
By Reason and Authority:
A System for Authorization of

Proof-Carrying Code

Nathan Whitehead
Dept. Computer Science

UC Santa Cruz
nwhitehe@cs.ucsc.edu

Martín Abadi
Dept. Computer Science

UC Santa Cruz
abadi@cs.ucsc.edu

George Necula
Computer Science Division

UC Berkeley
necula@cs.berkeley.edu

Motivation

● Extensible systems are common
– web browser plug-ins

– automatic software upgrades

– .NET libraries

● Security of plug-ins and extensions is important
● Digital signatures solve some problems...
● Proof systems solve other problems...

Signatures and Proofs

● Digital signatures
– Conceptually simple

– Existing public-key
algorithms work

– Clear blame trail when
something fails

– Efficient to generate
and check

● Proofs
– Eliminate accidental

and intentional errors

– No relationship needed
between code producer
and trusted authority

– Efficient to check, using
proof-carrying code
(PCC)

Game/Cell Phone Example

Authority and Proofs

● We have a system that can:
– reason about properties by assertion from trusted

authorities

– AND check provided proofs

● It can mix both types of reasoning
– prove a property based on a fact asserted by authority

– use assertions to know which proof system to use

– combine components proved secure in different
systems

sat and believe

sat(P) means we have a proof of proposition P

believe(P) means we believe there is a proof
of proposition P

● Distinguish truth from assumption
● Transmitted proofs will appear as sat formulas

● sat may not appear as the conclusion of a policy
rule, believe may

Policy Excerpts

use RTAL in
forall P:talprg
mayrun(P):­

believe(safe P),
believe(economical P)

end

use RTAL in
forall P:talprg
forall Q:talprg
forall R:talprg
believe(economical R):­

sat(link P Q R),
resource_signer says enforcer(Q)

end

BLF
● Combines Binder and LF

– Binder is a modal “says” logic based on Datalog

– LF is a logical framework based on dependent types
that describes proof systems

● Straightforward syntax and semantics
● Conservatively extends LF

– nothing more or less is provable than in LF for any
proof system

● Decidable (for well-behaved policies)
– no proof search inside proof systems

– no negation

Says Logic (English)

Alice
“Program P0 is safe”

Bob
“Trust Alice about program safety”

User
“Run program P0”

Reference Monitor
“Trust Bob about program safety”
“If P is safe and the user wants to
run P, then run P”

Says Logic (Binder)

Alice
safe(P

0
)

Bob
safe(P):­

Alice says safe(P)

User
run(P

0
)

Reference Monitor
safe(P):­

Bob says safe(P)

run(P):­
safe(P),
User says run(P)

Says Logic (Import)

Reference Monitor
safe(P):­

Bob says safe(P)

run(P):­
safe(P),
User says run(P)

Alice says safe(P
0
)

Bob says safe(P):­
Alice says safe(P)

User says run(P
0
)

Alice
safe(P

0
)

Bob
safe(P):­

Alice says safe(P)

User
run(P

0
)

Says Logic (Deduction)

run(P
0
)

User says run(P
0
)safe(P

0
)

Bob says safe(P
0
)

Alice says safe(P
0
)

run(P):­
safe(P),
User says run(P)

Bob says safe(P):­
Alice says safe(P)

safe(P):­
Bob says safe(P)

LF Proof Systems

nat : type.
0 : nat.
s : nat → nat.
even : nat → type.
ax0 : even 0.
axadd2 : even X → even (s (s X)).

Propositions are types

Proofs are objects

(even (s (s 0)))
is the proposition that two is even

(axadd2 ax0)
is a proof of the proposition

Proving Program Properties in LF

● For high-level languages
– encode “correctness” derivations into LF directly

– encode VCgen as a predicate and encode logic in LF

● Another approach is to use TAL
– encode assembly type rules into LF axioms

● Another way: foundational PCC
– encode high-level proof rules directly (i.e. type rules)

– also encode proof that high-level proofs imply low-
level safety (i.e. proof of soundness of type rules)

Policy Excerpts (Revisited)

use RTAL in
forall P:talprg
mayrun(P):­

believe(safe P),
believe(economical P)

end

use RTAL in
forall P:talprg
forall Q:talprg
forall R:talprg
believe(economical R):­

sat(link P Q R),
resource_signer says enforcer(Q)

end

Other Pieces of Our Work

● More examples
– endorsing rulesets

– trust annotations on assertions

– trust in the λ-calculus

● Precise definition of syntax and proof rules
● Proof of conservativity
● Decision algorithm
● Rudimentary implementation

Related Work

● Several variations of distributed logics for security,
various PCC efforts

● Reason and authority are often combined in
security, usually implicitly
– X.509 certificates are from authorities; reasoning

about transitivity verifies chains of trust

– JVM does static analysis before running code; JVM is
provided by trusted authority

● (See paper for more discussion)

Conclusions

● BLF combines Binder and LF
– allows security decisions based on authority and

reason

– many types of interactions between proofs and
assertions possible

● Makes PCC more practical
– don't need to prove everything; can “cheat” with

digital signatures

– can combine results from multiple proof systems

– makes trust of proof rules explicit

Future Work

● Integrate BLF into a PCC framework such as the
Open Verifier project
– present a complete story of a real application within

the framework

– modify logic as necessary

● Explore extensions such as function symbols
– makes logic undecidable

– allows principals to make more interesting statements

– opens up new application domains

The End

Trusting Rulesets Example

forallrules R
use R in

forall P:prg
mayrun(P):­

sat(safe P),
useruleset(R)

end

useruleset(R):­
pcc­provider says useruleset(R)

Trust in the λ-Calculus

● Encode type system of Ørbæk and Palsberg
● Typed λ-calculus with trust annotations

– example types: αtr, (αtr→βtr)dis

– “trust” construct forces output to be trusted
● Require a digital signature from auditor for every

occurrence of “trust”

– Provider: (audit E
1
)→(audit E

2
)→(typecheck E)

● Also works for information flow and
declassification

use RTAL in
forall P:talprg
believe(safe P):­

use RJava in
exists Q:javaprg

sat(typechecks Q),
sat(compiles Q P)

end
end

Java Policy Excerpt

Deciding Queries

● Use bottom-up Datalog evaluation
● While the set of facts is still growing:

– Add all direct inferences

– Combine existing LF terms in any legal way to
generate new LF terms

– Update sat and believe atoms for LF terms

● Answer query using fixed point database of facts
● No proof search within LF signatures; instead find

all ways to combine existing facts

Policy Constraints

● For termination, LF terms mentioned in policies
must be well-behaved

– (even X → good X) is OK

– (even X → even (s (s X))) is not

– no restrictions on LF signatures themselves

● Policies may not include sat as conclusion of rule

● Import of statements is partial function
– says is never nested, as in Binder

Intuitionistic Logic in LF
form : type.
pf : form → type.
true : form.
false : form.
and : form → form → form.
imp : form → form → form.
true_i : pf true.
and_i : pf X → pf Y → pf (and X Y).
and_el : pf (and X Y) → pf X.
and_er : pf (and X Y) → pf Y.
imp_i : (pf X → pf Y) → pf (imp X Y).
imp_e : pf (imp X Y) → pf X → pf Y.

imp_i ([A:pf (and P (imp P Q))]
 imp_e (and_er A) (and_el A))
: pf (imp (and P (imp P Q)) Q)

proof

proposition
P/\(P → Q) → Q

