A Security Infrastructurefor Distributed Java Applications

Dirk Balfanz Drew Dean Mike Spreitzer
Princeton University Xerox PARC Xerox PARC
balfanz@cs.princeton.edu ddean@parc.xerox.com Spreitze@parc.xerox.com

Abstract

We describe the design and implementation of a security in-
frastructure for a distributed Java application. This work is
inspired by SDSI/SPKI, but has a few twists of its own. We
define a logic for access control, such that access is granted
iff a proof that it should be granted is derivable in the logic.
Our logic supports linked local name spaces, privilege del-
egation across administrative domains, and attribute cer-
tificates. We use SSL to establish secure channels through
which principals can ““‘speak”, and have implemented our
access control system in Java. While we implemented our
infrastructure for the Placeless Documents System, our de-
sign is applicable to other applications as well. We discuss
general issues related to building secure, distributed Java
applications that we discovered.

1. Introduction

While everyone knows that distributed systems need
cryptography to be secure, amazingly little cryptography
is actually deployed today. This is particularly true inside
corporate networks, where a firewall is assumed to keep all
of the “bad” people out. The failure to deploy cryptography
more widely has many causes:

e Policy issues (e.g., export controls) have splintered the
market for software.

e The X.509 standard has a hierarchical model for certi-
fication authorities (CAs). Of course, everyone wants
to be at the root of the tree. This has generated much
discussion, but little action. Corporations generally
want a hierarchy under their own control.

e Lacking a common root CA, it is difficult to authenti-
cate across CA boundaries.

Even if these issues were solved, the question remains
whether identity-based certificates (binding names to cryp-
tographic keys) are actually useful. More recent work em-
phasizes attribute certificates as a more scalable answer

(see, for example [6]). The computer does not care who
the user is, only whether or not the user should be able to
perform some action.

We have designed and implemented a cryptographic in-
frastructure for the Placeless Documents System, a large,
distributed middleware package written in Java. We at-
tempt to carefully navigate most of the perils described
above, e.g., by allowing, but not requiring, a centralized
CA. Our work owes much to the SDSI/SPKI work [7], but
when we began work, no satisfactory implementation of
those systems was available in Java. We took a principled
approach to the design of our access control mechanism, so
that requests supply credentials that lead to a proof that a
request is valid.

The rest of this paper is structured as follows: In Sec-
tion 2, we give an overview of the Placeless Documents
System and of our overall design. In Section 3 we present
our design in more detail: We define principals, permis-
sions, and introduce our access control logic. In Section 4
we highlight a few aspects of our implementation. In Sec-
tion 5, we discuss our experience working with access con-
trol logics. In Section 6, we discuss future work, and Sec-
tion 7 concludes.

2. Overview
2.1. The Placeless Documents System

The Placeless Documents System is a distributed docu-
ment management system developed at Xerox PARC [4].
Its major features include

o the ability to manage seamlessly documents of differ-
ent kinds (e.g. files, email messages, Web pages, etc.),
and

e a query language over document properties (as op-
posed to a directory hierarchy in which documents are
stored), which allows to retrieve specific documents
from their storage location.

Repository

Repository ~ Repository

Figure 1. Placeless Documents. Kernels communicate with each other, and with Placeless applica-
tions, via RMI. Some applications may be used by multiple users at the same time. Kernels might
need to manage documents owned by different users.

For the purposes of this paper, we focus on the follow-
ing properties of the Placeless Documents System and its
current implementation:

e lItis a heavily distributed system. It is implemented in
Java. The various components of the system commu-
nicate via Java RMI.

e Every user of the system runs one kernel, which man-
ages the document space for that user. A space is the
conceptual entity that holds all of a user’s documents.
A Kkernel is the actual program that implements the
space abstraction.*

e Applications that would like to use the Placeless Doc-
uments System act as clients of kernels. All communi-
cation with kernels is via Java RMI. Kernels can also
communicate with each other, if it turns out that a doc-
ument is managed by another kernel than the one it
was originally requested from.

e The document contents are not stored inside Place-
less. Instead, Placeless stores document contents in
their natural repositories, e.g. files on the file system,
Web pages on a Web server, and so forth.

e Every document is managed by exactly one kernel. If
a different kernel asks for access to that document,
the other kernel must access the document through the

1Actually, a user can run more than one kernel. However, there is
always a standard kernel, or gatekeeper, that lets the user access his or her
space.

document’s managing kernel. The kernel is responsi-
ble for enforcing access control.

Typical Placeless applications include browser-like
graphical interfaces that let users manage their (and oth-
ers) documents. There also exist bridges between Placeless
and, for example, the World Wide Web, enabling users to
access Placeless documents with any Web browser. Note
that in this last case, different users use one and the same
Placeless application (which acts as a Web server at the
front end and connects to Placeless kernels at the back end)
to access their respective documents.

Figure 1 shows the various components in the Placeless
Documents System and how they interact.

