in a system that uses both. Before we
construct the combined system, we must consider the question: what does aname
represent?

In real systems, names are ubiquitous: we use them to refer to variables and
blocks in a program, to files on disk, to users on a machine, machines on a network,
and so on, so that we may conveniently refer to them again. Each of these is
a memorable abstraction for the underlying representation in terms of memory
addresses (for variables), file and user identifiers in an operating system, numeric
IP addresses, and so on. In real life, too, we use names as a means torefer to
things such as people, streets, and cities. Each name is meant to be unambiguous

10

within a presumed domain of discourse: for example, Portland may denote one
city in Oregon and another in Maine. Similarly, the same variable may be used
more than once in a program, as long as it is unique within a block. In addition to
being associated with an identity, a name provides acontextfor referring to other
things; for example, “Powell Books, W Burnside St., Portland, Oregon” refers to
a specific bookstore on “W. Burnside St., Portland, Oregon.” We conclude that at
the very least names are an abstraction for things, intended to be memorable and
robust (e.g., Joe’s PhoneNumber), and define a context that may be used to refer
to other things.

Any practical access control policy must, then, be able to associate privileges
with names, instead of only with keys. This is desirable for a few important rea-
sons:

1. Policies are often written in terms of people, and humans think about people
by name, not key.

2. A person’s key is likely to change over time. Keys get both inadvertently
lost (recoverable by no one) and maliciously compromised by attackers. The
process of a person getting a new key should not require policy changes.

3. Names can represent nonatomic entities such as groups, making the policy
language expressive without compromising on succinctness.

These reasons all argue for policies to be expressed in terms of names, not keys.
However, actual execution environments for access control utilize unambiguous
identifiers like user- and file-ids, public keys, and IP adresses to make decisions.
As in most trust management proposals, we focus on names as being placeholders
for keys in policies. Hence, we need a mapping from the surface syntax of the
policy language (which may reference names) to the keys used to decide access
requests.

We now add structured distributed names to our model as an independent prim-
itive, and present its semantics as separate from that of authorization. InSection 6,
we show how the semantics of the two constructs compose. We first presentthe
syntax of the new constructs.

5.1 Keys

We denote the set of keys byK . Our modeling assumes that keys are globally
unique identifiers, used to authenticate principals in a distributed system. Keyscan
be part of symmetric or public-key cryptography systems, and should satisfy se-
curity requirements of the same. In particular, it should be hard to guess thekey

11

associated with a principal; this is usually inversely proportional to the exponential
of the key length in bits. We will use this fact in our specification of theAddKey
action in Section 5.5 by assuming that a newly generated key is unique. The inten-
tion is that every name in the system eventually resolves to a key. We assume the
existence of a distinguished key⊥k, which we shall use to denote a nonterminat-
ing name resolution process. Name resolution is an injective map and is formally
defined in Section 5.5.

5.2 A Simple Grammar for Names

We denote the set of names byN , which is a union of the set of local namesN L ,
and the set of global namesN G . The set of namesN is distinguished from the set
of keysK , K ∩N = /0.

Global Names We assume the existence of a set of universally recognized global
namesN G . Such mechanisms exist in other naming schemes, for example, SDSI
provides for distinguished global names. A global nameg is meant to have context-
independent semantics; we may assume that there exists a global name oracle,
GNO, that returns the unique meaning associated with a global name.

Local Names Any principal in a distributed system can define its own set of
names, creating a privatename space. Such names are calledlocal names. The set
of local names consists ofbase nameschosen from an appropriate language (N B ,
say), andcompound namescreated throughlinking; we use ‘.’ to denote the linking
operation. A local namel is therefore defined by

l ::= b|l .b

whereb∈ N B
S

N G . For example,Joe, Joe.PhoneNumber, Joe.PepsiCo, are all
local names. Note that the grammar is left recursive, and indicates the natural left-
to-right operational semantics of parsing a linked local name. To avoid confusion
with global names, we assume that the set of base names excludes the setN G , that
is,N B

T

N G = /0.

Fully Qualified Names Local names, by definition, require a context (name
space) in which to resolve them. We say that a name isfully qualified if there
is enough information such that it may be resolved without any further help.Fully
qualified names are formally defined in Section 5.4.

12

5.3 Groups and Roles

While names provide a useful level of abstraction over keys, some policiesbecome
further succint and robust with extended naming abstractions. For example, secu-
rity policies may refer to a collection of named individuals, orgroups. A group is
simply a set of names. Groups arestaticentities; the members of a group do not
change with time. For example, the groupWITS Attendees 2002 refers to a fixed
set of named individuals. In this sense, a group expression can simply beviewed
as a macro expansion into a list of names.

In addition, access patterns in many real-world situations cluster around theno-
tion of arole [22]. A role, as opposed to a group, is adynamiccollection of named
individuals. For example, the members of the groupWITS Attendees change every
year. A role thus provides another layer of abstraction between the entity appearing
in a policy statement and a key. We will see one concrete expression of this with
RoleObjects in the next section.

We note that there are several constructs that may be used to derive either group
or role expressions. Example constructs include linking, globality, conjunction,
disjunction and other propositional connectives and functional operators. While
each of these may be used to generate a group or a role, the semantic difference
arises from theirevaluation order: groups are static, while roles are dynamic.

5.4 Name Spaces

In the “real world”, the entities that names represent have both identity andthe
authority to name other resources. Other pieces of information, like its security
policy, may also be “owned” by the entity. We model the collection of information
held by an entity that is relevant to the name resolution process, by itsname space.
The entity itself has a name, which we consider to be semantically synonymous
with the entity’s name space.

From the point of view of naming, what information should an entity’s name
space contain? At the very least, it should be self-aware, that is, containthe name
of the entity and the key to which it corresponds. In addition, it should contain
local name definitions for that entity. Therefore, we may think of a name space
as a record, which we call aNameObject (Figure 1), with fields for these differ-
ent kinds of information. We assume that every name space has a distinguished
element,SELF, that resolves to the current key of the owner of the name space.
While theSELF field can have further structure (e.g., it can be a set of keys), our
analysis focuses on the interaction between naming and authorization and avoids
unnecessary complexity by assuming that it is a single key.

We denote the name space associated with namen∈ N by [[n]]. We have that,

13

� � � �� � � � � �� � � � 	�� � �
 � �
 � � � �
 � � � � � � � �
 �
 � � �
 � � �
 � � � � � � � � � � � � � � � � � �
� � � �

 � �
 � � � �
 � � � � � � � �
 �
 � � �
 � � �
 � � � � � � � � � � � � � � � � � �
� 	 � �� � �

Figure 1: The structure of a NameObject

for eachn∈ N ,
[[n]] : NameObject

[[n]].SELF : K

We usen ↓ as shorthand for[[n]].SELF, to denote the key to whichn resolves.
We now have the machinery to define fully qualified names (FQNs): a FQN

is a ([[N]],N.~m) ∈ NameObject×N pair, where~m is shorthand for a local name
composed of base or global names via linking. A FQN is thus simply a local
name together with theNameObject context in which to resolve it. For example, in
Figure 1,([[n]],n.n1.n2) is a FQN. We denote the set of fully qualified names byF .
Also, we adopt the convention that([[N]],N) refers to the name space[[N]] itself.
We will use the terms([[N]],N.~m) and[[N]].~m interchangeably.

