Formal Analysis of Multi-Party Contract Signing

Rohit Chadha

Steve Kremer

Andre Scedrov

University of Sussex Université Libre de Bruxelles University of Pennsylvania

Digital contract signing

- Use digital signatures to sign a contract over a network
- Special instance of fair exchange protocols
- Important issue for electronic commerce
- Naive 2-party protocol example:

 $A \rightarrow B : S_A(\text{contract})$ $B \rightarrow A : S_B(\text{contract})$

Digital contract signing

- Use digital signatures to sign a contract over a network
- Special instance of fair exchange protocols
- Important issue for electronic commerce
- Naive 2-party protocol example:

 $A \to B : S_A(\text{contract})$ $B \to A : \mathbf{X}$

Digital contract signing

- Use digital signatures to sign a contract over a network
- Special instance of fair exchange protocols
- Important issue for electronic commerce
- Naive 2-party protocol example:

 $A \to B : S_A(\text{contract})$ $B \to A : \mathbf{X}$

- Bob may be malicious and not send his signature
- Asymmetry: someone must be the first to sign

Properties of contract signing

• Fairness

- If A gets B's signature, then B can get A's signature and vice-versa
- Timeliness
 - > A signer does not get stuck
- Advantage
 - A signer has an advantage if
 - it has a strategy to complete the exchange
 - and it has a strategy to abort the exchange
- Abuse-freeness (provable advantage)
 - A signer cannot prove to an external party that it has the power to choose the outcome

Evolution of contract signing

In 1980, Even & Yacobi showed that there is no fair, deterministic two-party contract signing protocol.

- Randomized protocols
- Trusted Party, T intervenes
 - Use trusted party as a delivery authority
 - ► May cause a bottleneck ...
- Trusted Party intervenes only in case of problem (optimistic approach)
 - ► More complex, and more error-prone ...

Related work: formal methods & optimistic protocols

- [Shmatikov, Mitchell, 2000]
 - \succ model-checker Mur φ
 - invariant checking
- [Chadha, Kanovich, Scedrov, 2001]
 - specification in MSR
 - inductive proofs
- [Kremer, Raskin, 2002]
 - ► model-checker Mocha
 - ATL (temporal logic with game semantics)
- [Chadha, Mitchell, Scedrov, Shmatikov 2003]
 - Protocol independent results on advantage
- \Rightarrow Only 2-party protocols studied

Multi-party contract signing

- *n* signers want to sign a contract
- Properties for a honest signer must hold against any coalition of dishonest signers, i.e., against up to n 1 dishonest signers
- Each signer must receive the signature of all other signers (topology is a full graph)

Multi-party protocols

- Astonishingly few so far
- [Asokan, Baum-Waidner, Schunter, Waidner, T.R. 1998] Optimistic synchronous multi-party contract signing
- [Baum-Waidner, Waidner, T.R. 1998 & ICALP 2000] Optimistic asynchronous multi-party contract signing
- [Garay, MacKenzie, DISC 1999] Optimistic asynchronous multi-party contract signing
- [Baum-Waidner, 2001]

Optimistic asynchronous multi-party contract signing with reduced number of rounds

Overview of our results

- BW protocol
 - no attack has been found
 - not a proof of security—we only verified the structure of the protocol
- GM protocol
 - anomaly concerning abuse-freeness
 - easy to fix
 - several attacks on fairness
 - no attack found when n = 3
 - for n = 4, different attacks against signers P_1 , P_2 and P_3 (but not P_4)
 - need to completely rewrite the recovery protocol

Protocol model

- Signers are players
- 3 versions of player described using guarded commands
 - honest : follow the protocol
 - optimistic: honest, but prefers waiting for other signers
 - > dishonest : may send messages out of order and continue the main protocol after contacting T
- Messages are immediately available for reading
- Only structural flaws are considered

no modelling of the cryptographic primitives

- MOCHA cannot handle parametric specifications
 - C++ programs for the protocols, that generate the MOCHA specification for a given number of signers

- **Recursive** description of the protocol
- Protocol for signer P_i depends on position i
- The protocol is divided into n levels
 - In each protocol level specific promises are used
 - Implemented using private contract signatures (convertible designated verifier signatures)
- *i*-level protocol is triggered when P_i receives 1-level promises from P_{i+1} through P_n
- At *i*-level, P_i to P_1 exchange *i*-level promises
 - > Agree on contract with promises, not signatures
- P_i through P_1 close higher level protocols
- After the n^{th} -level, actual signatures are exchanged