2.2. Authentication

To facilitate authentication of the various Placeless com-
ponents to each other, we changed Java RMI to use the Se-
cure Socket Layer (SSL) [8] as the underlying transport.
This gives us two properties:

1. We assure the confidentiality and integrity of the com-
munication between two components.

2. Components can authenticate each other, i.e. they
learn at least the public key of the party they are com-
municating with.

2.3. Access Control

Every kernel has a policy that specifies what the various
principals are allowed to do with documents managed by

Bob

| mpersonates:
1 - Bob

N TT,D

Authenticates:
- server
Checks:

- server

- Bob

I mpersonates. 7
- server :
- Bob

Authenticates:
- Kernell
Checks.

- Kernell

- server

- Bob

Kernel2

Figure 2. Impersonation in Placeless is similar to a quoting chain in ABLP logic.

that kernel. A policy is a set of statements. There are state-
ments about which names are used for which principals,
and about what kind of privileges are extended to those
principals. The statements are actually expressions of an
access control logic (see Section 3.3). When a client re-
quests an operation to be performed in a kernel, that kernel
knows what principal is requesting the operation, because
the request came over an authenticated channel, and what
operation is to be performed. That request then is also ex-
pressed as a statement of said access control logic. An in-
ference engine can then verify whether the policy supports
that request.

Clients of kernels can impersonate principals. That
means that they announce on whose behalf they act. They
are free to lie about on whose behalf they are acting. The
kernel performing the operation will authenticate the client,
and will then make sure that both the client and the princi-
pal it impersonates have enough privileges to perform the
operation. In fact, if a kernel gets a request that is already
identified as an impersonation and needs to turn around to
another kernel to have that request answered, then the other
kernel will have to check three principals: the first kernel,
the first kernel’s direct client, and the principal that client
is impersonating. This is similar to a quoting chain “A says
that B says that C says that X" in ABLP logic [2]. There,
too, we know that A is making the statement, but we do
not know whether A is lying, e.g. whether B really said
what A is claiming. Figure 2 illustrates this approach. The
fact that we do not authenticate principals other than the
immediate peer of an SSL connection does not represent
a security hole, since lying does not allow an attacker to
gain any advantage. We provide the ability to impersonate
other principals merely as a form of the principle of least
privilege. Presumably, the Web server in Figure 2 has a lot

of privileges. It impersonates other principals to make sure
that it is only exercising privileges that the impersonated
principal also has.

3. Design
3.1. Principals

There are five different kinds of principals in our sys-
tem. They are all represented as subclasses of our Java class
Pri nci pal , and explained in detail below:

3.1.1. LocalName. A LocalName is a string referring to a
principal in someone’s name space. For example, “Bob”
is a LocalName. Which principal this LocalName refers to
depends on the name space in which it is evaluated. Alice
might call a different principal “Bob” than Charlie does.
We call a LocalName relative because its interpretation is
relative to some name space.

3.1.2. GlobalName. A GlobalName is a public key. The
reason we call public keys “global names” is that it is like a
string that everybody agrees on how to interpret. While we
might both have different ideas about who “Bob” is, we do
not have different ideas about who the principal with the
public key “0x43453456 ... ” is. We call a GlobalName
absolute since it does not depend on a name space.

3.1.3. ReferencePrincipal. A ReferencePrincipal is a se-
ries of LocalNames or GlobalNames. If there is a Global-
Name in the series, we call the ReferencePrincipal abso-
lute, otherwise we call it relative. Relative ReferencePrin-
cipals are relative to a principal’s name space. Absolute

ReferencePrincipals are global in the sense that every prin-
cipal will agree on the identity of an absolute Referen-
cePrincipal (see Section 3.3 on why that is). The Refer-
encePrincipal

ReferencePrincipal(LocalName(Bob), LocalName(Alice))

is the principal called “Alice” in the name space of the prin-
cipal we call “Bob”. From now on, we will simply write
Bob’s Alice instead.

3.1.4. SelfPrincipal. The SelfPrincipal is the principal
representing the local system. The SelfPrincipal has a pri-
vate key to sign certificates, authenticate itself over an SSL
connection, and so forth. The identity of the SelfPrincipal
is established when a Placeless client or kernel is started.
The user has to supply a private key to the Placeless client
or kernel to use for its SelfPrincipal. In this paper, we will
call the SelfPrincipal simply Self.

3.1.5. AnyPrincipal. The AnyPrincipal represents the all-
embracing group that everybody is a member of.

3.1.6. Subset Relationships of Principals. We define a
subset relationship over principals. I1f X and Y are princi-
pals, then we say that X C Y if either X and Y are identical
orY is the AnyPrincipal.

