The SAL Language

N.Shankar!, David Dill?, Thomas Henzinger®, and Sam Owre!

Draft Technical Report
March, 2001

N~
/7 /7 1T NN

This report was developed and is maintained by SRI International. SRI’s
part of the SAL project is funded by DARPA/AFRL contract numbers
International/ 1,362.96-C-0204 and F33615-00-C-3043.

!Computer Science Laboratory, SRI International, Menlo Park, California
2Stanford University, Stanford, California
3University of California at Berkeley

Abstract

SAL stands for Symbolic Analysis Laboratory. It is a framework for combining different tools
for abstraction, program analysis, theorem proving, and model checking toward the calculation
of properties (symbolic analysis) of transition systems. A key part of the SAL framework is an
intermediate language for describing transition systems. This language serves as the target for
translators that extract the transition system description for popular programming languages such
as Esterel, Java, and Statecharts. The intermediate language also serves as a common source for
driving different analysis tools through translators from the intermediate language to the input
format for the tools, and from the output of these tools back to the SAL intermediate language.

Chapter 1

Introduction

SAL stands for Symbolic Analysis Laboratory. It is a framework for combining different tools
for abstraction, program analysis, theorem proving, and model checking toward the calculation
of properties (symbolic analysis) of transition systems. A key part of the SAL framework is an
intermediate language for describing transition systems. This language serves as the target for
translators that extract the transition system description for popular programming languages such
as Esterel, Java, and Statecharts. The intermediate language also serves as a common source for
driving different analysis tools through translators from the intermediate language to the input
format for the tools, and from the output of these tools back to the SAL intermediate language.

The basic high-level requirements on the SAL language are

1.

Generality: It should be possible to effectively capture the transition semantics of a wide
variety of source languages within the SAL intermediate format.

. Minimality: The language should not have redundant or extraneous features that add

complexity to the analysis. The language must capture transition system behavior without
any complicated control structures.

. Semantic hygiene: The semantics of the language ought to be standard and straightforward

so that it is easy to verify the correctness of the various translations with respect to linear
and branching time semantics. The semantics should be definable in a formal logic such as
PVS.

. Language Modularity: The language should be parametric with respect to orthogonal fea-

tures such as the type/expression sublanguage, the transition sublanguage, and the module
sublanguage. Correspondingly, tools such as parsers and typecheckers can be made similarly
parametric so that they can be constructed by plugging together the tools for the correspond-
ing sublanguages.

Compositionality: The language must have a way of defining transition system modules
that can be composed in a meaningful way. Properties of systems composed from modules
can then be derived from the individual module properties.

. Synchronous composition: In this form of composition, modules react to inputs syn-

chronously or in zero time, as with combinational circuitry in hardware. In order to achieve
semantic hygiene, causal loops arising in such synchronous interactions have to be eliminated.

The constraints on the language for the elimination of causal loops should not be so onerous
as to rule out sensible specifications.

7. Asynchronous composition: Modules that are driven by independent clocks are modelled
by means of interleaving the atomic transitions of the individual modules.

We present the SAL intermediate language in stages consisting of the type system, the expression
language, the transition language, modules, synchronous and asynchronous composition of modules,
and the specification of systems. The language is largely modular in in these choices in the sense that
many of the language choices can be independently modified without affecting the other choices.
The language is presented in terms of its concrete or presentation syntax but only the internal or
abstract syntax is really important for tool interaction.

The SAL intermediate language is not that different from the input languages used by various other
verification tools such as SMV, Murphi, Mocha, and SPIN. Like these languages, SAL describes
transition systems in terms of initialization and transition commands. These can be given by
variable-wise definitions in the style of SMV or as guarded commands in the style of Murphi.

Chapter 2

The Expression Language

The conventions used in presenting the SAL grammar are that tokens are given in teletype font,
[optional] indicates that optional is optional, {category}j‘ indicates one or more occurrences of the
syntactic category category separated by commas, and {category}j‘ indicates zero or more repetitions
of category separated by commas. Separators other than comma can be used so that a transition
given by a set of named guarded commands separated by the choice operator [] can be written as
{NamedCommands}'i['] . Nonterminals are written in italics.

As noted, the SAL intermediate language needs to be liberal in order to accomodate translations
from other source languages. For this reason, identifiers include a large number of operators. The
special symbols are parentheses, brackets, braces, the percent sign, comma, period, colon, semi-
colon, single quote, exclamation point, and hash. The special symbols are (,), [, 1, {, }, %, >,
o 3, 5, 2, 1,7, _, and #. Tokens can be separated by WhiteSpace, which consists of spaces, tabs,

carriage returns, and line feeds.

SpecialSymbol = CIOTDITIICIXIA S s #]7) 2
Letter := al...|z|A]...|Z
Digit = 0f...]9
Identifier := Letter{Letter | Digit | 7 | _}*
| {Opchar}™
Numeral := {Digit}*

An Opchar is any character that is not a Letter, Digit, SpecialSymbol, or WhiteSpace. For example,
£1_3 and +-+ are identifiers, but a+-1 is three tokens: two identifiers (a and +-), and a numeral.

The grammar is case-sensitive. The reserved words must be in upper case. The reserved words are:
AND, ARRAY, BEGIN, BOOLEAN, CLAIM, CONTEXT, DATATYPE, DEFINITION, ELSE, ELSIF,
END, ENDIF, EXISTS, FALSE, FORALL, GLOBAL, IF, IN, INITIALIZATION, INPUT, INTEGER,

LAMBDA, LEMMA, LET, LOCAL, MODULE, NATURAL, NOT, NZINTEGER, NZREAL, OBLIGATION
OF, OR, OUTPUT, REAL, RENAME, THEN, THEOREM, TO, TRANSITION, TRUE, TYPE, WITH, XOR.