Local name definitions in a name space can now be formally modeled as ele-

ments of the set(N B
S

N G)× (K
S

F). A local name definitionb
def
= n represents

the element(b,n), and defines the base nameb to ben, wheren is a key or a FQN;
these are the only two sensible choices within our system. Requiringn to be a FQN
provides the starting point of the name resolution process, and models the expec-
tation that a local name is defined in a name space only if the name space owner
knows how to resolve it. There are some restrictions on local name definitions:
first, each base name may be defined only once within each name space. Circular
definitions within the same name space, which by definition must involve a self-
referencing set of base names, are disallowed. Finally, ifb is a global name, then
it can be defined only in the name space[[GNO]]. For robust policies, and without
losing expressive power, it is generally beneficial for the right-hand side of a name
definition to be of the formb.b.

We note that the concept of aNameObject can be generalized to other enti-

14

ties that appear in local policies and credentials, such as keys, groups,or roles.
Keys present no difficulty, whereas aGroupObject can simply be a collection of
NameObjects. A RoleObject, which captures the dynamic nature of a role, is a
structure similar to the one in Figure 1, with pointers to otherRoleObjects, and
provides another level of abstraction between the local policy element andthe key.
Local name definitions may now also be expressed in terms of these new entities.

A NameObject or RoleObject would be most naturally implemented as a small
program that answers queries via Remote Procedure Call. Cryptographic integrity
protection is required, either via a secure RPC channel, or via digitally signed
responses to name queries for such an implementation to be secure.

5.5 A State-Transition Model of Naming

In order to extend the authorization model with names, we must first capture nam-
ing as an independent process within the state-transition model. Accordingly, we
specify abstract system states that are relevant to name resolution, actions upon
those states, and the name resolution process.

World State We define the world stateWSn to be the tuple

WSn = (K,B,G,L,NS)

whereK is the set of keys,B is the set of base names,G is the set of global names
andL is the set of local names constructed from the setsB andG using the grammar
in Section 5.2. These sets correspond directly to the setsK , N B , N G , andN L , and
the allowed actions in this model will maintain this correspondence. The set of
name spaces,NS, consists of records, each of which has aSELF field that takes on
a value in the setK, and a set of mappings(B

S

G)→ (K
S

(NS×L)) that capture
local name definitions. We also denote the set of fully qualified names byF , which
corresponds to the setF described in Section 5.4;F = NS×L. The world state
thus captures the data structures of interest, namely, those that can represent names
as per our grammar, as well as local name definitions and identity within a name
space.

Actions An action specifies a transition from one world state to another. The set
of possible actions corresponds to valid ways of modifying the data structures that
make up a world state. Moreover, each action islocal, and is carried out within a
specific name space. For a given world statew, we specify the results of actionα
that takes a given vector of arguments~v, and is carried out in name space[[n]], by

15

[[n]]α(~v;w). We assume that the components of the world state before the action
are given byK,B,G,L, andNS, and byK′,B′,G′,L′, andNS′ afterwards.

The set of allowed actions comprises adding and removing a global name
(equivalently, changing the name space of the global name oracle appropriately),
creating or deleting a name space, and modifying theSELF field or the set of map-
pings (local name definitions) in an element ofNS. Actions that correspond to
local name definitions are the most interesting, as they allow for the creation of
new local names and enable name resolution; we also examine some of the other
actions:

• AddKey: Subjectns updates its identifying key to bek.

[[ns]]AddKey(k;w) = (K∪{k},B,G,L,NS′), where

NS′ = NS[[[ns]].SELF 7→ k]

Notice that by definition this action is allowed only in the name space of the subject
ns. This captures the fact that the private key (k−1, say) is known only tons. We
assume that the generated keyk is not present inK; the chance of this happening
in a real system is usually exponentially low in the size of the key. The notation
used above forNS′ states that it is the same asNS, except at theSELF field of the
element[[ns]], which now has the valuek.

• AddGlobalName: The global nameg is added to the system, and is associated
with the keykg.

[[GNO]]AddGlobalName(g,kg;w) = (K∪{kg},B,G∪{g},L′,NS′), where

NS′ = NS[[[GNO]].g 7→ kg],

andL′ is the set of local names generated using the setsB andG
S

{g}. Note that
a global name can be defined only by the global name oracle, and thus the action
above is well-defined only in the name space[[GNO]].

• AddLND: Subjectns creates or updates the local name definitionb
def
= n. There

are two cases, based on whethern is a key or a fully qualified name. Ifn = k∈ K ,

[[ns]]AddLND(b,k;w) = (K∪{k},B∪{b},G,L′,NS′), where

NS′ = NS[[[ns]].b 7→ k],

andL′ is the set of local names generated using the setsB
S

{b} andG. The action
creates (or updates) the fieldb in the name space[[ns]], and gives it the valuek. If
n = f ∈ F ,

[[ns]]AddLND(b, f ;w) = (K,B∪{b},G,L′,NS′), where

16

NS′ = NS[[[ns]].b 7→ (Proj1 f ,Proj2 f)],

andL′ is as above. Consider parsingNS′ for the FQN([[N]],N.~m). The name space
[[ns]] is updated at the value of the fieldb, which is a pair of the linked nameN.~m,
and a pointer to the name space[[N]]; this is exactly the information behind the
local name definition.

Notice that name definitions are not defined without the name space that pro-
vides the evaluation environment, and thus we avoid scope extrusion problems that
in conjunction with primitives like “speaks-for” have led to logical inconsisten-
cies [1]. Moreover, there is a clear and direct interpretation of the logical predicate
“says”, used in other logical modelings [1] of local names, in this model. If a local

name definitionb
def
= n belongs in a name spacens, this may be represented as the

predicate[[ns]].SELF says (b
def
= n).

Naming Judgment Given a world stateWSn, we are interested here in the fol-
lowing naming judgment: what key does a name resolve to? This may be captured
as a logical judgment starting from a predicate equivalent ofNS; here we define
the semantics of thename resolutionprocess,;: F → K , operationally. Given a
FQN ([[n]],n.n1.n2 . . .nk), we say that it resolves to the following key:

([[n]],n1.n2 . . . nk) ; [[. . . [[[[n]].n1]].n2 . . .]].nk]].SELF

Notice that this corresponds to a left-to-right traversal of pointers corresponding
to n1,n2 . . . ,nk in the appropriateNameObjects. In case this process encounters
dangling pointers, or if one of the namesn1, . . . ,nk does not exist, we assume that
the evaluation process returns the key⊥k. Given a world stateWSn, the naming
judgment that a fully qualified namef resolves to the keyk is writtenWSn ⊢n f ;

k. In this case, we also usef ↓ for k.
In addition to associating entities with keys, names may be used to refer to

passive resources like files. Since we useNameObjects to represent name spaces,
we say that themeaningof a name is the value of the corresponding instance vari-
able in the appropriateNameObject. Thus, themeaningof a key-valued name is a
key, of a linked name-valued local name is the corresponding name space,and of a
resource-valued name is the actual resource in question. Notice that with this iden-
tification, we may use[[n]] to denote the meaning of a name as well. This allows us
to answer the naming judgment: what does a name mean?

Global Names A linked local name can also reference global names; we discuss
this special case of name resolution here. Global names have context independent

17

semantics, and thus are interpreted identically in all name spaces, that is,

∀[[n1]], [[n2]] ∈ NS: g∈ N G ⇒ [[n1.g]] = [[n2.g]].