3.2. Permissions

In our system, we use Java Permission classes. While
we do not use any of the pre-defined permission classes to
describe possible actions in Placeless, we do use the notion
that permissions can imply each other [9]. Permission A
implies permission B if the set of possible actions that per-
mission A describes is a superset of the set of possible ac-
tions that permission B describes. For example, the permis-
sion ReadPer m ssi on(/usr/ | ocal / *) implies the
permission ReadPr eni ssi on(/ usr/ | ocal / f 00).

As we will see below, we will also be interested in the
intersection of permissions. Formally, we define the inter-
section of permission A and B, AT B, as

AMB=X
iff (A—X)A (B—X)
AW St.A=YAB—=Y.X—=Y)

(Read — as “implies.”) As it turns out for the kinds of
permission classes we use, the intersection AMB is always
either A, B, or the empty permission, i.e. the permission
describing no action at all, which is implied by all other
permissions.

In Placeless, we have permission classes denoting the
following actions:

e Reading from documents. This includes reading doc-
ument contents as well as reading the values of docu-
ment properties.

e Writing to documents and deletion of documents.
This includes the modification, deletion, and creation
of properties.

e Creation of documents.
o Notification about events happening in kernels.

These are called primitive permissions. Our logic treats
them as uninterpreted symbols. We parameterize our logic
over a finite set of primitive permissions. We also have
special permissions denoting name bindings of principals
and permission delegation, which are discussed below.

3.3. AccessControl Logic

We have defined an access control logic that we use for
Placeless?. The logic heavily borrows from SDSI and SPKI
[7] and can be seen as (yet another) attempt to formal-
ize systems of that kind. It is also influenced by ABLP-
style [2] logics and tries to fit naturally with the Java
Per ni ssi on classes, which is a reason why we did not
follow the SDSI/SPKI approach by the letter.

Expressions of the logic are statements. A statement is
of the form

Principal : Permission,

where Principal is the principal making the statement. We
can interpret a statement as meaning “the principal making
the statement asserts that it is ok to perform the action as-
sociated with the permission mentioned in the statement”.
So, the statement

LocalName(Bob) : ReadPermission

says that Bob wants to read a document, while the state-
ment

Self : ReadPermission
means that it is ok to read the document. The colon can

roughly be pronounced as “says” with similar meaning as
in ABLP logic.

2We should note that the access control logic can be used in more
general settings as well, it is not particularly customized for Placeless.

Policies are expressed as a list of statements. As we will
see later, the statement

Self : DelegationPermission(LocalName(Bob),
ReadPermission)

means that we give Bob read permission. The statement

Self : BindingPermission(Mother’s Brother,
LocalName(Uncle))

means that we locally bind the name “Uncle” to the princi-
pal that is bound to the name “Brother” in the name space
of the principal we call “Mother”.

Before we introduce the inference rules of our logic, we
need to look at two special permission classes.

3.3.1. DelegationPermission. A DelegationPermission is
a subclass of j ava. security. Perm ssion. The
constructor of a DelegationPermission takes two argu-
ments: A principal, and a permission. As far as our logic
is concerned, a DelegationPermission is a term of the logic
that also takes a principal and a permission:

Principal : DelegationPermission(Principal, Permission).

As will become apparent from the inference rules of the
logic, the statement

Self : DelegationPermission(X,P)

means that we have given permission P to principal X. As
another example, the statement

GlobalName(SomeKey) : DelegationPermission(X, P)

means that the principal with the key SomeKey has dele-
gated permission P to principal X .3

For every new permission class we introduce, we need
to define when an instance of this class implies another
permission. A DelegationPermission can only imply other
DelegationPermissions. DelegationPermission(X,P) im-
plies DelegationPermission(Y,Q) if P implies Q and prin-
cipal X is a superset of principal Y (e.g. if X is the AnyPrin-
cipal).

3.3.2. BindingPermission. A BindingPermission is an-
other subclass of j ava. security. Perm ssion. Its
constructor takes two principals, which are bound to

3The name X should be evaluated in the name space of the principal
making the statement, as should any principal that appears within P.

each other. But note that this binding is not commu-
tative — a BindingPermission(X,Y) does not imply a
BindingPermission(Y, X). Rather, a BindingPermission es-
tablishes a kind of subset-superset relationship between the
two principals. For example,

Self : BindingPermission(Bob, Managers)

can be interpreted as saying that Bob is a member of the
group Managers. Sometimes, it is easier to think of Bind-
ingPermissions as establishing a “speaks-for” relationship.
For example,

Self : BindingPermission(GlobalName(BobsKey),
LocalName(Bob))

says that the key BobsKey speaks for the principal I call
Bob.

A BindingPermission cannot imply permissions other
than BindingPermissions. BindingPermission(X,Y) im-
plies BindingPermission(X’,Y') if X’ C X and Y’ CY (for
example, if X or Y are the AnyPrincipal).