Comments in SAL are preceded by the % symbol and terminated by an end-of-line.

2.1 Types

Minimally, the SAL intermediate language should support the basic types such as booleans, scalars,
integers and integer subranges, records, and arrays. A bit-vector is just an array of Booleans. The
grammar for types is given by

Name := SimpleName | QualifiedName
SimpleName := Identifier
QualifiedName := Identifier[{ ActualParameters}]! Identifier
Unbounded := -
Bound = Unbounded | Ezpression
Subrange = [Bound .. Bound]
BasicType := BOOLEAN | REAL | INTEGER | NZINTEGER | NATURAL | NZREAL
ScalarType := {{Identifier} "}
IndexType = INTEGER | Subrange | Scalar TypeName
ScalarTypeName = Name
ArrayType = ARRAY IndexType OF Type
TupleType = [Type,{Type} ']
RecordType = [#{Identifier: Type}j‘#]
FunctionType := [Type —=> Typel
Accessors = {Identifier : Type}*
Constructors := {Identifier{ (Accessors)]}
DataType = DATATYPE Constructors END
TypeDef := Type
| ScalarType
| DataType
Type := BasicType
| Name
| Subrange
| ArrayType
| TupleType
| FunctionType
| RecordType

A TypeDef is a type expression that can occur as the body of a type declaration, whereas a Type is
more restrictive and circumscribes the types that can be used within an expression or a transition
system module. Two types are equivalent if they are identical modulo the renaming of bound
variables, the rearrangement of record labels, the equality of subrange bounds, and the unfolding of
the definitions of defined types that are not scalar types or datatypes. Equivalence for types that
are defined to be scalar types and datatypes is just name equivalence. Name equivalence is not a
simple concept because compound names consist of the context name, actual parameters, and the
identifier. Two names are equivalent if they agree on the context name, and the identifier, and the
actual parameters, which are either types or expressions, are equivalent.

Note that in an array type, the index type must either be INTEGER, a subrange, or a scalar type.
SAL has a higher-order type system since it contains function types between arbitrary domain and
range types. SAL types need not be finite, and the REAL and INTEGER types, for example, are
infinite. Arrays with infinite index and range types are also admissible.

There are a fixed set of subtyping relations among the types that naturally corresponds to a subset
relation between the denotations of these types. The type NATURAL is merely an abbreviation for
SUBRANGE O TO _]. Any subrange is a subtype of a larger subrange. It is also a subtype of INTEGER.
An array type A is a subtype of another array type B if the index types are identical, and the range
type of A is a subtype of the range type of B. Similarly, a record type A is a subtype of another
record type B if the set of labels is identical and the type A; corresponding to each label /; in A is
a subtype of the corresponding type B; in B.

All types must be checked to be nonempty through the possible generation of proof obligations
entailing nonemptiness.

Recursive datatypes can be used to define list and tree-like types. The datatype is specified by a
list of constructor operations, each with a list of accessor operations. For example, the list type of
integers is constructed as

intlist: TYPE = DATATYPE
cons(car : INTEGER, cdr : intlist),
nil
END

Recognizers are automatically generated by appending a ? to the corresponding constructor. Thus
cons? and nil? are recognizers for intlist. These may be used in definitions. For example,
length may be defined recursively' as

length: [intlist -> NATURAL] =
LAMBDA (1st: intlist):
IF nil?(1st) THEN O ELSE 1 + length(cdr(lst)) ENDIF

2.2 [Expressions

Expressions in the expression language have to be type-correct with respect to the types in the type
language. The expressions consist of constants, variables, applications with Boolean, arithmetic,
and bit-vector operations, and array and record selection and updates. Conditional (if-then-else)
expressions are also part of the expression language.

1This will lead to proof obligations showing that the function is total, i.e., terminating.

NextVariable = Identifier’

Argument = ({ Ezpression})
Function := Expression
Application := Function Argument
InfizApplication := Ezxpression Identifier Expression
ArraySelection := Ezpression [Expression]
RecordSelection = Ezpression. Identifier
TupleSelection := Ezpression. Numeral
RecordEntry := Identifier := Expression
RecordLiteral := (#{RecordEntry} *#)
TupleLiteral := Argument
UpdatePosition := {Argument | [Ezpression] | .Identifier| . Numeral}™
Update := UpdatePosition := Ezpression
UpdateEzpression := Ezxpression WITH Update
VarDecl := {Identifier}* : Type
VarDecls := { VarDecl} "
IndexVarDecl := Identifier : IndexType
ArrayLiteral := [[IndexVarDecll Ezpression]
LambdaAbstraction := LAMBDA (VarDecls) : Ezpression

Quantifier := FORALL | EXISTS

Quantified Expression = Quantifier (VarDecls) : Ezxpression
LetDeclarations := {Identifier : Type = Expression}’
LetExpression := LET LetDeclarations IN Expression
SetExpression := { Identifier : Type | Expression }
| { {Ezpression}*t }
Conditional := IF Ezpression ThenRest
ThenRest := THEN FEzxpression
[ElsIf]

ELSE FEzxpression ENDIF
ElsIf := ELSIF Expression ThenRest

Ezxpression := Name
| NextVariable
| Numeral
| Application
| InfixApplication
| ArraySelection
| RecordSelection
| TupleSelection
| UpdateEzpression
| LambdaAbstraction
| QuantifiedEzpression
| LetExpression
| SetEzpression
| ArrayLiteral
| RecordLiteral
| TupleLiteral
| Conditional
| (Ezpression)

The unary operators include boolean negation NOT, and integer minus -.