As a corollary, we get that the meaning of a global name in the empty environment,
[[g]], is well-defined. Since we assume the existence of a global name oracle, we
have that

∀[[n]] ∈ NS: g∈ N G ⇒ [[g]] = [[GNO.g]] = [[n.g]].

Thus, any FQN of the form([[N]],N.~l .g.~m),g∈N G is equivalent to([[GNO]],GNO.g.~m).
The following facts directly follow from the above definitions:

FACT 5.1 A FQN evaluates to the same key in any environment (name space).

FACT 5.2 Global names and compound names containing global names are FQNs.
For a global name g and compound name~b.g.n, the corresponding FQN is([[g]],n).

We note that previous proposals for modeling local names have focused on the
meaning of a local namedefinition, which is a separate construct from the name it-

self. In our modeling, a local name definitionb
def
= l in name space[[n]] corresponds

to the fact that([[n]],n.b); l .SELF; it is an action that modifies a name space. How-
ever, the name itself denotes a name space orevaluation context, where evaluation
may be the resolution of linked local names to keys, or certificate processingfor
deciding access. As described above, the context includes the identity ofthe name
(corresponding key pairs, say) and local name definitions. It may also include in-
formation about trusted certificate authorities and other information that guides the
process of creating, distributing, and verifying certificate chains.

We make a final point regarding the modeling of groups and roles in the state-
transition model. We may capture the difference between them by allowing certain
actions in one but not in the other. In particular, a change action (add,remove) may
not be allowed on the data structure corresponding to groups, while beingpermitted
for roles.

5.6 Embedding SPKI/SDSI

The syntactical machinery to define names in our framework is general enough to
capture a variety of trust management language proposals; here we focus on ex-
pressing SPKI/SDSI 2.0 [8]. SPKI derives its specification of local names from the
original SDSI proposal; names can be either “basic” or “compound”. A basic SDSI
nameb in n’s namespace is captured by the declarationn : (nameb). The corre-
sponding name in our model would ben.b. Compound SDSI names, referenced

18

through chaining, can be expressed by the “.” operator in our system. The com-
pound SDSI namen : (nameb n1 . . .nk) corresponds ton.b.n1 . . .nk in our model.

SPKI certificates capture identity (name7→ key), attribute (permission7→ name),
or authorization (permission7→ key) mappings. Each certificate contains an issuer,
subject, delegation depth (either 0 or∞), “authorization” expression, and validity
interval. Each certificate may be signed by an entity, and we consider the body
of the certificate to be a statement made inside the name space of that entity. An
identity certificate(n 7→ k) can be expressed simply by associating theSELF field
with k in the name space[[n]]. SPKI does allow a local name to be bound to more
than one key; as mentioned earlier, we can model this by allowing theSELF field
to be a set of keys. Attribute and permission certificates are special instances of
the authorization constructs in the model TMN (Section 6), namely,s→ (o, r) and
AccessN(s,o, r,d) respectively, where subjects and object can be names or keys.
The SPKI authorization expression corresponds to the permission language used
to express the abstract(o, r) right, and may be application dependent. Validity in-
tervals specify whether a SPKI certificate may be used in the current computation
for deciding access, and are independent of naming and authorization concerns.

6 Authorization and Naming

We now extend the basic trust management model TM to allow for distributed,
structured names. Recall that the basic access control judgment checkswhether,
in a given world state, a subjects can access rightr on objecto. The extension
to naming constructs effectively replaces the occurrences of subjects with corre-
spondingNameObjects that contain their identifying keys. We assume that objects
are referenced unambiguously through subjects that own them. There are no global
name spaces, and all actions and judgments take place in a particular context,or
name space, of the appropriate subject. We present the different partsof the state
transition modeling below.

World State The world stateWSN of the trust management system TMN is de-
fined to be the tuple

WSN = (WSn,R,AN,DN)

whereWSn captures the data structures relevant to naming (Section 5.5.) Note
the parallel between this world state and the one for the model TM, in Section 3.
The mapsAN andDN are counterparts of the mapsA andD of the system TM,
and capture root-ACL and delegation mechanisms of granting access, respectively

19

(hereF is the set of fully qualified names inWSn):

AN : F×R→ P(F×N)
DN : F×R×F → P(F×N)

We note the change in the domain and co-domain sets from the set of objectsO (in
the system TM) toF . The context-independent semantics of fully qualified names
ensures that these global maps are meaningful.

Actions The actions of TMN can reference local names and are therefore inter-
preted in the context of a name space. As before, for a given world statew, we
specify the results of actionα carried out in name space[[n]], that takes a given
vector of arguments~v, by [[n]]α(~v;w). We assume that the components of the world
state before the action are given byWSn,R,AN, andDN, and byWSn

′,R′,A′N, and
D′N afterwards. Recall that[[N]].m is shorthand for the FQN([[N]],N.m). We focus
here on the actions that modify theAN andDN maps:

• Add(to root-ACL): Subjectns adds subjects′ to the ACL associated with
right r on objecto, with further delegation privileges up to depthd.

[[ns]]AddN(o, r,s′,d;w) = (WSn,R,A′N,DN), where

A′N = AN[([[ns]].o, r) 7→ AN([[ns]].o, r)∪{([[ns]].s
′,d)}]

Note that the fully qualified names ensure that this local action updates the
global mapAN meaningfully.

• Remove(from root-ACL): Subjectns removes subjects′ access to rightr on
objecto, given thatns owns objecto.

[[ns]]RemoveN(o, r,s′,d;w) = (WSn,R,A′N,DN), where

A′N = AN[([[ns]].o, r) 7→ AN([[ns]].o, r)−{([[ns]].s
′,d)}]

• Delegate(access right): Subjectns delegates its access rightr on object([[s′]],s′.o)
to delegatee subjectnd, with further delegation powersd.

[[ns]]DelN([[s′]].o, r,nd,d;w) = (WSn,R,AN,D′N), where

D′N = DN[(([[ns]],SELF), r, [[s′]].o) 7→DN(([[ns]],SELF), r, [[s′]].o)∪{([[ns]].nd,d)}]

• Revoke(delegated access right): Subjectns revokes a delegated rightr on
([[s′]],s′.o), from subjectnd. The mapDN is appropriately modified:

[[ns]]RevokeN([[s′]].o, r,nd,d;w) = (WSn,R,AN,D′N), where

D′N = DN[(([[ns]],SELF), r, [[s′]].o) 7→DN(([[ns]],SELF), r, [[s′]].o)−{([[ns]].nd,d)}]

20

Other actions allow for the modification of the name definitions in a name
space, but these do not affect the authorization decision until they are referenced
via the actions above. The actions corresponding to modifications ofWSn (see
Section 5.5) are included in the set of actions in TMN.

Access Judgment Given a world statew and a fully qualified object([[ns]],ns.o),
we would like to decide whether a subjects can access rightr on this object. We
specify the access judgment in the system TMN as a logical judgment, given the
following four inference rules. These access judgment rules are derived from the
rules of the base system TM (Section 3), with additional support for names. First,
we transform the world stateWSN into its (signed) predicate equivalent:

• ACLN([[B]].A, [[B]].o, r,d)B↓ holds iff ([[B]].A,d) ∈ AN([[B]].o, r), and

• DelN([[A]], [[B]].o, r, [[A]].C,d)A↓ holds iff ([[A]].C,d)∈DN(([[A]],SELF), r, [[B]].o).