3.3.3. Why Binding and Delegation Permissions Are
Separate. Both BindingPermission(..., ...) and Dele-
gationPermission(..., ...) are instances of a more general
“speaks for” relation. Why do we separate them? We keep
them separate to model the separation found in a corporate
enterprise: a human resources or corporate security office
is in charge of issuing a credential saying that John Doe
is an employee of Company X, while Doe’s management
chain (or other colleagues) are responsible for setting ac-
cess controls on their documents. Thus, while we support
attribute certificates, we also find names to be useful for ac-
cess control: people are used to thinking in terms of names,
and names provide a useful level of indirection to keys. We
write policies in terms of names, not keys, so that a user’s
key can change over time without requiring changes to the
security policy.

3.3.4. Inference Rules. Our access control logic includes
inference rules that allow us to infer new statements from
a set of statements already held to be true. The inference
rules are introduced below:

The first inference rule is called Delegation:

Self : DelegationPermission(X,P)
X' P
X' CX

Self : PMP|x/

(Del)

Here, the bar operator “|” localizes principals within per-
missions. It is defined as follows:

DelegationPermission(Y,P)|x =
DelegationPermission(Y @X,P|x)
BindingPermission(Y,Z)|x =
BindingPermission(Y @X,X's Z)

For all other permissions, it is defined as
Plx =P.

The @-operator is similar to a ReferencePrincipal, but not
the same:

Y@X =X'sY if Y is relative
=Y if Y is absolute

For example, recall that this is how we would give Bob
permission to read a document:

Self : DelegationPermission(LocalName(Bob),
ReadPermission)

Bob’s request to read the document can be represented in
the logic as

LocalName(Bob) : ReadPermission
Application of rule (Del) now yields
Self : ReadPermission,

which essentially means that it is ok to go ahead and read
the document.

Here is another example: Let us assume that we already
believe the statements

Self : DelegationPermission(
AnyPrincipal, DelegationPermission(
AnyPrincipal, ReadPermission))

and

LocalName(Bob) : DelegationPermission(
LocalName(Alice), ReadPermission)

We can apply rule (Del), since LocalName(Bob) is a
subset of AnyPrincipal. The resulting statement is

Self : DelegationPermission(Bob’s Alice, ReadPermission)

The second inference rule is called Transitivity:

Self : BindingPermission(X,Y)
Self : BindingPermission(Y,Z)
Self : BindingPermission(X,Z)

(Trans)

The third inference rule is called Name Space Linking:

X : BindingPermission(Y,Z)

Self : BindingPermission(Y @X,X's Z) (Link)
The fourth inference rule is called Containment:
Self : BindingPermission(X,Y)
X:P (Cont)

Y:P

There are more inference rules that allow unrestricted
delegation (i.e. delegation through an arbitrary number of
levels of nesting), but they are not part of our current im-
plementation, and are not relevant for the discussion in this

paper.

3.3.5. Access Control Decisions. As we have seen in Fig-
ure 2, a request to perform a certain action is presented to a
kernel together with a list of principals. The kernel has au-
thenticated the first principal itself, but the other principals
are not authenticated, they are merely impersonated. The
immediate client to our kernel may or may not faithfully
relay who it authenticated before it turned to us.

For every principal in this list, our Placeless kernel cre-
ates a statement describing the requested action. For exam-
ple, if the immediate client was authenticated as having key
K, and the requested operation is to read a document, then
the statement describing the requested action is

GlobalName(K) : ReadPermission

This statement is added to the list of statements describing
the local policy (see Section 4.2), and to the statements de-
rived from certificates also presented by the client. Then,
an inference engine tries to deduce the statement

Self : ReadPermission.

If that succeeds for every principal in the list, access is al-
lowed, otherwise it is denied.

3.3.6. An Example. Let us go through an example to illus-
trate the concepts of policies and proving of authorization.
We will abbreviate as follows: BindingPermission will be-
come Bind, DelegationPermission will become Delegate,

(1)(5) — (Cont) Bob : Bind (K|, Lab) 9)
(1)(6) — (Cont) Bob : Bind(Lab’s Alice, secretary) (10)
(1)(7) — (Cont) Bob : Delegate(secretary, Read) (11)
(9) — (Link) Self : Bind(K_,Bob’s Lab) (12)
(10) — (Link) Self : Bind(Bob's Lab’s Alice, Bob's secretary) (13)
(8)(12) — (Cont) Bob’s Lab : Bind(Ka,Alice) (14)
(14) — (Link) Self : Bind(Ka,Bob's Lab’s Alice) (15)
(3)(11) — (Del) Self : Delegate(Bob's secretary, Read) (16)
(13)(15) — (Trans) Self : Bind(Ka,Bob's secretary) (17)
(4)(17) — (Cont) Bob's secretary : Read (18)
(16)(18) — (Del) Self : Read

Figure 3. Proof for the example in Section 3.3.6

ReadPermission will become Read, and we will drop the
LocalName and GlobalName terms around keys and names
- Kx is a GlobalName, and names such as Bob, Alice, etc.
are LocalNames.