The binary operators include

e Polymorphic equality = and disequality /=. Note that since subtypes are semantically the
same as subsets, equality and disequality are defined on the maximal supertype of a type.

Boolean operations of conjunction AND, disjunction OR, implication =>, equivalence <=>, and
exclusive-or XO0R

Real arithmetic operations of addition +, subtraction -, multiplication *, division /, and
the comparison operators <, <=, >, >=. Note that the divisor type of division is restricted
to NZREAL. Though the PVS notion of predicate subtypes is not a part of the SAL type
system, division is treated specially and the type rules generate a proof obligation requiring
nonzero divisors. The integer arithmetic operations of div and mod are included in the binary
operations. Both require nonzero integers, i.e., NZINTEGER, in the divisor position and they
satisfy the equation
a="bx(adiv b)+ (a mod b)

Although the parser allows any Identifier as an infix operator, it is clearly useful to have a standard
operator precedence so that expressionssuchasy + 1 = x AND A are not parsed nonsensically, e.g.,
asy + (1 = (x AND A)). The precedence is as follows, from lowest to highest:

> >= < <=
Otherldentifier
+, -

x /

10

<=>, OR, XOR, AND, +, infix -, *, and / are all left-associative, => is right-associative, and the rest
are non-associative.

The proof obligations generated during typechecking are called type correctness conditions (TCCs).
In addition to arithmetic opreations such as division, the sources of TCCs include expressions of
subrange types, recursive datatypes, recursive definitions, and type nonemptiness.

An expression without nextvariables is called a current expression and is represented by the non-
terminal cezpression. We will not define its grammar but it essentially corresponds to the grammar
for expression with the occurrences of nextvariable removed.

SAL expressions contain two kinds of variables: logical variables and state variables. The state
variables are either current variables or next variables. SAL types and expressions are given a
semantics with respect to a model M that fixes the meanings of types, constants, and operators,
an assignment p of values to the free logical variables, and an assignment of values to the current
variables z and the next variables z’ by a pair of states (r,s). The meaning of expression e with
respect to model M, assignment p, and a pair of states (r,s), is given by M[[e]]fr, 5" If variable
z has type A, then the interpretation of z in state s, s(z) must be an element of M[A]. If z is
a variable in the state type, then M[z](, .y = r(z), and M[z];, 5y = s(z). The interpretation of
types and operators are the standard ones. When expression e does not contain any next variables,
we write the meaning of e as M[e],.

Chapter 3

The Transition Language

A transition system module consists of a state type, an initialization condition on this state type,
and a binary transition relation of a specific form on the state type. The state type is defined
by four pairwise disjoint sets of input, output, global, and local variables. The input and global
variables are the observed variables of a module and the output, global, and local variables are the
controlled variables of the module. The language constructs for defining modules from transition
systems are treated in Section 4.

The transition rules are constraints on the current and next states of the transition. The current
variables are written as X whereas the next-state variables are written as X’.

A variable having a type that is an aggregate structure like a record or array is also treated as a
collection of variables. Thus it is possible to have left-hand sides to assignments that are array
selections or record selections. When an array selection occurs on the left-hand side, the index
must not contain any state variables.

3.1 Definitions

Definitions can be used to specify the trajectory of variables in a computation by initialization
and transition rules that are given variable-wise for each of the controlled variables in a transition
system. For variables ranging over aggregate data structures like records or arrays, it is possible
to define each component separately. The left-hand side of definitions is given by the nonterminal
Lhs.

ArrayAccess = [Expression]
RecordAccess := . Identifier
TupleAccess := . Numeral
Access = ArrayAccess | RecordAccess | TupleAccess
Lhs := Identifier[’] {Access}*

There are two kinds of definitions. The simpler of these are invariant definitions that are of the
form

RhsEzxpression := = Expression
RhsSelection := IN Ezpression
RhsDefinition := RhsEzpression | RhsSelection
SimpleDefinition = Lhs RhsDefinition

11

12

The right-hand side expression must not contain any NextVariable occurrences, i.e., it must be
a current expression. The interpretation of such a definition is that the defining equation is an
invariant and is hence true in every state of the computation.

The second kind of variable definition is given in terms of an initialization and a transition equation.
An initialization definition is just a SimpleDefinition that occurs in the INITTALIZATION section
of transition system. Whereas a transition equation given by the nonterminal TransDefinition
defines a NextVariable on the left-hand side in terms of an expression that can contain NeztVariable
occurrences. A TransDefinition or a SimpleDefinition can occur in the TRANSITION section of a
transition system. An array index expression on the left-hand side must not contain any state
variables.

ForallDefinition := (FORALL (VarDecls) : Definitions)
Definition := SimpleDefinition | ForallDefinition
Definitions := {Definition};"

In a transition system module, a controlled variable must be defined exactly once. It is easy to
write definitions that admit causal cycles such as:

X
Y

NOT Y;
X

Such causal loops can lead to contradictory or meaningless definitions and have to be ruled out.
One way to avoid causal loops is by means of an ordering on the variables so that the right-hand
side of a definition can contain only those variables that are lower in the ordering. However, such
a restriction would rule out natural definitions where variables can depend on each other without
triggering a causal loop, for example

X
Y

IF A THEN NOT Y ELSE C ENDIF
IF A THEN B ELSE X ENDIF

Here there is no causal loop since X depends on Y only when A holds, and Y depends on X only
when NOT A holds. A dependency analysis generates a Boolean formula indicating the governing
conditions GC(X, Y) under which a variable X immediately depends on another variable Y. The
governing conditions are required to be current expressions. For example, GC(X,Y) for the above
definitions of X yields A. Then GC*(X,Y) yields the governing conditions under which a variable
X could indirectly depend on a variable Y. For example, if X depends on a variable Z that in
turn depends on Y, then GC*(X,Y) is just GC(X,Y) A GC(X,Z) A GC(Z,Y). Thus, in the above
definitions of X and Y, GC*(X, X) is A A —A. The dependency conditions can be used to generate
the conditions Cy under which a variable X could depend on itself. For such dependency loops to
be avoided, the condition Cx must be shown to be invariantly false in the transition system. In the
above example, C'y would be the obviously unreachable assertion A A —=A. The dependency analysis
generates proof obligations to this effect. A similar dependency analysis can be carried out for
initialization definitions and transition definitions.