The first construct above expresses the addition ofA to the root ACL associated
with the right r on B; notice that this action is signed byB’s key. The second
allowsA to delegate its rightr on objecto to C; again this statement is signed with
A’s key.

(RootACLN) ACLN([[B]].A, [[B]].o, r,d)B↓⊢NAccessN([[B]].A, [[B]].o, r,d)B↓

(DelegationN) AccessN([[A]], [[B]].o, r,d+1)B↓,DelN([[A]], [[B]].o, r, [[A]].C,d)A↓

⊢NAccessN([[A]].C, [[B]].o, r,d)B↓

(Ord1N) AccessN([[A]].s, [[B]].o, r,d+1)B↓⊢NAccessN([[A]].s, [[B]].o, r,d)B↓

(Ord2N) DelN([[A]], [[B]].o, r, [[A]].C,d+1)A↓⊢NDelN([[A]], [[B]].o, r, [[A]].C,d)A↓

The first two rules capture the root-ACL and delegation chain mechanisms of
obtaining access to a right; the second rule in particular combines a signed delega-
tion toC made byA, with access rights granted toA by B, into an access statement
for C vouched for byB. This rule therefore also acts as the equivalent of a logical
inference rule for thesays predicate. The signatures on the predicates provide in-
tegrity assurances by matching the signing key with the identity of the originating
name space. The last two rules capture “downward closure” of delegation depths,
and produce appropriate predicates for application of the delegation rule. We say
that subjects′ can access rightr on object([[ns]],ns.o) iff it can produce a proof of
AccessN([[ns]].s′, [[ns]].o, r,d)ns↓

for somed.

6.1 Compositionality

The system TMN adds names to the authorization primitives in TM, and provides
logical rules that refer to both constructs. If we removed what we added— that is,

21

if we resolved all names to keys — the system TMN should behave in the same way
as TM. On the other hand, the naming abstraction is powerful because it makes
policies robust. We formalize these intuitions with the following two theorems:
the first states that any authorization action of TMN can be simulated by an action
of TM, given name resolution as an auxiliary single-step operation. The second
shows that changes made in a policy that references names cannot be captured
with a bounded set of actions in a policy that references only keys. We make the
formal comparison using simulation relations between the two labeled transition
systems for TM and TMN; some definitions can be found in Appendix A. For
more details on labeled transition systems and simulation relations, see [18]. We
start by defining a relation between world states of the two systems.

If WSN is a world state of the system TMN, we useWSN↓ to denote the corre-
sponding world state of the system TM whereNameObjects have been replaced by
their identifying keys, and the FQNs in the domain and co-domain of theAN,DN

maps resolved to keys to obtain theA andD maps ofWSN↓. We specify the trans-
lation formally below: given world stateWSN = (WSn,R,AN,DN) of TMN, the
corresponding world stateWSN↓ of TM is given by(O,R,A,D) where

1. For eacho∈O, there exists aNameObject [[n]]∈NSsuch that[[n]].SELF= o.
Recall thatWSn = (K,B,G,L,NS). Also, for eachNameObject [[n]] ∈ NS,
there exists ano∈O such that[[n]].SELF= o.

2. For eachs,o∈O, r ∈R,d∈N, if (s,d)∈A((o, r)), then there existsNameOb-
jects [[ns]], [[no]] such that([[ns]] ↓,d) ∈ AN(([[no]] ↓, r)), and vice versa.

3. For eachs,o, rs ∈ O, r ∈ R,d ∈ N, if (rs,d) ∈ D((s, r,o)), then there ex-
ist NameObjects [[ns]], [[no]], [[nrs]] ∈ NS such that([[nrs]] ↓,d) ∈ D(([[ns]] ↓
, r, [[no]] ↓)), and vice versa.

The theorems of Section 7 tell us that the statesWSN andWSN ↓ effectively allow
the same accesses in the two systems. The following theorem correlates transitions
in one system to transitions in the other.

THEOREM 6.1 The systemTM can strongly simulate authorization actions of sys-
temTMN, given name resolution as a one-step operation.

Proof. Note that in order to define a simulation (Appendix A), we need to define a
correspondence functor from world states of TMN to TM. Since well-formed world
states are created by sequences of actions, we definef inductively as follows:

f ([[ns]]AddN(o, r,s′,d;w) = Add([[ns]].o ↓, r, [[ns]].s′ ↓,d; f (w))
f ([[ns]]RemoveN(o, r,s′,d;w) = Remove([[ns]].o ↓, r, [[ns]].s′ ↓,d; f (w))
f ([[ns]]DelN([[s′]].o, r,nd,d;w) = Delegate([[ns]] ↓, [[s′]] ↓, r, [[ns]].nd ↓,d; f (w))
f ([[ns]]RevokeN([[s′]].o, r,nd,d;w) = Revoke([[ns]] ↓, [[s′]] ↓, r, [[ns]].nd ↓,d; f (w))

22

The correspondence functor defines the required binary relation between world
states of the two systems, as well as the translation between actions.

As a corollary, since corresponding states allow the same accesses, no unex-
pected authorizations are allowed by the authorization actions of TMN.

THEOREM 6.2 The systemTM cannot simulate naming actions ofTMN.

Proof. We show that a weak simulation cannot exist between the two systems.
Consider a world statewN of TMN, such that[[n]] ∈ wN.NS and [[n]].SELF = k.
Also, let [[n]] have rightr on every object inwN through theAN map. Let there be
N objects inwN. Letw be the equivalent state of TM, where[[n]] is replaced withk,
andk has rightr on every object through theA map. In order to simulate the TMN
action[[n]]AddKey(k′;wN) within the system TM, we have to performN Remove
actions fork, oneCreateaction fork′, andN subsequentAddactions. The actions
involved depend on the privileges granted to the keyk in statew, and thus no weak
simulation betweenw andwN can exist.

THEOREM 6.3 (Commutativity) For any world state WSN of the systemTMN,
and access formula QN, the following commutative diagram holds (; represents
name resolution):

WSN
⊢N−−−→ QN

;





y





y

;

WSN ↓ −−−→
⊢

QN ↓

Proof. We proceed by induction on the structure of the proofp of WSN ⊢N QN. We
consider the last rule used inp and show that the diagram holds for each possible
case. The proof of each of the four cases proceeds identically; we work out the
case for(RootACLN) in detail. SupposeACLN([[B]].A, [[B]].o, r,d)B↓⊢N

AccessN([[B]].A, [[B]].o, r,d)B↓, and thatWSn ⊢n ([[B]],B.A) ; k1,([[B]],B.o) ; k2.
By the translation from world states in TMN to world states in TM, the predi-
cateACLN([[B]].A, [[B]].o, r,d)B↓ is true ofWSN iff ACL(k1,k2, r,d) is true ofWSN↓.
Now we may proveQN ↓= Access(k1,k2, r,d) using the ruleRootACL of the
proof system⊢, and we are done. We note that this inductive proof is essentially
equivalent to a horizontal ladder-like constructive proof of the commutativity dia-
gram above.

The commutativity theorem tells us that the application of name and authoriza-
tion resolution rules in any order produces the same final result; it is a statement
about no “surprises” from the rules⊢N. In particular, we may resolve all names
first to keys, and then use the rules⊢ to decide access, yielding the final result as

23

a composition of the two operations. More generally, we posit the commutativity
theorem as a sanity benchmark for rules in access control systems that combine
authorization and naming primitives: it should be possible toseparateany access
proof into name and access resolution.