In this example, we know the key of our boss, Bob, and
have made an appropriate entry in our policy:

Self : Bind(Kg, Bob) €))]

We have also given Bob ReadPermission, and have given
him permission to delegate that permission:

Self : Delegate(Bob,Read) 2
Self : Delegate(Bob, Delegate(AnyPrincipal,Read)) (3)

A client has connected to our kernel. During the SSL hand-
shake, we have learned that the key of that client is Ka. The
client is trying to read one of our documents. This can be
expressed as

Ka : Read. 4)

In addition, the client presents certificates. These are
Delegate- or BindingPermissions signed by principals. We
interpret them as statements made by the key that signed
them. The first one said that the principal with key Kg
(Bob) has bound the name “Lab” to the key K :

Kg : Bind(Ky,Lab) (5)

Bob also tells us that he has bound the name “secretary” to
the principal called “Alice” in the name space of the prin-
cipal he calls “Lab”

Kg : Bind(Lab's Alice, secretary) (6)

and that he has delegated his ReadPermission to the princi-
pal he calls secretary:

Kg : Delegate(secretary, Read) @)

The last certificate our client presents to us is signed by
the key K|, and states that in K_’s name space, the name
“Alice” is bound to the key Ka:

KL : Bind(Ka,Alice). (8)

From statements (1) through (8) we will have to prove
that Self : Read holds.

Figure 3 shows the proof. On the left, we show which
statements and inference rules are needed to deduce the
new statements, which are numbered on the right.

4. The Implementation

We have implemented our access control system for
Placeless using the Java 2 Platform JDK. We use the IAIK
[11] cryptographic provider and SSL implementation. We
provide classes for the various types of principals and per-
missions, and we implemented an inference engine for our
access control logic. We also implemented tools that hide
most of the underlying mechanisms and should make it
easy for Placeless users to manage their day-to-day secu-
rity settings.

4.1. Running RMI over SSL
Since the release of the Java 2 Platform, it has been rel-

atively easy to change the transport mechanism underly-
ing RMI. We chose to use SSL to gain both privacy and

authenticated communication. In Placeless, the SSL layer
always requires client authentication and uses a specific ci-
pher suite* since there is no need for cipher suite negotia-
tion. In SSL, the handshake between client and server can
fail if either client or server do not authorize the other party
to connect. In Placeless, we always allow two parties to
establish an SSL connection with each other. We note the
identity of the other side of the communication link and de-
fer access control decisions to higher layers in the system.

When an RMI client wants to talk to an RMI server, it
uses RMI stubs, which are objects that impersonate remote
(server) Java objects in the local VM and forward calls to
the (remote) VM. If the client does not have the stub code
available locally, it can download it from the server. In the
case of a non-standard transport mechanism (such as SSL),
the client might also have to download code that imple-
ments the non-standard transport mechanism. Note that in
the case of SSL this presents a problem. The client needs
a trustworthy SSL implementation so that (a) it can trust
the identity of the other end of the connection, and (b) the
client believes that nonces and session keys are properly
generated. However, in certain situations it might acquire
the code for that SSL implementation from the very party
it is trying to authenticate. This is clearly a security hole.
In our current implementation, we just disallow dynamic
downloading of stub code. This, however, disables a whole
set of features for distributed Java programs, so that a more
satisfying solution is yet to be found. Unfortunately, the
Java 2 RMI implementation does not provide hooks to con-
trol the downloading of stub classes via RMI.

The SSL implementation we used provides new
Socket classes, which can be used just like normal
TCP sockets, but implement SSL functionality. An
SSLSocket provides a method to query the identity (i.e.
the X.509 certificate) of the other party of an SSL connec-
tion. This feature is lost in the “higher” RMI layer — an
RMI server object has no way of knowing through which
specific SSL connection a call to one of its methods has
been invoked. This, however, is necessary to establish the
identity of the party originating the call and to perform ac-
cess control decisions. There is no easy way to add this
functionality. After all, RMI is designed to hide the trans-
port layer from upper layers, since it is supposed to be
transport layer independent. It turns out, though, that in the
current implementation of RMI the thread in which a com-
munications socket is created for an RMI connection is the
same thread in which calls to the server object associated
with this connections are executed. There is a new thread
for every RMI connection. While this may be question-
able in terms of performance, it gave us a handle to track
identities of SSL peers into the RMI layer: When an SSL

41024-hit RSA for key exchange, 128-bit RC4 for encryption, and
SHA for MACs.

socket is created, it notes which thread created it. Later,
when an RMI server object executes a call that was initi-
ated by a remote party, it can again check which thread is
currently executing, and lookup which SSLSocket is as-
sociated with that thread. This way, RMI server objects
can learn the identity (an X.509 certificate) of the parties
invoking calls on them.