3.2 Guarded Commands

Definitions are convenient for specifying the values taken on by those controlled variables whose
transitions can be independently specified in a simple equational form. Definitions have some

13

drawbacks. The transitions specified by them are deterministic. For variables whose definitions
follow a similar case structure, this case structure has to be repeated in each of the definitions. For
such controlled variables, it is convenient to specify their initialization and transitions in terms of
guarded commands. Each guarded command consists of a guarded formula and an assignment part.
The guard is a boolean expression in the current controlled (local, global, and output) variables
and current and next input variables. The assignment part is a list of equalities between a left-hand
side next variable and a right-hand side expression in current and next variables.

Guard := Ezpression
Assignments = {SimpleDefinition};"
GuardedCommand := Guard --> Assignments

Note that both the initializations and transitions are specified by guarded assignments. No variable
that is defined in a definition can be assigned in either a guarded initialization or transition. The
well-formedness checks for each guarded initialization are that the guard must not contain any
controlled variables so that they are boolean conditions on the input variables, and the initialization
assignments must contain exactly one assignment per controlled variable. The well-formedness
checks on the guarded transitions are that the guard must not contain controlled next variables,
i.e., X’ for some controlled variable X, since these variables are only assigned values in the assignment
part. The assignments in the assignment part must ensure that no controlled variable is assigned
more than once. The causality checks and proof obligations corresponding to a guarded initialization
or transition are similar to those for definitions. The primary difference is that current conjuncts
in the guard can be conjoined to the the conditions when the proof obligations are generated. For
example, if there is a guarded command of the form g --> Assignments where the dependency
analysis on the combination of the Assignments and the definitions yields the conditions for a causal
loop on variable X as Cx, then the conjunction g A Cx must be shown to be unreachable.

3.3 Semantics

We have already described how the semantics of expressions are given with respect to a model
M that assigns meaning to the types, constant, and function symbols and an environment p that
assigns values to the free logical variables in an expression. The semantics of a transition system
is given by a Kripke model K consisting of:

e A state space X consists of valuations s for the input, local, global, and output variables.
e A set of initial states I.

e A transition relation between states N.

Given a program with definitions (initialization, invariant, and transition), guarded initializations
go —=> ag, and guarded transitions g; -—> a;, the Kripke model X must be such that

1. Every state s in I satisfies

e the invariant definitions

e the initialization definitions, and

14

e the guard and assignments of some guarded initialization or the negation of each of the
guards in a guarded initialization.

2. Every pair of states (r,s) in N satisfies

e the invariant definitions
e the transition definitions, and

e the guard and assignments of some guarded assignment, or the negations of the guards
in the guarded assignment and s leaves the controlled variables that are not specified by
definitions unchanged from r.

Chapter 4

The Module Language

A module is a self-contained specification of a transition system in SAL. Modules can be indepen-
dently analyzed for properties and composed synchronously or asynchronously. A simple module

15

16

has the form

NamedCommand
MultiCommand
SomeCommand

SomeCommands

DefinitionOrCommand

InputDecl
OutputDecl
GlobalDecl
LocalDecl
DefDecl
InitDecl

TransDecl

BaseDeclaration

BaseDeclarations
BaseModule

SynchronousComposition
AsynchronousComposition
Hiding

NewQutput

NewVarDecls

Renames

Renaming

ModuleName
Module

[Identifier:] GuardedCommand
([1 (VarDecls) : SomeCommand)
NamedCommand | MultiCommand
{SomeCommand}E
Definition

[SomeCommands]

INPUT VarDecls
OUTPUT VarDecls
GLOBAL VarDecls
LOCAL VarDecls
DEFINITION Definitions
INITIALIZATION
{DefinitionOrCommand};
TRANSITION
{DefinitionOrCommand}}
InputDecl

OutputDecl

GlobalDecl
LocalDecl
DefDecl
InitDecl

TransDecl
{BaseDeclaration}*

BEGIN

BaseDeclarations

END
Module|| Module
Module[1Module
LOCAL {Identifier}™ IN Module
OUTPUT VarDecls IN Module

{InputDecl | OutputDecl | GlobalDecl | LocalDecl}}

{Lhs TO Lhs} "

[WITH NewVarDecls|
RENAME Renames IN Module
Name[[{ Ezpression} 1]
BaseModule

ModuleName
SynchronousComposition
AsynchronousComposition
MultiSynchronous
MultiAsynchronous
Hiding

NewOQOutput

Renaming

ObserveModule

(Module)

17

A base module identifies the pairwise distinct sets of input, output, and local variables. The
initialization and transition sections are marked by the keywords INITTALIZATION and TRANSITION,
respectively. Output and global variables can be made local by the LOCAL construct. In order to
avoid name clashes, variables in a module can be renamed using the RENAME construct. When the
renaming variable is an identifier, its type can be easily inferred from the renamed variable. New
state variables used for renaming can be declared by INPUT, OUTPUT, GLOBAL declarations. These
newly declared variables can be used in the RENAME construct to rename the variables in a given
module. The renaming should be consistent so that the input variables can be renamed only by
input variables, output variables only by output variables, and global variables only by output or
global variables. The types of the renamed and the renaming variable should also match.

