A Distributed Calculus

for Role-Based Access Control

Chiara Braghin

joint work with D. Gorla and V. Sassone

CSFW 2004, Asilomar, Pacific Grove, CA

A Distributed Calculus for Role-Based Access Control — p. 1/18

RBAC

Why: Role-Based Access Control 1s attracting increasing attention because:
® 1t reduces complexity and cost of security administration;
#® permission’s management 1s less error-prone;
® 1t 1s flexible (r6le’s hierarchy, separation of duty, etc.);
N

1t 1s least privilege-oriented.

A Distributed Calculus for Role-Based Access Control — p. 2/18

RBAC

Why: Role-Based Access Control 1s attracting increasing attention because:

9
9
9
9

it reduces complexity and cost of security administration;
permission’s management is less error-prone;
it 1s flexible (role’s hierarchy, separation of duty, etc.);

1t 1s least privilege-oriented.

Our work: Formalize the behaviour of concurrent and distributed systems
under security policies defined in a RBAC fashion, similar to

2

¥

the types developed in D7 and KLAIM to implement discretionary
access control

the types developed for Boxed Ambients to implement mandatory
access control

A Distributed Calculus for Role-Based Access Control — p. 2/18

o o

Contents

the RBAC96 model

a formal framework for concurrent systems running under a RBAC
policy: an extension of the m-calculus

a type system ensuring that the specified policy is respected during
computations

a bisimulation to reason on systems’ behaviours

some useful applications of the theory:
o finding the ‘minimal’ schema to run a given system
» refining a system to be run under a given schema
» minimize the number of users 1in a given system.

A Distributed Calculus for Role-Based Access Control — p. 3/18

The Basic RBAC model

USER ASSIGNMENT PERM. ASSIGNMENT
- >

SESSIONS

A Distributed Calculus for Role-Based Access Control — p. 4/18

The starting point: 7-calculus

Concurrent processes communicating on channels.

PROCESSES: P,Q == a(z).P | u(v).P | [u=v]P | (va:R)P
| nil | P|Q | IP

A Distributed Calculus for Role-Based Access Control — p. 5/18

The Syntax of our Calculus

Concurrent processes communicating on channels.

PROCESSES: P,Q == a(z).P | u(v).P | [u=v]P | (va:R)P
| nil | P|Q | IP

USER SESSIONS: r{|P|},

A Distributed Calculus for Role-Based Access Control — p. 5/18

The Syntax of our Calculus

Concurrent processes communicating on channels.

PROCESSES: P,Q == a(z).P | u(v).P | [u=v]P | (va:R)P
| nil | P|Q | IP

SysteEms: A,B == 0| r{P}, | A||B| (va":R)A

A Distributed Calculus for Role-Based Access Control — p. 5/18

The Syntax of our Calculus

Concurrent processes communicating on channels.

PROCESSES: P,Q == a(z).P | u(v).P | [u=v]P | (va:R)P
‘ nil ‘ P|@Q ‘ P | role R.P | yield R.P

SysTeEms: A,B := 0| r{P}, | A||B| (va":R)A

A Distributed Calculus for Role-Based Access Control — p. 5/18

The Syntax of our Calculus

Concurrent processes communicating on channels.

PROCESSES: P,Q == a(z).P | u(v).P | [u=v]P | (va:R)P
‘ nil ‘ P|@Q ‘ P | role R.P | yield R.P

SysTeEms: A,B u:= 0| r{P}, | A||B| (va":R)A

Channels are allocated to users to enable a distibuted implementation

A Distributed Calculus for Role-Based Access Control — p. 5/18

Dynamic Semantics

It 1s given 1n the form of a reduction relation

Communication:

s{la"(n)- Pl || rila(z).Qlty

A Distributed Calculus for Role-Based Access Control — p. 6/18

Dynamic Semantics

It 1s given 1n the form of a reduction relation

Communication:

s{a”(n)-Plrp || rla(@).Qy = s{Pf, [| ml QU] [ty

A Distributed Calculus for Role-Based Access Control — p. 6/18

Dynamic Semantics

It 1s given 1n the form of a reduction relation

Communication:

s{a™(n) Pl || rla(@).Qpy = s{P, [| ml QY] [1y

Role activation:

r{lrole R.P|},

A Distributed Calculus for Role-Based Access Control — p. 6/18

Dynamic Semantics

It 1s given 1n the form of a reduction relation

Communication:

s{a™(n) Pl || rla(@).Qpy = s{P, [| ml QY] [1y

Role activation:

r{role R.P[}, — 7{P|},uim

A Distributed Calculus for Role-Based Access Control — p. 6/18

Dynamic Semantics

It 1s given 1n the form of a reduction relation

Communication:

s{a™(n) Pl || rla(@).Qpy = s{P, [| ml QY] [1y

Role activation:

rirole R.Pl}y, = r{Pl[;u(r)

Roéle deactivation:

r{lyield R.Pl},

A Distributed Calculus for Role-Based Access Control — p. 6/18

Dynamic Semantics

It 1s given 1n the form of a reduction relation

Communication:

s{a™(n) Pl || rla(@).Qpy = s{P, [| ml QY] [1y

Role activation:

rirole R.Pl}y, = r{Pl[;u(r)

Roéle deactivation:

rilyield R.P|}, — 7{P[},—(r)

A Distributed Calculus for Role-Based Access Control — p. 6/18

The Basic RBAC model so far

USER ASSIGNMENT PERM. ASSIGNMENT
- -

SESSIONS

A Distributed Calculus for Role-Based Access Control — p. 7/18

RBAC schema

® Permissions are capabilities that enable process actions. Thus,

A . .
2 ={R!,R’, R'} rer is the set of permissions.

A Distributed Calculus for Role-Based Access Control — p. 8/18

RBAC schema

Permissions are capabilities that enable process actions. Thus,

A . .
2 ={R!,R’, R'} rer is the set of permissions.

In our framework, the RBAC schema is a pair of finite relations (u ; ?),
such that:

® « assigns roles to users;
& P assigns permissions to roles.

A Distributed Calculus for Role-Based Access Control — p. 8/18

An Example

A banking scenario:
® two users, the client and the bank s
® cashiers are modelled as channels ¢4, ..., ¢, of user s
® the roles available are client and cashier.

r{role client.enqueue®(r).dequeue(z).z(reqy).--- .z(reqy).z{stop).yield client[}, ||

s{ (v free)(lenqueuve(x).free(y).dequeue®(y) | II7_, free®(c]) |
7 lej(x).([x = withdrw_req] <handle withdraw request > |
[x = dep_req] <handle deposit request> | ... |

[z = stop]free®(ci)))}

A Distributed Calculus for Role-Based Access Control — p. 9/18

Static Semantics - Types

® The syntax of types:

play : Ri(Ty),...,a, : R,(T,)] | C
R(T)

Message Types 1T’
Channel Types C

A Distributed Calculus for Role-Based Access Control — p. 10/18

Static Semantics - Types

® The syntax of types:

play : Ri(Ty),...,a, : R,(T,)] | C
R(T)

Message Types 1T’
Channel Types C

® [pF. P states that P respects I' and # when it is run in a session of r
with roles p activated

A Distributed Calculus for Role-Based Access Control — p. 10/18

Static Semantics - Types

The syntax of types:

Message Types 1T’
Channel Types C

play : Ri(Ty),...,a, : R,(T,)] | C
R(T)

I'; p = P states that P respects I' and # when it is run in a session of r
with roles p activated

An example: performing input actions.

(T-INnPUT)
F'Fa:R(T) Reelp) T,o—Ti;pF’P
Ip b oa(x). P

A Distributed Calculus for Role-Based Access Control — p. 10/18

The Example Again

® The banking scenario again:
» now each available operation 1s modelled as a different channel
(wdrw = withdraw, opn = open account, cc = credit card request)

o the communication among different channels requires different
roles

o 2 1S such that {(rich_client,cc'), (rich,rich_client')} C ».