4.2. Policies

Calls to a remote Placeless kernel are handled by RMI
server objects. They pass the identity of the caller, together
with certificates the caller provides® and a statement de-
scribing the intended action, to a reference monitor. That
reference monitor, just like the Java Secur i t yManager ,
then makes a decision whether to proceed with the call or
not. The decision will be based on the policy associated
with the object on which the proposed action is to be per-
formed.

As noted earlier, a policy is a set of statements in our
access control logic. All statements are of the form

Self : BindingPermission(... ,...)
or
Self : DelegationPermission(... ,...)

We store the BindingPermission statements in the user’s
name space. The DelegationPermission statements (also
sometimes referred to by themselves as the “policy” as op-
posed to the name space) are stored with the documents.
This is similar to simple access control lists, which are also
stored with the document they are protecting. There is a
possible level of indirection for Placeless policies, though:
A document may, instead of specifying its own policy,
specify the name of a policy. That policy is then looked up
in the user’s policy document (a collection of policies). If
a document does not specify a policy for its access control,
the policy called “default” from the user’s policy document
is used.

Sometimes, certain actions do not pertain to documents.
For example, which policy should we consult when we are
about to create a new document? The document does not
exist yet, so it cannot specify a policy governing its cre-
ation. For these types of actions we consult the policy
called “space” from the user’s policy document. It is up
to the reference monitor to decide which policy to apply.
In our implementation, the reference monitor will first de-
cide whether the proposed action calls for the space pol-
icy or for a document-specific policy. If the action needs

5These are signed statements of our our access control logic. A client
might, for example, provide certificates to prove that someone delegated
privileges to him.

a document-specific policy, it tries to fetch the policy from
the document. This can either be an actual policy (a set
of statements), or a name. In the latter case, the reference
monitor resolves the name against the list of policies stored
in the user’s policy document. If there is no policy with the
given name, the “default” policy is used.

The reference monitor will then add the
BindingPermission statements from the user’s name
space, together with the statements extracted from the
caller’s certificates and the statement describing the
intended action, to the policy and engage the inference
engine to try to prove that access should be granted (see
Section 3.3.5).

4.3. Certificates

Certificates are signed BindingPermissions or Delega-
tionPermissions. A client presents certificates with his re-
quest. Certificates are interpreted as statements made by
the key that signed them. In our implementation, we cache
certificates on the kernel side so that for a given SSL con-
nection, a client has to present its certificates only once.
Our implementation does not support certificate revocation
lists. Instead, our certificates expire. The inference engine
will not take into account statements gained from expired
certificates.

4.4. Inference Engine

As explained in Section 3.3.5, the inference engine has
to find a derivation of a statement of the form

Self : Permission

from the set of statements gained from the policy, name
space, certificates, and the requested action. We imple-
mented a simple forward-chaining inference engine: We
keep generating new statements from already existing ones.
Since the set of derivable statements is finite, this process
will terminate, and our inference engine is sound and com-
plete with respect to our logic.

4.5. Tools

We implemented several tools for users to handle our
access control system.

Key creation: We use the java keytool to create 1024-bit
RSA keys and self-signed X.509 certificates. The
X.509 certificates are not used for any purpose except
to exchange public keys in the SSL handshake.

Key export and import: There is a tool to export the
user’s public key to a file. Other users can then im-
port that public key and map it to local names in their
name spaces.

Name space manager: The name space manager is a tool
that allows users to create statements of the kind

Self : BindingPermission(...,...).

for their own local name space. They can bind local
names to keys, ReferencePrincipals, and other local
names.

Policy tool: The policy tool allows users to make state-
ments of the kind

Self : DelegationPermission(...,...).

and store them in named policies. In the current im-
plementation, the kinds of supported statements are
restricted. Permissions can only be granted to Local-
Names, and we do not support the granting of Delega-
tionPermissions or BindingPermissions.

The policy tool can also be used to create new policies,
delete policies, and remove statements from a policy.
There is also a tool that populates the “default” and
“space” policy with reasonable default values.

Certificate tool: The certificate tool allows users to import
certificates, i.e. signed statements of the form

SomeKey BindingPermission(... ,...)
or
SomeKey DelegationPermission(... ,...)

into their certificate collection. The certificate tool can
also be used to export certificates of the form

UserKey DelegationPermission(... ,...).

This is equivalent to delegating permissions to third
parties.

The above-mentioned name space manager can be
used to export certificates of the form

UserKey BindingPermission(... ,...)

This will allow third parties to make statements about
principals known in our name space.

5. Experience with Access Control Logics

We wanted to base our system on an access control logic
because we wanted to be able to develop a formal model of

the complex relationships between privilege delegation and
linked local name spaces. This way, it is easier to reason
about certain properties of the system.