Modules can be combined by either synchronous or asynchronous composition. Let module M;
consists of input variables I;, output variables O;, global variables G;, and local variables L;. The
module M; || Ms and M; [1 Ms respectively represent the synchronous and asynchronous composi-
tion of M7 and M,. For a synchronous composition M7 || My to be well-formed, the modules must
contain no global variables so that G; and G2 have to be empty. There is no such restriction on
the global variables in an asynchronous composition. Variables with the same identifier are treated
as identical. The syntactic constraints on both synchronous and asynchronous composition are
that the output variable sets must be disjoint from the global and output variables of the other
module (01 N(02UG2) = 0, (O1 UG1) N O2 = 0), the local variables must be disjoint from the
other variables (LN(IUOUG) = 0), but need not be disjoint from each other.

The input variables I, the output variables O, global variables G, and the local variables L of
M || My and M, []1Ms are given by

N QO ~
[l
/-\'/_‘Q-)\/—\A
_
S

The semantics of synchronous composition is that the module My || My consists of initializations that
are the combination of initializations from the two modules, and the transitions are the combinations
of the individual transitions of the two modules. The definitions of Mj || M> are simply the union
of the definitions in M7 and Ms. The initializations of M7 || Ms are the pairwise combination of
the initializations in M; and M,. Two guarded initializations are combined by conjoining the
guards and by taking the union of the assignments. Let g;; --> a;; be an initialization from
M and g2 ; ——> ag; be an initialization from Mjs. The guard g;; might contain output variables
of M3, and similarly, guard go; might contain output variables of M;. For the combination to
be sensible, only at most one of these guards, say g1, is allowed to contain output variables of
the other module. If we take @3 ; as the union of the assignments in as; with the initialization
definitions of M>, then we can repeatedly apply @3 as a substitution. It should then be the case
that the repeated application @3*(g1,;) converges. The combination of the two initializations is
then @3;*(914) A g2, —=> a1,;a2. The resulting combination might not be sensible since the
conjunction of the guards could be inconsistent. The combination of the assignments a;;;as ;
might also be causally inconsistent and proof obligations have to be generated to ensure that such
combinations do not occur. The dependency analysis in the case of synchronous composition is
similar to that for a single module with the restriction that only cycles involving variables from
both modules need be considered.

18

The consistency and dependency analysis for combinations of guarded transitions in a synchronous
composition is similar to that for guarded initializations. In this manner, the synchronous com-
position M || My of two modules M; and M, can be expressed as a single module combining the
definitions, initializations, and transitions from the individual modules. If there are n; guarded com-
mands in M; and ng in Ms, the composition M || My could have up to ni *ne guarded commands.
Thus it is not always feasible to expand out the module corresponding to such a composition. The
expectation is that this will rarely be necessary since the modules can be individually analyzed and
the properties composed.

The semantics of asynchronous composition of two modules is given by the conjunction of the
initializations and the interleaving of the transitions of the two modules. For this purpose, the
definitions in M7 and M3 must first be eliminated by including them in the guarded initializations
and transitions. The module corresponding to M; []1M> is obtained by combining the initializations
as in synchronous composition and taking the union of the transition definitions and the guarded
transitions. The combination of initializations can generate proof obligations but there are no new
proof obligations arising from the union of the module transitions.

The form of composition in SAL supports a compositional analysis in the sense that any module
properties expressed in linear-time temporal logic or in the more expressive universal fragment of
CTL* are preserved through composition. A similar claim holds for asynchronous composition with
respect to stuttering invariant properties where a stuttering step is one where the local and output
variables of the module remain unchanged.

The syntax for N-fold synchronous and asynchronous composition (or a multicomposition) is spec-
ified below.

MultiSynchronous := (Il (Udentifier : IndexType) : Module)
MultiAsynchronous = ([0 (dentifier : IndexType) : Module)

The causality analysis for synchronous multicompositions is carried out inductively by unfolding
the multicomposition into a composition of a single module and a smaller multicomposition.

It is good pragmatics to name a module. This name can be used to index the local variables so that
they need not be renamed during composition. Also, the properties of the module can be indexed
on the name for quick look up. Parametric modules allow the use of logical (state-independent)
and type parametrization in the definition of modules. A parametric module is defined as

ModuleDeclaration := Identifier[[VarDecls]] : MODULE = Module

Parametric modules allow modules to be defined with some open parameters that can be instanti-
ated when the module is used.

Chapter 5

Eliminating Guarded Commands

We identify a fragment called L0 of the language consisting of modules where the INITTALTIZATION
and TRANSITION sections are empty so that the module transitions are given solely in terms of
definitions. This fragment is useful since it supports certain kinds of analysis more directly. As
we already noted, it is easy to eliminate definitions in favor of guarded commands. The converse
is also possible. The SAL language described above can be translated into the LO fragment by
systematically eliminating guarded commands.

The guarded command presentation of a module in the L1 language can be translated into L0
form while preserving the structure of the state. This is done by adding an extra variable that
captures the choice of the true guard. Let 71,...,7n be the transitions of the module with guards
g1,---,9N. A boolean array guard over the subrange [1..N] is used to save the evaluations of the
guards ¢1,...,gn- A variable start over the subrange [1..N] can be first nondeterministically
selected to indicate the first guard in the sequence of guard evaluations. Another variable chosen,
also of subrange [1..N] type, is computed as follows

guard’ IN {g-1, ..., g-N} ;
chosen’ = (IF guard[chosen] THEN chosen
ELSE IF guard[mod(chosen + 1, N+1)]
THEN mod(chosen + 1, N+1)

ENDIF) ;
X’ = (IF chosen = 1 THEN e_1
ELSE IF chosen = 2 THEN e_2

ENDIF)

Then a variable X is assigned by collecting together all the assignments for X from each of the N
guarded commands in one conditional expression that is controlled by the value of chosen.

