gfm Enforcing Robust
Declassification

Andrei Sabelfeld
Chalmers

joint work with
Andrew C. Myers & Steve Zdancewic

Cornell U. Penn

CSFWO04, June 2004

Confidentiality: preventing

information leaks J—

e Untrusted/buggy code should not ~—
leak sensitive information o

ke A
e But some applications depend on info
iIntended information leaks

— password checking
— information purchase
— spreadsheet computation

e Some leaks must be allowed: need
information release (or declassification)

Confidentiality vs. intended leaks

e Allowing

compromise confidentialitys"“-_
e Noninterference is violated info

e How do we know secrets

Y
leaks might —

are not laundered
via release mechanisms?

e Little or no guarantee for declassification

construc

'S in many security-typed

languages

Confidentiality guarantee:
Robust declassification

>
e Attacker may not affect .
what is released Ry
e Zdancewic & Myers [CSFWO01]: 8@ el
An active attacker may not learn

more sensitive information than a
passive attacker

o Unresolved questions:
— What is robust declassification for code?
— How to represent untrusted code?
— How to provably enforce robust declassification?

— How to grant untrusted code a limited ability to
control declassification?

This talk

e Language-level end-to-end robust
declassification

o Explicit attackers — untrusted code

e Robust declassification enforcement by
security typing

e Qualified robustness — limited ability for
untrusted code to affect declassification

e Non-dual view — integrity represents whether
code has enough authority to declassify

e Related/ongoing work & conclusions

Security lattice and
noninterference - H

Security lattice: e.g.:

1 L

Noninterference: flow from [to |’ allowed
when L C

Combining confidentiality and

integrity E=m
confidentiality
Attacker can modify /\

H L HL

X — HH LL

L H . N
% Attacker can read A
Integrity Product ,
Eb General Attacker’s
Confidentiality |lattice integrity

7

Noninterference

e Noninterference [Goguen & Meseguer]: as high
input varied, low-level outputs unchanged

/4

2

| — — | — — |

h1—> —»h — —»h

e Language-based noninterference for C;
vM{,M,. M= M, = <M11C> ~ (My,C)

Low-memory Configuration || -OW View ~;: trace
equality: with M, and c indistinguishability
My =M, iff My|=M,|,

up to high stuttering

From noninterference to

robustness

e Noninterference too restrictive

e Need to allow declassification but so
that the attacker may not affect it

o Zdancewic & Myers [CSFWO01]:
An active attacker may not learn
more sensitive information than a

passive attacker

= Model both kinds of attackers relative to
a point in security lattice

Fair attacks

e A command a is a fair attack if it may
only read and write variables at | € LL

e A program c is high-integrity code
interspersed with fair attacks

e High-integrity code c[e] with holes
whose contents controlled by attacker

e Can fair attacks lead to laundering?

10

Robust declassification

e Command c[e] has robustness if

VMllMZIala’- <M11C[a]> ~| <M21C[a]> =
<M11C[a’]> ~| <M21C[a’]>

up to high-confidentiality stuttering |

e If a cannot distinguish bet. M, and M, through c
then no other a’ can distinguish bet. fVI and M,

e Noninterference = robustness

e For programs with no
declassification: robustness = noninterference

11

Robust declassification: examples

o Flatly rejected by noninterference, but
secure programs satisfy robustness:

[e]; X, ,:=declassify(y,.,LH)

e Insecure program:

Yy, - =declassify(z,.,LH)

[e]; if X, then y,, :=declassify(z.,,LH)

IS rejected by robustness

12

Enforcing robustness

e Security typing
for declassification:

C context
must be data must
high- be high-
. integrity) integrity

LHFe: HH
LH + declassify(e,l): LH

13

Security typing assures

e C typable and no declassification in ¢
= noninterference

e C typable = noninterference for

integrity (no downward flows along the
integrity axis)
e C typable = robustness

14

Password checking security

e Password+salt are hashed in a (public)
image database

LH F hash(pwd, salt): HH x LH — LH
= declassify(buildHash(pwd||salt), LH)

e User query+salt is matched with the
iImage

LH F match(pwdImg, salt, query): LH x LH x HH — LH
= pwdImg==hash(query, salt)