Abadi, Halpern and van der Meyden [1, 10] have tried
to formalize SDSI-style linked local name spaces and point
out that there is no obviously right way to do so. While
they can prove that their logics are sound with respect to
a certain semantics, the choice of semantics is arbitrary.
One cannot prove that a certain logic will not be surpris-
ing, i.e. allow intuitively undesirable conclusions. There
has not been a published attempt to formalize the whole
SPKI framework, which would combine the linked local
name spaces with an access control framework. For our
work, we attempted to do that, although on a smaller scale
(e.g. we do not have the notion of a threshold principal).

We encountered similar “surprises” with our logic. For
example, in an early version we had the following delega-
tion rule:

Self : DelegationPermission(P, X)
X" P
X"CX
Self : DelegationPermission(X’,P1P’)

If we try to apply this rule to our example in Sec-
tion 3.3.6, instead of statement (16) (see Figure 3) we
would get:

Self : Delegate(secretary,Read).

This means that Bob issued a certificate that made us
believe our secretary has ReadPermission. This is not de-
sirable.

The logic, as presented here, has another problem: If
we, instead of giving Bob ReadPermission, had given all
managers ReadPermission (and the permission to delegate
it):

Self : Delegate(Managers, Delegate(AnyPrincipal,Read))
and had said that Bob is a manager:
Self : Bind(Bob, Managers)

then we could conclude that any manager’s secretary has
ReadPermission:

Self : Bind(Managers's secretary, Read),

which is also not desirable.
The following modified containment rule rectifies this
problem:

Self : BindingPermission(X,Y)
Self : DelegationPermission(Y, P)
Self : DelegationPermission(X,P)

The containment rule presented in Section 3.3.4 gives
BindingPermission a “speaks-for” flavor: A member of a
group can speak for the group. This is the kind of groups
we find in ABLP logic [2]. However, in [10] the authors
point out that a subset-relationship might be more appro-
priate to model name bindings. The modified containment
rule presented above follows that approach: If we have del-
egated a permission to a group, we have delegated it to ev-
ery member.

But now we no longer can prove the example in Sec-
tion 3.3.6. We need an additional inference rule, for exam-
ple Halpern and van der Mayden’s Monotonicity:

Self : Bind(X,Y)

V2 Sl Bind(X’sZ,Y's Z)

The universal quantifier greatly expands the search
space, though it remains finite. However, this is not trivially
implemented in our forward-chaining inference engine (see
Section 4.4).

To find a logic that meets intuition about what is secure
and what is not, and at the same time is efficiently imple-
mentable, remains an open problem. We think that the logic
presented here is a good starting point, but expect some
evolution towards a logic that will be less prone to “sur-
prises,” and hopefully will have enjoyed the scrutiny of the
computer security research community.

6. Future Work

As we have just seen, this work has led to some inter-
esting ongoing research. The most pressing and interest-
ing question is whether our access control logic is “good”.
While it is relatively easy to prove that our logic is sound
(e.g. by proving all our inference rules as theorems in a
logic known to be sound, for example Felten and Appel’s
logic [3]), it is harder to see whether it will “surprise”, i.e.
allow conclusions that we intuitively would consider inse-
cure (see [1] and [10] for some example on “surprising”
conclusions found in earlier attempts to formalize SDSI).
We tried to learn our lesson from previous attempts (see
Section 5), but it is not clear if the logic as presented here
is the final word.

Our current implementation of the inference engine is
rather inefficient. On one hand, we are looking for a more
effective inference strategy than unguided forward chain-
ing. On the other hand, we need to implement a better
caching mechanism that allows quick lookups of frequently
asked access control queries.

Other topics that we are currently working on include:

Certificate dissemination Clients have to present certifi-
cates to the kernels to support their requests. How do

clients find out which certificates are relevant for the
requested action? Currently, clients supply all certifi-
cates they collected to kernels. Even though they are
cached at the kernel side, this still is a performance
problem. Some work has already been done in this
area [5].

Securing the name sever Placeless uses a name server
similar to the RMI registry to locate kernels. Cur-
rently, the name server does not follow a security
policy when registering kernels under their respective
names. It could therefore be possible for a rogue ker-
nel to impersonate another kernel to a client. Clients
could in theory test the identity of the kernel they are
connected to (after all, they have authenticated it over
an SSL connection), but in practice hardly ever do so.
We need to secure the Placeless name server.

Legacy authentication Recall the WWW servers in Fig-
ure 1. When they authenticate a browser, they do
not necessarily use strong SSL authentication, which
yields the public key of the browser. They might use a
different kind of authentication that just yields a user
name (for example, if they use password-based au-
thentication). How do we translate that user name into
a Placeless principal? In our current implementation,
we assume that the WWW server knows (say, by con-
vention) the local name under which the authenticated
user is known to the kernel the server is connected to.
It will therefore impersonate a LocalName principal
when it connects to the server. This only works if the
Web server and the kernel(s) it talks to agree on the
names of principals. We are currently looking for a
better solution for this problem of legacy authentica-
tion.