This translation works only when either no next variables occur in guards or there is a uniform
causal ordering on the variables. Otherwise, the guards cannot be evaluated in the assignment to
the variable guard without creating a causal dependency cycle.

19

20

Chapter 6

SAL Contexts

The language so far can only describe transition system modules but has no way of declaring new
types or constants or asserting properties of these modules. The SAL context language provides
the framework for declaring types, constants, modules, and module properties. We leave the syntax
for module properties open for now but present the syntax for contexts containing declarations for
constants, types, and other (imported) theories. Sal contexts are read from left to right, top to
bottom, and an entity must be declared before it is referenced.

There is no name overloading in Sal. An unqualified name always refers to the local context.

Qualified names must provide both the context and the parameters. Because of this, explicit

importings are not needed. A ContextDeclaration provides an abbreviation, e.g., instead of writing
lem: LEMMA mycontext{int; 13}!f(3) = mycontext{int; 13}!f(4)

One would write

mc: CONTEXT = mycontext{int; 13}
lem: mc!f(3) = mc!f(4)

21

22

TypeDecls
Parameters
TypeDeclaration
ConstantDeclaration
ActualParameters
ContextDeclaration
AssertionDeclaration
AssertionForm
Declaration

Declarations
ContextBody
Context

{Identifier}* : TYPE

[TypeDecls] ; {VarDecls}*

Identifier : TYPE [= TypeDef]

Identifier [(VarDecls)] : Type [= Ezpression)]
{Type}* ; {Ezpression}*

Identifier : CONTEXT = Identifier{ ActualParameters}
Identifier: AssertionForm =AssertionExpression
OBLIGATION | CLAIM | LEMMA | THEOREM
ConstantDeclaration

TypeDeclaration

AssertionDeclaration

ContextDeclaration

ModuleDeclaration

ObserverModuleDeclaration

{Declaration ;}*

BEGIN Declarations END

Identifier [{ Parameters}] : CONTEXT = ConteztBody

Chapter 7

Assertion Expressions

Assertion expressions allow properties of modules to be stated. The syntax says nothing about the
possible temporal operators; this is defined in a separate context (perhaps a prelude?).

AssertionExpression := ModuleAssertion | PropositionalAssertion | QuantifiedAssertion
ModuleAssertion ModuleModels | ModuleImplements | ModuleRefines

ModuleModels := Module |- Expression
ModuleImplements := Module TMPLEMENTS Module
ModuleRefines := Module REFINES Module
Propositional Assertion := PropOp (AssertionEzpression , AssertionExpression)
| NOT (AssertionEzpression)
QuantifiedAssertion := Quantifier (VarDecls) : AssertionEzxpression
PropOp := AND | OR | => | <=>

23

24

Chapter 8

Abstraction and Refinement

These are represented by means of the module language itself so that abstractions and refinements
are given by a kind of (vertical) composition that indicates how certain variables are mapped. This
is different from the horizontal composition used in module composition.

Given a module M, we construct an abstraction of it by essentially taking a view of M through
another observer module MA. M is a module with input I, output O, global G, and local variables
L. MA is a module with abstract variables IA, OA, GA, and LA, and definitions of these variables
in terms of each other as well as the concrete variables I, O, G, L, which are essentially all inputs
to MA. The rules are that

LA is defined solely in terms of L, TA in terms of I and L, OA in terms of O and L, and GA in
terms of G, O, I, and L.

An observer module is one that contains no guarded commands so that all variables are defined
solely through definitions given in terms of the observed variables (and observing variables).

If there is another module N that is similarly abstracted by NA, then it is easy to see that the
composition of MA and NA is sensible as long as the definitions coincide on the common variables.
This is because the inputs of MA and NA can be connected. There is a problem with the syn-
chronous composition of MA and NA when there are shared global variables, but this is acceptable
since the definitions coincide.

Furthermore, MA composed with NA is an abstraction of M composed with N.
The notation for such composition is OBSERVE M WITH MA.

We would like to claim that such a composition of a concrete module and actually implements
another directly constructed abstract module.

For this we have a relation M IMPLEMENTS N, where the interface (1,0, G, L) of N must be a
subset of that of N. The meaning is that under all possible behaviors of the variables outside of M,
every behavior of M is a behavior of N.

This gives rise to three new constructs: the ObserverModuleDeclaration, the ObserveModule, and
the ImplementsAssertion.