= Typable and thus secure 15

Password laundering attack

e Program leaking the parity of x,,

[e]; match(hash(parity(x,,),salt), salt, y,,)

iS rejected by type system

e Password updated with newPwd if hashing
oldPwd+salt matches the image:

LH + update(pwdImg, salt, oldPwd, newPwd) :
LH x LH x HH x HH
= if match(pwdImg, salt, oldPwd)
then pwdImg:=hash(newPwd, salt)

= Typable and thus secure

16

Endorsement and qualified robustness

e Need to give untrusted code limited
ability to affect declassification

[e]; if X =1 then y,:=declassify(z,,,LH)
else vy, :=declassify(z’,,,LH)

e Introduce endorse to upgrade trust
e Semantic treatment of endorse:
(M, endorse(e,l)) — val (for some val)

e This qualifies robustness: insensitive to
how endorsed expressions evaluate

17

Enforcing qualified robustness

e Qualified robustness:

VMllMZIala’- <M11C[a]> ~| <M21C[a]> =
<M11C[a’]> ~| <M21C[a’]>

possibilistic high-indistinguishability |

e Typing rule for endorse: confidentiality
unchanged

pct e:l" lupc C Level(v) C(1)=C(l")
pc - v:=endorse(e,l)

18

Security typing assures

e ¢ typable and no declassification or endorsement in ¢
= noninterference

e ¢ typable and no declassify in c
= noninterference for confidentiality

e C typable = qualified robustness
e Example of breaking qualified robustness:

[e]; if X, then y,, ,:=endorse(z ,LH);
if y,, then v, ,:=declassify(w,,,,LH)

rightfully rejected by type system

19

Battleship game security

o Players places their while not_done do
ships on their grid [¢,]; m’,:=endorse(m,,LH);
boards in gecr_e_t s,:=apply(s;,m’);

e Take turn in firing at m’,:=get_move(s,);
locations of the m,:=declassify(m’y,LH);

opponent’s grid ot o e e

» Locations disclosed one | gelassify(not_final(s,),LH);
at a time -

[e2.
e Malicious opponent 2
should not hijack Level(s,,m’;) € HH
control over Level(m,,m’,,not_done) € LH
declassification Level(m,) € LL

= Typable and thus secure
20

Related work on information release

e \What? Partial release: noninterference within

high subdomains [Cohen’78, Joshi & Leino’00, Sabelfeld
& Sands’00, Giacobazzi & Mastroeni’'04, Sabelfeld & Myers'04]

e Where? Intransitive (non)interference: to be

declassified data must pass a downgrader

[Rushby92, Pinsky95, Roscoe & Goldsmith’99, Mantel01,
Mantel & Sands’03]

e Who? Decentralized label model: only owner

has authority to declassify data [Myers &
Liskov'97,"98]

Robust declassification: active attacker may
not learn more information that passive
attacker [zdancewic & Myers'01, Zdancewic’03]

21

Related work on information release

e How much? Quantitative information
flow [Denning’82, Clark et al.’02, Lowe’02]

e Relative to what?

— probabilistic attacker [Volpano & Smith’00,
Volpano’00, Di Pierro’02]

— complexity-bound attacker [Laud’01,’03]

— specification-bound attacker [Dam &
Giambiagi‘00,’03]

22

Conclusions 2 o

Enforcing robust declassification

e Language-level characterization and
enforcement

o Explicit attackers — untrusted code

e Qualified robustness — limited ability for
untrusted code to affect declassification

e Non-dual view — integrity represents whether
code has enough authority to declassify

Future work: generalizations to concurrent
attackers and combination with intransitive
noninterference

23

