
Formal Analysis of Multi-Party Contract Signing

��� ��� � ��� 	 � �
� �� �
�� �� �� ��� 	� �
�� � 	� � �

�� � � �� � � � � � �
�� � � �� �� � � �� � � � � � � �� � 	 � � � � � ! ! � � �� � � �� � � � � � �" �� � � � !� � � � �

#%$& ' () *,+ ().- / 0 / $ 12 3)4 065 7 (& 4 - 8 $ + 4& (9 4 : 0%; + 0+ ;< =?> @

Digital contract signing

• Use digital signatures to sign a contract over a network

• Special instance of fair exchange protocols

• Important issue for electronic commerce

• Naive 2-party protocol example:
A → B : SA(contract)

B → A : SB(contract)

• Bob may be malicious and not send his signature

• Asymmetry: someone must be the first to sign

#%$& ' () *,+ ().- / 0 / $ 12 3)4 065 7 (& 4 - 8 $ + 4& (9 4 : 0%; + 0+ ;< =?> �

Digital contract signing

• Use digital signatures to sign a contract over a network

• Special instance of fair exchange protocols

• Important issue for electronic commerce

• Naive 2-party protocol example:
A → B : SA(contract)

B → A : ✗

• Bob may be malicious and not send his signature

• Asymmetry: someone must be the first to sign

#%$& ' () *,+ ().- / 0 / $ 12 3)4 065 7 (& 4 - 8 $ + 4& (9 4 : 0%; + 0+ ;< =?> �

Digital contract signing

• Use digital signatures to sign a contract over a network

• Special instance of fair exchange protocols

• Important issue for electronic commerce

• Naive 2-party protocol example:
A → B : SA(contract)

B → A : ✗

• Bob may be malicious and not send his signature

• Asymmetry: someone must be the first to sign
#%$& ' () *,+ ().- / 0 / $ 12 3)4 065 7 (& 4 - 8 $ + 4& (9 4 : 0%; + 0+ ;< =?> �

Properties of contract signing

• Fairness
➤ If A gets B’s signature, then B can get A’s signature and

vice-versa

• Timeliness
➤ A signer does not get stuck

• Advantage
➤ A signer has an advantage if

it has a strategy to complete the exchange
and it has a strategy to abort the exchange

• Abuse-freeness (provable advantage)
➤ A signer cannot prove to an external party that it has the

power to choose the outcome

#%$& ' () *,+ ().- / 0 / $ 12 3)4 065 7 (& 4 - 8 $ + 4& (9 4 : 0%; + 0+ ;< =?> �

Evolution of contract signing

In 1980, Even & Yacobi showed that there is no fair,
deterministic two-party contract signing protocol.

• Randomized protocols

• Trusted Party, T intervenes
➤ Use trusted party as a delivery authority
➤ May cause a bottleneck . . .

• Trusted Party intervenes only in case of problem (optimistic
approach)
➤ More complex, and more error-prone . . .

#%$& ' () *,+ ().- / 0 / $ 12 3)4 065 7 (& 4 - 8 $ + 4& (9 4 : 0%; + 0+ ;< =?> �

Related work: formal methods & optimistic protocols

• [Shmatikov, Mitchell, 2000]
➤ model-checker Murϕ
➤ invariant checking

• [Chadha, Kanovich, Scedrov, 2001]
➤ specification in MSR
➤ inductive proofs

• [Kremer, Raskin, 2002]
➤ model-checker

��� �� �

➤

�� �

(temporal logic with game semantics)

• [Chadha, Mitchell, Scedrov, Shmatikov 2003]
➤ Protocol independent results on advantage

⇒ Only 2-party protocols studied

#%$& ' () *,+ ().- / 0 / $ 12 3)4 065 7 (& 4 - 8 $ + 4& (9 4 : 0%; + 0+ ;< =?> 	

Multi-party contract signing

• n signers want to sign a contract

• Properties for a honest signer must hold against any coalition
of dishonest signers, i.e., against up to n − 1 dishonest signers

• Each signer must receive the signature of all other signers
(topology is a full graph)

#%$& ' () *,+ ().- / 0 / $ 12 3)4 065 7 (& 4 - 8 $ + 4& (9 4 : 0%; + 0+ ;< =?> �

Multi-party protocols

• Astonishingly few so far

• [Asokan, Baum-Waidner, Schunter, Waidner, T.R. 1998]
Optimistic synchronous multi-party contract signing

• [Baum-Waidner, Waidner, T.R. 1998 & ICALP 2000]
Optimistic asynchronous multi-party contract signing

• [Garay, MacKenzie, DISC 1999]
Optimistic asynchronous multi-party contract signing

• [Baum-Waidner, 2001]
Optimistic asynchronous multi-party contract signing with
reduced number of rounds