7 Semantics

We extend the semantic model defined in Section 4 to include distributed, struc-
tured names. Therefore, our semantics again has an algebraic flavor, where we map
elements of the world state to carrier sets and functions on them. We will denote
elements of the carrier sets by nodes in a graph, and the mappings as graphedges.
This is conceptually close to a basis for an actual implementation for such a system.
Formally, we define a model as a directed labeledaccess graph(ON

M ,E), where
the vertex set corresponds to the set of (named) objects and keys in the model. An
access graph has two sorts of labeled edges, one related to name resolution (Ename)
and the other to the delegation of authorization (Eauth). The intention is that the
vertices correspond to name spaces;Enameedges incident on a graph vertex corre-
sponding to[[N]]M will describe name resolution provided by the name space[[N]],
and the incidentEauth edges will correspond to theAN andDN maps that reference
[[N]]. Following our treatment for the system TM, a semantic model also consists
of the carrier setsRM , BM , GM , andLM which correspond to the rights, and base,
global, and local names allowed in the model.

Labels on graph edges allow us to combine them in order to resolve names or
make an access decision:

Eauth ⊆ ON
M × ((BM ×LM)×RM ×N)×ON

M

Ename ⊆ ON
M ×LM ×ON

M

The label on anEauth edge tracks the fully qualified object on which the right is
being authorized, together with delegation depthd. The label on anEname edge
tracks a portion of a linked local name that is yet to be traversed from the desti-
nation vertex in order to resolve a local name definition in the name space of the
source vertex. Formally,E is the disjoint union of edge setsEnameandEauth. We
require that models satisfy the downward closure property on all edges inEauth,
that is,∀x,y∈ON

M ,o∈ BM ×LM , r ∈ RM ,n∈ N :

(x,(o, r,n+1),y) ∈ Eauth⇒ (x,(o, r,n),y) ∈ Eauth.

Given a world stateWSN, we say that a modelM satisfiesWSN, writtenM |=
WSN, if the following conditions hold:

24

�
� � � �

�
� � �

� 	
 � �

Figure 2: An example access graphM ; the heavy arrow is anEauthedge, while the
others are inEname. Here,M |= (o.s= u.s′ = v)→ (o, r,d). Also, the global name
g maps to the keyk2, andw ↓= k1. Notice thatEnameedges flow in the direction of
name resolution whileEauthedges flow in the direction of authorization resolution.

1. For each elementk∈K, r ∈R,b∈B,g∈G, l ∈ L, there exist unique elements
kM ∈ON

M , rM ∈ RM ,bM ∈ BM ,gM ∈GM , lM ∈ LM respectively.

2. For each name space[[N]]inWSN.NS, there exists a vertex[[N]]M in the access
graph.

3. The access graph has a distinguished vertexĜ such that for each element
g∈G whereGNO(g) = k,

(Ĝ,g,k) ∈ Ename.

In other words, the distinguished vertexĜ of the access graph resolves the
global nameg in a manner consistent with the world state, and in particular
with the name space of the global name oracle. We note that the evaluation
of global names can be considered separately from the access graph,but
providing a distinguished vertex allows us to capture the entirety of name
resolution within the framework ofEname edges in the access graph, and
thus we include it here.

4. The local name definitions ofWSN are captured by the edge setEnameof the
access graph. Formally,

(b
def
= k) ∈ [[N]] ⇒ ([[N]]M ,bM ,kM) ∈ Ename

(b
def
= ([[N′]],N′.l)) ∈ [[N]] ⇒ ([[N]]M ,(bM , lM), [[N′]]M) ∈ Ename

(b
def
= ([[N′]],N′)) ∈ [[N]] ⇒ ([[N]]M ,bM , [[N′]]M) ∈ Ename

25

In other words, a local nameb defined to be a keyk must correspond to
an Ename edge in the access graph with labelbM . Here, we also allowb
to be SELF, and thus each vertex in the graph must have anEname edge,
labeled withSELF, to its identifying key. A local name definition forb in
terms of another nameN′.l is represented by anEname edge between the
corresponding vertices labeled by the pair(bM , lM). The name resolution

process is guided further from[[N′]]M by the structure oflM . Notice that if
l = ε, the empty string, then the labelbM is used instead as shorthand.

5. The mapsAN andDN are captured by the edge setEauth of the access graph.
Formally,

([[ns]].s′,d) ∈ AN([[ns]].o, r)⇒ (ŝ′,(ô, rM ,d), [[ns]]
M) ∈ Eauth

([[ns]].nd,d) ∈ DN(([[ns]],SELF), r, [[s′]].o)⇒ (n̂d,(ô, rM ,d), [[ns]]
M) ∈ Eauth,

where ŝ′, n̂d and ô are the vertices obtained by following the appropriate
Enameedges starting from[[ns]]

M or [[s′]]M as the case may be.

We say that a vertexscan access rightr on another vertexo, writtenM |=N s→
(o, r), iff there exists a directedaccess pathof Eauth edges froms to o labeled with
the tuple(o, r,d) such that for every prefix of the path (including the entire path),
the number of edges in the prefix is≤ 1+di , the delegation bound in the last edge
of the prefix.

o
(o,r,d1)
←−−−− s1← . . .← si

(o,r,di+1)
←−−−−− si+1 = s

L EMMA 7.1 (Model Compilation) For any world state WSN of TMN and model M,

∃M′.[M|=WSN ⇐⇒ M′ |= WSN ↓]∧ [M|=Ns→ (o, r) ⇐⇒ M′ |= s↓→ (o ↓, r)]

Proof. Construct the access graph of the modelM′ from the access graph of the
modelM by replacing the vertices corresponding to name spaces with the keys in
their SELF fields, and the labels([[ns]].o, r,d) on theEauth edges by([[ns]].o ↓, r,d).
The calculation of[[ns]].o ↓ consists of traversing the appropriateEname edges.
Since the world stateWSN↓ is a replacement of the names inWSN by the keys
to which they resolve, the lemma follows immediately.

THEOREM 7.2 (Soundness)Given an arbitrary world state WSN, fully qualified
subject s∈ F, object o∈O and right r∈R,WSN ⊢ s→ (o, r)⇒∀M .M |= WSN⇒
M |= s→ (o, r).

26

Proof. GivenWSN ⊢ s→ (o, r), it follows from Theorem 6.3 thatWSN ↓ ⊢ s↓→
(o ↓, r). SupposeM |= WSN, and letM ′ be the model given by Lemma 7.1. Then,
M ′ |= WSN ↓, and by soundness of⊢ (Corollary 4.2), we get thatM ′ |= s ↓→
(o↓, r). The result now follows from Lemma 7.1.

THEOREM 7.3 (Completeness)Let WSN be an arbitrary world state and let s∈
F,o∈O and r∈R. Then,[∀M .(M |= WSN)⇒ (M |= s→ (o, r))]⇒WSN ⊢ s→
(o, r).

Proof. Given anyM |= WSN, it follows from Lemma 7.1 and the hypothesis of
the theorem that∃M ′.M ′ |= WSN ↓ ∧M

′ |= s↓→ (o ↓, r). From the completeness
of the rules⊢(Theorem 4.3), we get thatWSN ↓⊢ s↓→ (o ↓, r). Theorem 6.3 now
gives usWSN ⊢ s→ (o, r).

7.1 Avoiding Inconsistencies

A key benefit of a separate understanding of naming and authorization is the abil-
ity to evaluate new rules that may refer to either or both of these constructs, for
consistency.