Parameterized permissions In the current system, every
Placeless document (conceptually) has its own policy.
Therefore, most of our permission classes (e.g. Read-
Permission, WritePermission) do not have any param-
eters. For example, if we add this statement to the
policy of document Foo

Self : DelegationPermission(Bob, ReadPermission)

then it is implicitly clear that the ReadPermission per-
tains to the document Foo. However, if Bob now
wants to delegate his ReadPermission for Foo, he has
no way of expressing this. He can only delegate his
parameterless ReadPermission, effectively delegating
his privilege to read any document he is allowed to.
If our permissions took parameters (like the standard
Java permission classes do), Bob could delegate his
permission to read specific documents to third parties.

7. Conclusion

We have designed and implemented a distributed access
control system for the Placeless Documents System. In ad-
dition to strong authentication, we also provide communi-
cation confidentiality and integrity.

Borrowing ideas from SDSI, our system can be used
across administrative domains and does not require central-
ized certification authorities. At the same time, it is flexible
enough to allow the establishment of certification authori-
ties, should a group of users feel so inclined (all they need
to do is to delegate a BindingPermission(AnyPrincipal,
AnyPrincipal) to certification authorities they trust).

Policies are expressed as a set of statements of the kind

Self : DelegationPermission(Principal, Permission)
and
Self : BindingPermission(Principal, Principal).

The permissions can take arbitrary arguments, and
can therefore be used to express a wide range of
security policies. For example, we could have an
I nt er val Per nmi ssi on class that would take three ar-
guments: A not-before-date A, a not-after-date B, and a
permission P. Then, we could define that

IntervalPermission(A, B, P)

implies permission Q if and only if P implies Q and the
current time is between A and B. This way, we can limit
arbitrary privileges to certain times. Other arrangements,
and permission classes implementing them, are possible.

Central to our system is a simple access control logic
that tries to capture the spirit of SDSI, SPKI and ABLP-
style systems while naturally fitting within the Java frame-
work. We were trying to strike a balance between overly in-
flexible systems like simple access control lists (which do
not allow for delegation, for example, and usually cannot
span administrative domains) on one side, and very general,
but difficult-to-use systems like proof carrying authentica-
tion [3] (which usually put the burden of rather complex
proofs on the requester of an operation). In our system, the
requester of an operation only needs to supply a sufficient
set of certificates, while the inference engine on the serving
side constructs the proof on its own.

We find the SDSI approach of linked local name spaces
very appealing, but encountered known subtleties in its for-
malization, especially when we tried to combine this with
SPKI-like delegation statements (see also [10] and [1] for
a discussion on the formalization of SDSI).

While work remains to be done, we believe a system like
the one described in this paper provides a flexible frame-
work for access control in the Placeless Documents Sys-
tem, and for distributed Java applications in general.

References

[1]
(2]

(3]

[4]

[5]

(6]

[7]

(8]

9]
[10]

[11]

M. Abadi. On SDSI’s linked local name spaces. Journal of
Computer Security, 6(1-2):3-21, October 1998.

M. Abadi, M. Burrows, B. Lampson, and G. D. Plotkin.
A calculus for access control in distributed systems. ACM
Transactions on Programming Languages and Systems,
15(4):706-734, September 1993.

A. W. Appel and E. W. Felten. Proof-carrying authentica-
tion. In Proceedings of the 6th ACM Conference on Com-
puter and Communications Security, Singapore, November
1999.

P. Dourish, K. Edwards, A. LaMarca, J. Lamping, K. Pe-
tersen, M. Salisbury, D. Terry, and J. Thornton. Extend-
ing document management systems with user-specific ac-
tive properties. ACM Transactions on Information Systems,
1999. scheduled for publication.

J.-E. Elien. Certificate discovery using SPKI/SDSI 2.0 cer-
tificates. Master’s thesis, Massachusetts Institute of Tech-
nology, May 1998.

C. M. Ellison. Establishing identity without certification au-
thorities. In Proceedings of the 6th USENIX Security Sym-
posium, San Jose, July 1996.

C. M. Ellison, B. Frantz, B. Lampson, R. Rivest, B. M.
Thomas, and T. Ylonen. SPKI Certificate Theory, Septem-
ber 1999. RFC2693.

A. O. Freier, P. Karlton, and P. C. Kocher. The SSL Pro-
tocol Version 3.0. IETF - Transport Layer Security Work-
ing Group, The Internet Society, November 1996. Internet
Draft (work in progress).

L. Gong. Inside Java 2 Platform Security: Architecture,
API Design, and Implementation. Addison-Wesley, 1999.
J. Y. Halpern and R. van der Meyden. A logic for SDSI’s
linked local name spaces. In Proceedings of the 12th IEEE
Computer Security Foundations Workshop, pages 111-122,
Mordano, Italy, June 1999.

Institute for Applied Information Processing and Com-
munications, Graz University of Technology. IAIK JCE,
1999. http://jceww.iaik.tu-graz.ac.at/
i ndex. ht m