#%$& ' () *,+ ().- / 0 / $ 12 3)4 065 7 (& 4 - 8 $ + 4& (9 4 : 0%; + 0+ ;< =?> �

Overview of our results

• BW protocol
➤ no attack has been found
➤ not a proof of security—we only verified the structure of

the protocol

• GM protocol
➤ anomaly concerning abuse-freeness

easy to fix
➤ several attacks on fairness

no attack found when n = 3
for n = 4, different attacks against signers P1, P2 and P3

(but not P4)
need to completely rewrite the recovery protocol

#%$& ' () *,+ ().- / 0 / $ 12 3)4 065 7 (& 4 - 8 $ + 4& (9 4 : 0%; + 0+ ;< =?> �

Protocol model

• Signers are players

• 3 versions of player described using guarded commands
➤ honest : follow the protocol
➤ optimistic: honest, but prefers waiting for other signers
➤ dishonest : may send messages out of order and continue

the main protocol after contacting T

• Messages are immediately available for reading

• Only structural flaws are considered
➤ no modelling of the cryptographic primitives

•

��� �� � cannot handle parametric specifications
➤ C++ programs for the protocols, that generate the

� � � � �

specification for a given number of signers

#%$& ' () *,+ ().- / 0 / $ 12 3)4 065 7 (& 4 - 8 $ + 4& (9 4 : 0%; + 0+ ;< =?> �

GM protocol [Garay, MacKenzie, DISC 1999]

• Recursive description of the protocol

• Protocol for signer Pi depends on position i

• The protocol is divided into n levels
➤ In each protocol level specific promises are used
➤ Implemented using private contract signatures (convertible

designated verifier signatures)

• i-level protocol is triggered when Pi receives 1-level promises
from Pi+1 through Pn

• At i-level, Pi to P1 exchange i-level promises
➤ Agree on contract with promises, not signatures

• Pi through P1 close higher level protocols

• After the nth-level, actual signatures are exchanged

#%$ & ' () *+ ().- / 0 / $ 1 2 3)4 065 7 (& 4 - 8 $ + 4& (9 4 : 0%; + 0+ ; < =?> @ �

The i-level protocol

Pi Pi−1 . . . P1

Distribute 1 level promises

(i − 1) level protocol

Collect (i − 1) level promises

Exchange (i) level promises

#%$ & ' () *+ ().- / 0 / $ 1 2 3)4 065 7 (& 4 - 8 $ + 4& (9 4 : 0%; + 0+ ; < =?> @ @

GM abort and resolve for Pi

Pi may contact T if it does not want to wait anymore

• To abort, Pi sends an abort request to T

• To resolve, Pi sends a resolve request to T

In the request, Pi sends a promise from each signer
➤ if j > i, Pi sends the maximum level promise received from

Pj on m

➤ if j < i, Pi sends the maximum level of promises received
from each of the signers Pj′ , with j′ < i

#%$ & ' () *+ ().- / 0 / $ 1 2 3)4 065 7 (& 4 - 8 $ + 4& (9 4 : 0%; + 0+ ; < =?> @ �

GM protocol for T

• Each signer may contact T only once

• T replies with a resolved contract or an abort token

• T may overturn an abort, but never a resolve

• T maintains the following information for each contract to
decide when to overturn an abort
➤ validated: a boolean indicating whether the contract has

been validated or not
➤ S: the set of indices of parties that have aborted
➤ F : set of indices of parties which help T to decide when to

overturn an abort

#%$ & ' () *+ ().- / 0 / $ 1 2 3)4 065 7 (& 4 - 8 $ + 4& (9 4 : 0%; + 0+ ; < =?> @ �

An attack on fairness

• The first attack was discovered when we found an error in the
"proof"

• Consider the protocol instance where n = 4

• Using

� � � � �, we show that fairness does not hold for a
honest P2

There is a path such that
➤ P1, P3 and P4 have P2’s signature
➤ P2 does not obtain all other signatures

• Similar attacks can be shown against P1 and P3

• No attacks discovered for n = 3 signers

#%$ & ' () *+ ().- / 0 / $ 1 2 3)4 065 7 (& 4 - 8 $ + 4& (9 4 : 0%; + 0+ ; < =?> @ �

An attack on fairness (P2)

• P1, P3 and P4 collude against P2

• P3 aborts at the beginning
➤ T adds P3 to S

• P1 resolves, but T responds with an abort
➤ T adds P1 to S and P2 to F

• P2 tries to recover, but as P2 is in F , T responds with an abort

• P4 resolves and T overturns the abort
#%$ & ' () *+ ().- / 0 / $ 1 2 3)4 065 7 (& 4 - 8 $ + 4& (9 4 : 0%; + 0+ ; < =?> @ 	