A case in point is Abadi’s “converse of globality” axiom, which when com-
bined with linking [1] leads to undesirable inferences about names. Ifg is a global
name, andp is any local name, then the axiom states thatg 7→ (p′s g). In other
words, it allowsp the ability to bind the global nameg to p′s g. This axiom is
not true under our semantics since global names cannot be redefined in local name
spaces other than that of the Global Name Oracle (see Section 5.4.)

Another problematic axiom in Abadi’s formulation is the “symmetry” axiom:
(p 7→ q) =⇒ (q 7→ p). Again, this axiom is not true in our semantics (Section 5)

since two local name definitionsp
def
= q andq

def
= p can never occur within the same

name space.
Since we associate the meaning of a name consistently with a name space, all

our actions are meaningful only within a name space. In addition, all statements
used as predicates in the access judgment are vouched for by specific entities, per-
haps as signatures with the keys associated with their names. The principle of
remembering scope seems to have been violated surprisingly often in logical rules
for access control. For example, in designing an access control logic for distributed
documents [3], the authors point out two rules,(Cont) and(Del), earlier candidates
for which were found to have undesirable consequences. In both cases, an appro-
priately modified version of the rule was substituted. Both rules contained a scope
violation; this could have been detected directly instead of in an ad-hoc manner.
We strongly advocate adherence to scope as a guideline in designing logical rules
for distributed systems.

27

8 Formally Verified Executable Specifications in PVS

So far, we have described a theoretical model of trust management with distributed,
structured name spaces for subjects and shown soundness, completeness, and com-
positionality. We would like to carry over this clean modeling to a trusted imple-
mentation with the help of formal verification tools that provide guarantees on the
properties of real functions used in the implementation. Our goals are twofold:
first, to increase assurance by providing machine-checkable proofs of our main re-
sults, so that a logical inference engine like Prolog may use the inference rules as
input in general decision procedures to decide access; second, to provide special-
ized executable procedures for deciding access for which correctness guarantees
can be made within a formal system. We thus provide the basis for a formally ver-
ified reference monitor that sits at the heart of a larger system that has support for
policy languages, revocation mechanisms, and credential storage and distribution.

Our choice to use the Prototype Verification System (PVS) [20] was motivated
by two reasons: from version 2.3 onward, PVS provides the ability to execute func-
tions on ground terms; these functions can be shown to satisfy desired properties
within PVS, and the compiled LISP code linked to C or Java. Second, accessto
local expertise accelerated the process of using a new tool. While total correctness
relies on the correctness of PVS, the Common LISP compiler, and its associated
runtime system, we believe that a completely automatic translation from specifi-
cation to code will still yield substantially greater assurance than a manual tran-
scription. In addition, our implementation in PVS produces proofs as witnesses of
allowed accesses, which may be independently audited.

Figure 3 shows an architecture schematic, where the client (Alice, say) wishes
to access file “data.doc” on the resource host. She presents her request with certifi-
cates that, in conjunction with the host’s policy, will constitute a proof of access.
The host application provides access control by consulting a locally running trust
management daemon that manages the local name space and policy, and has infor-
mation about certificate directories to query for fresh certificates, and soon. This
daemon collects Alice’s certificates with some of its own and produces a proofof
access, or decides that access should be denied. The proof is passed through the
PVS access checker, which makes sure that the proof is well-formed. Inthe case
of our example trust management system TMN, this proof would use the rules⊢N,
and PVS would check that the proof was valid. In addition, we have shownthe
commutativity theorem for the rules⊢N in PVS, which increases our confidence in
the meta-validity of the proof, and therefore in the system itself.

Specification We make use of PVS parametrized theories and datatypes to en-
code world states, proofs, and graphs. The parameters are the type ofobjects and

28

Group Meeting

Resource Host

TM
Daemon

(policy, certs, …)

CAs, hosts,
Certificate
directories, …

Collect certs

Collect certs

Can I read “data.doc” ?

+ certs

Access
checker
(PVS)

OK?

Yes/No

Figure 3: System Architecture and PVS

rights, so that specific instantiations of our theory can be used with any desired
representation of real objects and rights. World states are representedas records
with fields ob,r, A, andD corresponding to the syntactic componentsO, R, A, and
D respectively (Section 3). We further condition theA andD maps such that the
image of any element referencing an object in the world state specifies only objects
within the world state. In the PVS code below, “object” and “right” specify types
containing at least one element. The notation[#. . .#] denotes that “preWS” is a
record with the given fields; PVS uses the ‘‘ ’ operator to reference elements of a
record. Set membership is denoted using parentheses, for example,w‘ ob(t‘1) is
equivalent tot.1∈w.ob. The PVS type “WS” represents world states, as a subtype
of preWS, and contains elementsw of preWS such that the objects referenced in
the co-domain of theA andD maps lie inw.ob.

object: TYPE+
right: TYPE+
preWS: TYPE =
[# ob: set[object],

r: set[right],
A: [[object, right] → set[[object, nat]]],
D: [[object, right, object] → set[[object, nat]]] #]

Dom(w: preWS): set[[object, nat]] = {t: [object, nat] | w‘ ob(t ‘ 1) }
WS: TYPE = {w: preWS | ∀ (o1, o2: (w‘ ob)), (r: (w‘ r)):

(w‘A(o1, r)⊆ Dom(w)) ∧ (w‘D(o1, r, o2)⊆ Dom(w))}

29

We specify semantic models as directed labeled graphs in PVS; for this purpose
we created a small parameterized theory of such graphs. A well-formed path in a
model, defined by the inductively defined predicate “wfp” on paths, corresponds to
legitimate access in the semantic model. In the following PVS code, xgraphmodel
is part of a theory of labeled graphs parameterized on the type of verticesand labels
in the graph. The type “preG” is a record consisting of the set of vertices, edges,
and labels in the graph. The PVS type “graph” denotes those elementsg of preG
where the edges join elements ofg.vertices with labels from the setg.labels. A
model is simply a graph with objects for vertices and labels of the form(o, r,d).

xgraphmodel[V: TYPE+, L: TYPE+]: THEORY

preG: TYPE = [# vertices: set[V], edges: set[edge], labels: set[L] #]
graph: TYPE = {g: preG | ∀ (e: (g‘ edges)):

(g‘ vertices)(e‘ 1) ∧ (g‘ vertices)(e‘ 2) ∧ (g‘ labels)(e‘ 3) }
model: TYPE = {G: graph |
∀ (u: (G‘ vertices), r: right, d: nat): G‘ labels(u, r, d) }

wfp(p: path, M: model, w: WS, s, O: (w‘ ob), r: (w‘ r), d: nat):
INDUCTIVE bool

We specify proofs within our logical system as the abstract datatype of proof
trees, a datatype with constructors corresponding to the empty proof, the applica-
tion of the four access rules (Section 3), and the definition of theACL predicate.

proof tree[object: TYPE+, right: TYPE+]: DATATYPE

BEGIN

EmptyProof: empty?
predacl(s: object, O: object, r: right, d: nat): acl?
preddel(s: object, O: object, r: right, r s: object, d: nat): del?
rule rootacl(rootaclpremiss: proof tree): rootacl?
rule delegation(l del: proof tree, r del: proof tree): delegation?
rule ord1(ord1 premiss: proof tree): ord1?
rule ord2(ord2 premiss: proof tree): ord2?