The *i*-level protocol

Distribute 1 level promises

(i-1) level protocol

Collect (i - 1) level promises

Exchange (i) level promises

GM abort and resolve for P_i

 P_i may contact T if it does not want to wait anymore

- To abort, P_i sends an abort request to T
- To resolve, P_i sends a resolve request to TIn the request, P_i sends a promise from each signer
 - ➤ if j > i, P_i sends the maximum level promise received from P_j on m
 - ▶ if j < i, P_i sends the maximum level of promises received from each of the signers $P_{j'}$, with j' < i

GM protocol for T

- Each signer may contact T only once
- *T* replies with a resolved contract or an abort token
- T may overturn an abort, but never a resolve
- T maintains the following information for each contract to decide when to overturn an abort
 - validated: a boolean indicating whether the contract has been validated or not
 - \succ S: the set of indices of parties that have aborted
 - \succ *F*: set of indices of parties which help *T* to decide when to overturn an abort

An attack on fairness

- The first attack was discovered when we found an error in the "proof"
- Consider the protocol instance where n = 4
- Using MOCHA, we show that fairness does not hold for a honest P₂
 There is a noth such that

There is a path such that

- \triangleright P_1 , P_3 and P_4 have P_2 's signature
- \blacktriangleright P_2 does not obtain all other signatures
- Similar attacks can be shown against P_1 and P_3
- No attacks discovered for n = 3 signers

An attack on fairness (P_2)

- P_1 , P_3 and P_4 collude against P_2
- P_3 aborts at the beginning

 \succ T adds P_3 to S

• P_1 resolves, but T responds with an abort

 \succ T adds P_1 to S and P_2 to F

- P_2 tries to recover, but as P_2 is in F, T responds with an abort
- P_4 resolves and T overturns the abort

More generally the attack scenarios are as follows

- dishonest P_{k1} aborts but continues the protocol
- dishonest P_{k2} tries to recover but does not succeed

 \succ as a side-effect it adds one or several signers to the set F

- honest P_{k3} tries to recover but does not succeed
- dishonest P_{k4} recovers and overturns the abort

Correcting the GM protocol

- Major revisions required
 - Getting the decision to overturn abort correct
 - Recovery protocol and T's protocol changed
- Central idea in the revision
 - Abort overturned if and only if T infers that each signer that contacted it in the past has been dishonest
 - Idea borrowed from Baum-Waidner protocol
- Mocha did not discover any attacks for both 3 and 4 signers

Conclusions

- First formal analysis of multi-party contract signing protocols
- Using the model-checker MOCHA and the logic ATL instances of two protocols have been verified
- New attacks have been discovered in the GM protocol
 - Abuse-freeness broken using side information given by T: easy fi x
 - > Fairness broken when n > 3: requires major changes
- Fixed GM protocol
 - \blacktriangleright the protocol for T has been completely rewritten
 - number of different recovery requests has been reduced
 - > verifi cation with MOCHA did not detect any error
- Model optimistic players in multi-party protocols

New work

• Fairness as invariant checking

advantage of invariant checking: error trace provided

- Analysis of the protocol with t < n 1 dishonest signers
 - fairness can also be broken in a way such that:
 - one of the honest signers is fooled
 - another honest signer obtains the signed contract
 - no dishonest signer receives the signed contract

Future work

- Correctness proofs for BW and the fixed GM protocol
 - Using theorem provers to carry out the proof
 - Specification language should be rich enough to specify the protocols for any n
- Extend the analysis to a more complete model
 - Dolev-Yao-like intruder
 - Parametric verification
- Study different topologies, e.g. ring topologies in fair exchange
- Extend general results on advantage, presented in [Chadha, Mitchell, Scedrov, Shmatikov 2003] to multiparty protocols

An attack on abuse-freeness

- Note that P_1 cannot abort
- Abort responses include the signers that have aborted
- If P_1 receives an abort from T, P_1 must have sent a resolve request
- Use *T* as an oracle:
 - \succ T verifies all promises in a resolve request
 - By answering to P₁, provides evidence that all signers have started the protocol

Attack on abuse-freeness contd..

- Using MOCHA for n = 3, we show that abuse-freeness does not hold for an optimistic P_3 : P_1 and P_2 have a strategy to reach a state where
 - \succ P_1 has an abort reply, and
 - > P_1 and P_2 have a strategy to obtain P_3 's signature
 - > P_1 and P_2 have a strategy to prevent P_3 from getting a contract
- Easy fix: make abort replies to different signers indistinguishable