ObserverModuleDeclaration := Identifier [[VarDecls 1] :
OBSERVER_MODULE = ObserverModule

25

26

ObserveModule := OBSERVE Module WITH ObserverModule
ObserverModule := BaseObserverModule
ObserverModuleName

BaseObserverModule

BaseObserverDeclarations
BaseObserverDeclaration

ObservedDecl

SynchronousObserver Composition
AsynchronousObserver Composition
ObserverHiding
ObserverNewQOutput
ObserverRenaming

ObserverModuleName

SynchronousObserver Composition
AsynchronousObserver Composition
MultiSynchronousObserver
MultiAsynchronousQObserver
ObserverHiding

ObserverNewQutput

Observer Renaming
(ObserverModule)

BEGIN

BaseObserverDeclarations

END
{BaseObserverDeclaration}*
ObservedDecl
InputDecl

OutputDecl

GlobalDecl
LocalDecl
DefDecl
OBSERVED VarDecls
ObserverModule|| ObserverModule
ObserverModule[1 ObserverModule
LOCAL {Identifier}* IN ObserverModule
OUTPUT VarDecls IN ObserverModule
[WITH NewVarDecls]
RENAME Renames IN ObserverModule
ModuleName

Chapter 9

SAL Examples

9.1 A 3-bit Counter

We start with a simple example of a 3-bit counter taken from the Mocha reference manual. The
design is meant to synchronously take a tick input and generate an out output signal on every
eighth tick.

countercell: CONTEXT =
BEGIN
countercell : MODULE =
LOCAL sum : boolean
INPUT tick : boolean
OUTPUT carryout : boolean

INITIALIZATION
sum = FALSE;
carryout = FALSE
TRANSITION
[tick’ --> sum’ = NOT sum;
carryout’ = sum]
END
END

threebitcounter : MODULE =
LOCAL outO, outl IN
((RENAME carryout TO outO IN
countercell)
|1 (RENAME tick TO out0O, carryout TO outl IN
countercell)
|1 (RENAME tick TO outl, carryout TO out IN
countercell)
)
END

27

28

The countercell module is a single-bit counter that computes the sum’ and carryout’ bits
every time tick’ is TRUE. The module threebitcounter is defined to be a serial connection of
three countercells with the input tick connected to the first countercell whose output carryout is
renamed out0 and is connected to the tick input of the second countercell. Similarly, the output
carryout of the second countercell is renamed outl and connected to the tick input of the third
countercell whose output is renamed out.

9.2 An N-bit Adder

An N-bit ripple-carry adder module is specified from a one-bit adder module by composing a base
one-bit adder module with the synchronous multicomposition of N — 1 one-bit adder modules. The
one-bit adder takes three inputs: the two input bits a and b and the carry-in bit cin, and returns
two outputs: the sum bit sum and the carry-out bit cout. The N-bit adder takes three inputs:
the two input bit-vectors A and B and the carry-in bit carryin, and returns two outputs: the sum
vector S and the carry-out vector C.

adder: CONTEXT =
BEGIN
onebitadder: MODULE =
BEGIN
INPUT cin, a, b: BOOLEAN
OUTPUT cout, sum: BOOLEAN
TRANSITION
sum = (a XOR b) XOR cin ;
cout = (a AND b) OR (a AND cin) OR (b AND cin)
END
END

Nbitadder [N : natural] : MODULE =
WITH INPUT A, B : ARRAY SUBRANGE O TO N OF BOOLEAN, carryin: boolean;
OUTPUT S, C : ARRAY SUBRANGE O TO N OF BOOLEAN
RENAME a TO A[0], b TO B[0], cin TO carryin,
sum TO S[0], cout TO C[0] IN
onebitadder
I
(Il (i : SUBRANGE 1 TO N):
(RENAME a TO A[il, b TO B[i], cin TO C[i-1],
sum TO S[i], cout TO C[i] IN
onebitadder))
END

9.3 A Mutual Exclusion Scheme

We show another example of a SAL specification of a variant of Peterson’s mutual exclusion algo-
rithm. Here the state of the module consists of the controlled variables corresponding to its own

29

program counter pcl and boolean variable x1, and the observed variables are the corresponding
pc2 and x2 of the other process.

mutex : CONTEXT =
BEGIN
PC: TYPE = {trying, critical, sleeping}
mutex [tval:boolean] : MODULE =
BEGIN
INPUT pc2: PC, x2: boolean
OUTPUT pcl: PC, x1: boolean
INITIALIZATION
pcl = sleeping
TRANSITION
[pcl = sleeping -->
pcl’ = trying;
x1’ = (x2 = tval)

0

pcl = trying AND (pc2 = sleeping OR x1 = (x2 /= tval)) -—>
pcl’ = critical

(1

pcl = critical -->
pcl’ = sleeping;
x1’ = (x2 = tval)
]
END

END

Two instances of the above mutex module can be combined to produce a mutual exclusion algo-
rithm.

system : MODULE

LOCAL x1, x2
(mutex [FALSE]
[
(RENAME pc2 TO pcl, x2 TO x1,
pcl TO pc2, x1 TO x2
mutex [TRUE]))

The above modules can also be combined asynchronously by using [] instead of || as the compo-
sition operator.

30

Chapter 10

Comparison with Related Work

We compare SAL to other transition system formalisms, notably UNITY, TLA, I/O automata,
SMYV, Murphi, and Reactive Modules.

UNITY. Chandy and Misra’s UNITY is a notation for describing transition systems by means
of guarded commands. A module state in UNITY is the global state shared by all the modules.
Modules are composed by interleaving. The guarded commands are all assumed to be executed
according to a weakly fair schedule. There is a simplified temporal logic for proving non-nested
temporal properties such as invariance and progress of UNITY programs.

SAL state is more modular consisting of input, local, and output variables. This constrains the
interference between modules and allows stronger properties to be derived at the module level.
SAL has both synchronous and asynchronous (interleaving) composition. The assertion language
and logic for SAL transition system properties has not yet been finalized but it will be richer than
UNITY in allowing linear and branching-time temporal logics, mu-calculi, and various refinement
relations between modules.

TLA. Lamport’s TLA or the temporal logic of actions is an expressive temporal logic that allows
transition system modules to be specified in terms of an initialization predicate, next-state relation,
and a fairness constraint. Modules are composed by means of conjunction and variables in the state
are hidden by means of existential quantification. The temporal logic provides inference rules for
reasoning about safety and liveness in the using the fairness constraints.