END proof tree

wft(t: proof tree, w: WS, s, O: (w‘ ob), r: (w‘ r), d: nat):
INDUCTIVE bool

As the reader may see, this datatype has constructors for predicate definitions and
for the logical inference rules used to combine them. A well-formed proof tree,
defined by the predicate “wft” on proof trees, corresponds to a valid proof of the
predicateAccess(s,o, r,d) using our proof rules. The predicates “modelsaccess?”

30

and “infer?” check whether there exist valid proofs of access within thesemantic
and syntactic models, respectively.

modelsaccess?(M: model, w: WS, s, O:(w‘ ob), r: w‘ r), d: nat): bool
= ∃ (p: path): wfp(p, M, w, s, O, r, d)

infer?(w: WS, s, O: (w‘ ob), r: (w‘ r), d: nat): bool
= ∃ (t: proof tree): wft(t, w, s, O, r, d)

The PVS soundness and completeness theorems will relate well-formed pathsin
the access graph and well-formed proof trees.

Soundness and CompletenessSince soundness and completeness theorems re-
fer to models that satisfy a given world state, we provide the function “construct model”
that constructs the minimal model satisfying a world state, and the function “mod-
els ws?” that checks if a given model satisfies a given world state.

constructmodel(w: WS): model =
(# vertices := w‘ ob,

edges := constructedges(w),
labels := constructlabels(w) #)

L1: LEMMA ∀ (w: WS): modelsws?(constructmodel(w), w)

For soundness, given a well-formed proof tree, we show the existenceof the cor-
responding well-formed path in any model satisfying the world state (which must
contain the constructed model.) This is done by using PVS support for induction
over inductively defined data types, “prooftree” in this case.

Soundness: THEOREM

∀ (w: WS, s, O: (w‘ ob), r: (w‘ r), d: nat):
infer?(w, s, O, r, d) ⇒

(∀ (M: model): modelsws?(M, w) ⇒
modelsaccess?(M, w, s, O, r, d))

Completeness: THEOREM

∀ (w: WS, s, O: (w‘ ob), r: (w‘ r), d: nat):
(∀ (M: model): modelsws?(M, w) ⇒

modelsaccess?(M, w, s, O, r, d)) ⇒ infer?(w, s, O, r, d)

For completeness, given a model satisfying the world state and a well-formedpath
in it, we prove the existence of the corresponding well-formed proof tree,showing
that access is derivable within the proof rules. The proofs proceed byusing PVS
induction on the structure of paths in the graph. For both these theorems, the
predicates “modelsaccess?” and “infer?” provide the existential witnesses (path
and proof, respectively) to induct over.

31

Specialized decision procedures as PVS functionsThough the soundness and
completeness procedures give us guarantees about our proof rules, and their use
in an automated logical inference system, in practice we would like to direct the
search for a proof (or a path in the corresponding access graph) using specialized
heuristics. PVS’s ability to generate executable code does not presently work for
specifications that use finite sets. Hence, we chose lists as an alternative represen-
tation for the world state componentsO, R, and mapsA andD, in order to define
executable functions that use them as arguments.

eval on list(w: WS list, l : list[object] | sublist(l , w‘ ob),
O: in objects(w), r: in rights(w), d: nat): RECURSIVE proof tree =

CASES l OF null: EmptyProof,
cons(x, y): LET p: proof tree =

LET pA: proof tree = inA(deleteobjects(w, y), x, O, r, d) IN

IF empty?(pA) THEN

eval on list(deleteobjects(w, cons(x, y)),
find delegators(deleteobjects(w, y), x, O, r, d), O, r, d+1)

ELSE pA
ENDIF

IN IF empty?(p) THEN eval on list(Delete(w, x), y, O, r, d)
ELSE p ENDIF

ENDCASES

MEASURE length(l)

The PVS function above searches for a proof of access given a world state and
an access request. It is defined as a recursive function on the size ofthe world
state, length(l), which decreases with each recursive call. It first tries to see if
the requested access is simply an application of the(RootACL) and (Ord1) rules
(“in A”), else it recurses on potential delegators (“finddelegators”). An “Emp-
tyProof” proof tree is returned if neither of these cases finds a proof.Essentially,
the function performs backward search from the goal, and returns a proof tree that
can be checked for well-formedness, thereby showing soundness ofthe decision
procedure. Completeness of this procedure follows from an inductive proof on the
structure of paths, which shows that if no path is returned by the procedure, then
no well-formed path can exist in the access graph.

Actions In order to use PVS functions on ground terms that represent actual
world states, we may either write them out by hand, or create them using sequences
of actions. The latter method is more robust, and has the benefit of creating well-
formed world states. Therefore, we created a separate theory to specify the effect

32

of actions on the world state (Table 1), as well as an “initial” world state containing
only a “supervisor” object. A reachable world state is one that can be reached only
through an arbitrary sequence of actions, and it makes sense to apply evaluation
functions only on such states.

There were two main technical difficulties while doing the PVS proofs: first,
since access in a model happens either via a root-ACL mechanism, or through a
delegation chain ending in a root-ACL, we needed a way to distinguish the edges
in the model that corresponded toA andD maps, respectively. A more challenging
issue was to deal with the “downward-closure” of the delegation depth (see rules
(Ord1) and (Ord2), Section 3). This corresponds to a nested induction on delega-
tion depths within the outer induction on proof trees and paths, which we factored
out into two separate lemmas.

In addition, we experimented with various representations of the data structures
and lemmas in our theory to optimize the human effort involved in proving the main
theorems. This included trying out dependent types for theA andD maps in the
world state, inductively defined proof-tree and path types, varying quantification
order on the lemmas so that built-in PVS proof commands could be used optimally,
and factoring out common subproofs. The valuable tool experience gained with
the proof of the soundness theorem directly helped us to achieve a clean,modular
decomposition of the completeness theorem, and its proof was also accomplished
much more quickly.

Our soundness and completeness theorems make no assumptions on the size of
world states or models. Our induction hypothesis uses the correspondencebetween
subpaths and subproof trees, and does not constrain their size. The exacting nature
of these proofs, however, informed our theory by requiring us to specify our in-
formal assumptions, such as the downward closure property on accessgraphs (see
Section 4.1), which we had initially left unspecified.

Incorporating names in PVS The second part of our PVS implementation ex-
tends the base system with naming constructs, and its specifications and prooftech-
niques are very similar to those described above. We encode the world statefor
names,WSn, using the PVS record type with five fields corresponding to the syn-
tactic components of the world state. Name resolution is implemented as a recur-
sively defined function that uses the local name definitions (representedas maps) in
elements of the set of name spaces. The world state for the combined system TMN

is then defined by adding a set of rights, and the mapsAN andDN on fully qualified
names. The proof rules⊢N are represented as an inductive datatype that captures
the predicates used in constructing proofs and the inference rules for combining
them. Semantic models are constructed as access graphs, suitably instantiatedwith

33

name spaces and keys as vertices, and a tag on the edges to distinguish them.The
commutativity theorem uses PVS induction on proof trees in TMN and constructs
corresponding proof trees of TM.

The interested reader may find further details on our PVS effort, including
complete theory specifications, athttp://www.csl.sri.com/programs/
security/jcs/toc.html .