An attack on fairness (3)

More generally the attack scenarios are as follows

• dishonest Pk1 aborts but continues the protocol

• dishonest Pk2 tries to recover but does not succeed
➤ as a side-effect it adds one or several signers to the set F

• honest Pk3 tries to recover but does not succeed

• dishonest Pk4 recovers and overturns the abort

#%$ & ' () *+ ().- / 0 / $ 1 2 3)4 065 7 (& 4 - 8 $ + 4& (9 4 : 0%; + 0+ ; < =?> @ �

Correcting the GM protocol

• Major revisions required
➤ Getting the decision to overturn abort correct
➤ Recovery protocol and T ’s protocol changed

• Central idea in the revision
➤ Abort overturned if and only if T infers that each signer

that contacted it in the past has been dishonest
➤ Idea borrowed from Baum-Waidner protocol

• Mocha did not discover any attacks for both 3 and 4 signers
#%$ & ' () *+ ().- / 0 / $ 1 2 3)4 065 7 (& 4 - 8 $ + 4& (9 4 : 0%; + 0+ ; < =?> @ �

Conclusions

• First formal analysis of multi-party contract signing protocols

• Using the model-checker

� � � � � and the logic

� � �
instances

of two protocols have been verified

• New attacks have been discovered in the GM protocol

➤ Abuse-freeness broken using side information given by T:

easy fix

➤ Fairness broken when n > 3: requires major changes

• Fixed GM protocol

➤ the protocol for T has been completely rewritten

➤ number of different recovery requests has been reduced

➤ verification with
� � � � � did not detect any error

• Model optimistic players in multi-party protocols

#%$ & ' () *+ ().- / 0 / $ 1 2 3)4 065 7 (& 4 - 8 $ + 4& (9 4 : 0%; + 0+ ; < =?> @ �

New work

• Fairness as invariant checking
➤ advantage of invariant checking: error trace provided

• Analysis of the protocol with t < n − 1 dishonest signers
➤ fairness can also be broken in a way such that:

one of the honest signers is fooled
another honest signer obtains the signed contract
no dishonest signer receives the signed contract

#%$ & ' () *+ ().- / 0 / $ 1 2 3)4 065 7 (& 4 - 8 $ + 4& (9 4 : 0%; + 0+ ; < =?> @ �

Future work

• Correctness proofs for BW and the fixed GM protocol
➤ Using theorem provers to carry out the proof
➤ Specification language should be rich enough to specify

the protocols for any n

• Extend the analysis to a more complete model
➤ Dolev-Yao-like intruder
➤ Parametric verification

• Study different topologies, e.g. ring topologies in fair exchange

• Extend general results on advantage, presented in [Chadha,
Mitchell, Scedrov, Shmatikov 2003] to multiparty protocols

#%$ & ' () *+ ().- / 0 / $ 1 2 3)4 065 7 (& 4 - 8 $ + 4& (9 4 : 0%; + 0+ ; < =?> � �

An attack on abuse-freeness

• Note that P1 cannot abort

• Abort responses include the signers that have aborted

• If P1 receives an abort from T , P1 must have sent a resolve
request

• Use T as an oracle:

➤ T verifies all promises in a resolve request
➤ By answering to P1, provides evidence that all signers

have started the protocol
#%$ & ' () *+ ().- / 0 / $ 1 2 3)4 065 7 (& 4 - 8 $ + 4& (9 4 : 0%; + 0+ ; < =?> � @

Attack on abuse-freeness contd..

• Using

� � � � � for n = 3, we show that abuse-freeness does
not hold for an optimistic P3: P1 and P2 have a strategy to
reach a state where
➤ P1 has an abort reply, and
➤ P1 and P2 have a strategy to obtain P3’s signature
➤ P1 and P2 have a strategy to prevent P3 from getting a

contract

• Easy fix: make abort replies to different signers
indistinguishable

#%$ & ' () *+ ().- / 0 / $ 1 2 3)4 065 7 (& 4 - 8 $ + 4& (9 4 : 0%; + 0+ ; < =?> � �

	Digital contract signing
	Properties of contract signing
	Evolution of contract signing
	Related work: {small formal methods & optimistic protocols}
	Multi-party contract signing
	Multi-party protocols
	Overview of our results
	Protocol model
	GM protocolhspace *{4.4cm}	extcolor {MidnightBlue}{	iny {[Garay, MacKenzie, DISC 1999]}}
	The i-level protocol
	GM abort and resolve for P_i
	GM protocol for T
	An attack on fairness
	An attack on fairness~(P_2)
	An attack on fairness~(3)
	Correcting the GM protocol
	Conclusions
	New work
	Future work
	An attack on abuse-freeness
	Attack on abuse-freeness contd..