TLA is a logically expressive medium for describing and reasoning about transition systems. Con-
junction captures synchronous composition in an obvious way. Asynchronous composition is also
defined by conjunction by adding an awkward restriction that the output variables of two modules
must not both be changed in a single step. The primary problem with TLA as an intermediate
language is that it does not have a simple operational reading needed for driving model checkers
and analysis tools. SAL uses the familiar guarded commands which do have a simple operational
reading and can form the basis for effective tools that rely on precondition and postcondition
calculations.

Murphi. The Murphi model checker of David Dill and his colleagues uses a description language
that is based on the UNITY model. Transition systems are given by transition rules and rulesets

31

32

that are defined as guarded commands. Murphi does not have a module system nor any mechanisms
for synchronous and asynchronous composition.

SAL can serve as a front-end for a Murphi model checker since any SAL module can be flattened
into a Murphi like representation consisting of a list of guarded commands applied to a global state.

Reactive Modules. Alur and Henzinger defined Reactive Modules as a way of giving modular
definitions of synchronous and asynchronous transition systems. Reactive Modules is the description
language used by the model-checking tool MOCHA. Specifications are divided into modules with
input, output, and local variables (as in SAL). Modules consist of atoms which control specific
variables. An atom specifies the causal dependency between the variables it controls and other
variables, and it also specifies the transitions for these variables using guarded commands. Reactive
Modules require a fixed causal ordering of variables that has proved awkward for many real-life
applications where the dependency orderings need to be more dynamic.

SAL relaxes the fixed causal ordering in Reactive Modules by allowing causal cycles in the syntax
but ruling them out semantically by generating proof obligations demonstrating that the guards
of possibly cyclic guarded commands are unreachable. Reactive Modules lacks an asynchronous
composition operator and implements it by means of a scheduler module that ensures mutually
exclusive scheduling of two modules. SAL includes an asynchronous composition operator since
the explicit schedule involves changing the definitions of composed processes whenever they are
asynchronously composed. For transition systems that have a fixed causal dependency ordering
between the variables, there is an easy translation from SAL to Reactive Modules.

Chapter 11

SAL: Frequently Asked Questions

Why does SAL need an intermediate language? Why don’t the analysis techniques
support real languages and not toy ones? The trouble is that the individual tools operate on
their own languages anyway. If there are m source languages and n target tools, then we’ll need
m xn translations to these tools. The mapping between the source languages and the intermediate
language ought to be straightforward enough that any results (properties/counterexamples) will
be easily interpretable at the source level. The semantics of real source languages can be slippery.
The use of an intermediate language helps to fix the semantics with respect to which bugs and
properties are generated.

Is SAL targeted at hardware or software? Both. SAL is broadly targeted at transition
systems, i.e., any computation system whose computation with observable global states such that
the computation evolves by means of observable state changes. These include hardware, software,
hybrids, protocols, discrete control systems, among other things.

Why does the SAL language need modules? More generally, why does SAL need high-level
features since it is only meant to be an intermediate format? One of the challenges for SAL is to be
able to reason about large systems by composing properties of smaller ones. The smaller systems
are more easily analyzed and model checked. The purpose of modules in the intermediate language
is to promote more modular design and analysis. Otherwise, it will only be possible to prove global
properties of closed systems, and these properties will have to be discarded as unreusable once the
analysis is complete.

Why doesn’t SAL take a shared variable view of the state? The module system in SAL
divides variables into local, input, and output variables for modularity reasons. With synchronous
composition, this separation ensures that it is not the case that a single variable is driven by
multiple sources (possibly inconsistently). With asynchronous composition, this separation ensures
that the only interference is through inputs so that a class of module properties is preserved even
under composition.

Why doesn’t SAL just use predicates and relations to capture transition systems?
The main reasons are

33

34

1. This would be okay for theorem provers but few model checkers can take arbitrary relations
as transitions so this would not be a good choice for an intermediate language.

2. Static analysis would be harder with relations since computing weakest preconditions and
post-condition assertions would be more complicated.

3. The composition of two modules given by predicates can be inconsistent.

4. The fairness constraints involve the enabledness of relations and this could complicate the
proof rules (see Unity versus TLA). With guarded commands, a transition is enabled when
its guard is true.

5. Causal loops are hard to resolve since there is no causal ordering on the variables.

Why does the composition of modules need to be a module? A module is a self-contained
unit of a transition system specification that can be analyzed for properties. If the composition of
modules is a transition system that cannot be captured in the language, then the language has a
gap in its expressivity.

Why does SAL need both synchronous and asynchronous composition? A common
trick in many formalisms is to simulate interleaving of modules M; and M, using synchronous
composition by postulating an arbiter that nondeterministically selects between M; and M,. This
kind of reduction is inherently noncompositional since the composition operator has to change
the modules M7 and Mj in order to subject them to the control of the arbiter. There is no
advantage gained from eliminating asynchronous composition in this way since it only complicates
both deductive and algorithmic verification. In the deductive case, one has to reason about the
arbiter than about arbitrary interleavings, and in the algorithmic case, the arbiter contributes extra
state.

What is a stuttering-invariant property? An LTL or CTL property without a next-state
modality is stuttering invariant, when stuttering means that all the variables retain their prior
value. The interpretation of stuttering here is that the controlled variables are stuttered whereas
the inputs vary freely. These properties have to be verified with an explicit stuttering step added
to the transition relation. Then, when M; and Mj are asynchronously composed, the stuttering-
invariant component properties of each hold in the composition. In a shared variable model, this
form of modularity is ruled out since My can interfere with M7 in arbitrary ways.