9 Conclusion

We have designed and formally verified a trust management kernel, for which the
separation of naming and authorization led to a clean and simple formalization.
This kernel acts as a reference monitor that determines whether a given access
request is authorized based on policy and supporting credentials. Usingaccess
graphs as a semantic model, we show soundness and completeness of the autho-
rization system without names. The orthogonality of naming and authorization is
captured precisely in a commutativity theorem, which also gives us simple sound-
ness and completeness proofs for the entire kernel. The kernel is formally verified
in PVS, allowing for the automatic generation of a verified implementation of a
reference monitor. By separating naming and authorization primitives, we arrive at
a compositional model and avoid primitives such as “speaks-for” that have proven
troublesome in the past. The simplicity of the soundness and completeness proofs
for the full system suggests that a composite approach can be extended toreason-
ing about other features of a trust management system such as policy language
constructs and revocation.

Using PVS, we can automatically generate executable code for the reference
monitor core from our formal specification. We believe thatNameObjects can be
effectively implemented via small Java programs that act as XML RPC servers.
Much of this code will be mechanically generated. For cryptographic security,
there are off-the-shelf TLS implementations in Java as well. While there is still
room for error, the assurance level of this system should be substantially higher
than most: we have a formally verified specification, safe programming languages,
a well-analyzed cryptographic protocol, and only a small amount of handwritten
code.

References

[1] Martı́n Abadi. On SDSI’s linked local name spaces.Journal of Computer
Security, 6(1,2):3–21, 1998.

34

[2] Martı́n Abadi, Michael Burrows, Butler Lampson, and Gordon Plotkin. A
calculus for access control in distributed systems.ACM Transactions on Pro-
gramming Languages and Systems, 15(4):706–734, September 1993.

[3] Dirk Balfanz, Drew Dean, and Mike Spreitzer. Security infrastructure for
distributed Java applications. InProceedings of the 2000 IEEE Symposium
on Research in Security and Privacy, pages 15–26. IEEE Computer Society
press, May 2000.

[4] M. Blaze, J. Feigenbaum, and A. D. Keromytis. KeyNote: Trust management
for public-key infrastructures. InProceedings of the 1998 Security Protocols
Workshop, volume 1550 ofLecture Notes in Computer Science, pages 59–63,
1999.

[5] M. Blaze, J. Feigenbaum, and M. Strauss. Compliance checking in the Poli-
cyMaker trust management system. InFC: International Conference on Fi-
nancial Cryptography, volume 1465 ofLecture Notes in Computer Science,
pages 254–274, 1998.

[6] Matt Blaze, Joan Feigenbaum, and Jack Lacy. Decentralized trust manage-
ment. InProceedings of the 1996 IEEE Symposium on Research in Security
and Privacy, pages 164–173. IEEE Computer Society Press, May 1996.

[7] Ajay Chander, Drew Dean, and John C. Mitchell. A state-transition model
of trust management and access control. InProceedings of the 14th IEEE
Computer Security Foundations Wokshop, June 2001.

[8] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T. Ylonen.
SPKI certificate theory. RFC 2693, September 1999.

[9] M. Gasser, A. Goldstein, C. Kaufman, and B. Lampson. The digital dis-
tributed system security architecture. InProceedings of the 12th NIST-NCSC
National Computer Security Conference, pages 305–319, 1989.

[10] John Gordon. The Alice and Bob after-dinner speech. Invited lecture
given at the Zurich Seminar, April 1984. Available athttp://www.
conceptlabs.co.uk/alicebob.html .

[11] J. Halpern and R. van der Meyden. A logic for SDSI’s linked localname
spaces.Journal of Computer Security, 9(1,2):75–104, 2001.

[12] J. Halpern and R. van der Meyden. A logical reconstruction of SPKI. Pro-
ceedings of the 14th IEEE Computer Security Foundations Workshop, pages
59–70, 2001.

35

[13] M. Harrison, W. Ruzzo, and J. Ullman. Protection in operating systems. In
Communications of the ACM, pages 461–471. ACM, August 1976.

[14] Butler Lampson. Protection. InProceedings of the 5th Annual Princeton
Conference on Information Sciences and Systems, pages 437–443, Princeton
University, 1971.

[15] Butler Lampson, Martı́n Abadi, Michael Burrows, and Edward Wobber. Au-
thentication in distributed systems: Theory and practice. InWilliam Stallings,
Practical Cryptography for Data Internetworks. IEEE Computer Society
Press, 1996. Based on article in ACM Transactions on Computer Systems,
November 1992.

[16] Ninghui Li. Local names in SPKI/SDSI.Proceedings of the 13th Computer
Security Foundations Workshop, pages 2–15, July 2000.

[17] Richard J. Lipton and Lawrence Snyder. A linear time algorithm for deciding
subject security.Journal of the ACM, 24(3):455–464, 1977.

[18] Robin Milner. Operational and Algebraic Semantics of Concurrent Pro-
grams, volume B, chapter 19, pages 1201–1242. Elsevier Science Publishers
B.V., Amsterdam, The Netherlands, 1990.

[19] B. Clifford Neuman. Proxy-based authorization and accounting for dis-
tributed systems. InInternational Conference on Distributed Computing Sys-
tems, pages 283–291, 1993.

[20] S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS Lan-
guage Reference, Version 2.3. SRI International, September 1999. Available
from http://pvs.csl.sri.com/ .

[21] Ron Rivest and Butler Lampson. SDSI–A Simple Distributed Security Infras-
tructure. http://theory.lcs.mit.edu/˜rivest/sdsi11.html , Oc-
tober 1996.

[22] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based
access control models.IEEE Computer, 29(2):38–47, February 1996.

[23] Edward Wobber, Martı́n Abadi, Michael Burrows, and Butler Lampson. Au-
thentication in the Taos operating system.ACM Transactions on Computer
Systems, 12(1):3–32, 1994.

36

A Simulation Relations

A Labeled Transition System (LTS) over a set of actionsAct is a pair(Q ,T) con-
sisting of

1. A set of statesQ

2. A ternary relationT ⊆ (Q ×Act×Q) called the transition relation

Elements(p,α, p′) of the transition relation are also denoted byp
α
→ p′.

DEFINITION A.1 Strong (one-step) simulation relation

Let L = (Q ,T) be an LTS over a set of actionsAct, and letL ′ = (Q ′,T ′) be
another LTS over the set of actionsAct′. Let Sbe a binary relation betweenQ and
Q ′, S⊆ Q ×Q ′. Further, lett be a mapping from actions inAct to those inAct′.
ThenS is called a strong simulation relation overL andL ′ if, wheneverpSp′, if

p
α
→ q, then there existsq′ ∈ Q ′ such thatp′

t(α)
→ q′ andqSq′. We say thatp′ strongly

simulatesp if there exists a strong simulationSsuch thatpSp′.

DEFINITION A.2 Weak (many-step) simulation relation

Let L = (Q ,T) be an LTS over a set of actionsAct, and letL ′ = (Q ′,T ′) be
another LTS over the set of actionsAct′. Let Sbe a binary relation betweenQ and
Q ′, S⊆ Q ×Q ′. Further, lett be a mapping from actions inAct to sequences of
one or more actions inAct′. ThenS is called a weak simulation relation overL

andL ′ if, wheneverpSp′, if p
α
→ q, then there existsq′ ∈ Q ′ such thatp′

t(α)
→ q′ and

qSq′. It is assumed thatt(α) depends only onα and is independent ofp andp′. In
other words, the actionα in the first LTS is always simulated by the sequence of
actionst(α) in the second LTS. We say thatp′ weakly simulatesp if there exists a
weak simulationSsuch thatpSp′.

37