A Distributed Calculus for Role-Based Access Control — p. 11/18

The Example Again

® The banking scenario again:
» now each available operation 1s modelled as a different channel
(wdrw = withdraw, opn = open account, cc = credit card request)

o the communication among different channels requires different

roles
o 2 1S such that {(rich_client,cc'), (rich,rich_client')} C ».

7/ r{lrole client.enqueue®(r).dequeue(z).z(creditcard_req).cc®(signature).z(stop) |} fuser}

A Distributed Calculus for Role-Based Access Control — p. 11/18

The Example Again

® The banking scenario again:

» now each available operation 1s modelled as a different channel
(wdrw = withdraw, opn = open account, cc = credit card request)

o the communication among different channels requires different
roles

o 2 1S such that {(rich_client,cc'), (rich,rich_client')} C ».

7 r{lrole client.enqueue®(r).dequeue(z).z(creditcard_req).cc®(signature).z(stop) |} fuser}

= r{rolerich client.enqueue®(r).dequeue(z).2{creditcard_req).cc®(signature).z(stop)[} {ricn}

A Distributed Calculus for Role-Based Access Control — p. 11/18

LTS Semantics

The labels of the LTS are derived from those of the w-calculus:
w == 71 | an | adan:R | an | an:R

the LTS relates configurations, i.e. pairs (u;®) > A made up of a
RBAC schema (u;) and a system A.

Example:

(LTS-F-INnPUT)
u(a") = {R} R' € 2(p) n & dom(a)

a"n:S

(u;2) > ria(z).Pl, —— (uW{n: S} 2) > r{ P[] [},

A Distributed Calculus for Role-Based Access Control — p. 12/18

Bisimulation Equivalence

® We can define a standard bisimulation over the LTS

® (Bisimulation) It is a binary symmetric relation S between
configurations such that, if (D, E) € S and D - D, there exists a
configuration £’ such that £ == E' and (D', E') € S. Bisimilarity, ~,
1s the largest bisimulation.

® the bisimulation is adequate with respect to a standardly defined (typed)
barbed congruence.

A Distributed Calculus for Role-Based Access Control — p. 13/18

Some Algebraic Laws

#® 1f an action i1s not enabled, then the process cannot evolve:

r{la.P},~ 0 if #(p) does not enable

A Distributed Calculus for Role-Based Access Control — p. 14/18

Some Algebraic Laws

® if an action is not enabled, then the process cannot evolve:
r{la.P},~ 0 if #(p) does not enable

#® (differently from some distributed calculi, a terminated session does not
affect the evolution of the system:
r{nill}, = 0

A Distributed Calculus for Role-Based Access Control — p. 14/18

Some Algebraic Laws

1f an action 1s not enabled, then the process cannot evolve:
r{la.P},~ 0 if #(p) does not enable

differently from some distributed calculi, a terminated session does not
affect the evolution of the system:

r{nill}, ~ 0

the user performing an output action is irrelevant; the only relevant
aspect 1s the set of permissions activated when performing the action:

r{b°(n).nill}, = t{b°(n).nill},

A Distributed Calculus for Role-Based Access Control — p. 14/18

Finding the “Minimal” Schema

® Goal: to look for a ‘minimal’ schema to execute a given system A
while mantaining its behaviour w.r.t. (u;?)

» Algorithm:

o fi1x a metrics (number of rbles in the schema, permissions
associated to each role, etc.)

» define the set
CONF 4 ={(u';2') > A: (u’;?’)is a RBAC schema} of
configurations for A

e partition CONF 4 w.r.t. = and consider the equivalence class
containing (u;?) > A

» choose the minimal schema according to the chosen metrics

A Distributed Calculus for Role-Based Access Control — p. 15/18

Refining Systems

Goal: to add rble activations/deactivations within a system in such a
way that the resulting system can be executed under a given schema

(u;2)
we want a role to be active only when needed

the refining procedure replaces any input/output prefix « occurring in
session | - - - [}, with the sequence of prefixes role R.a.yield R

where R is formed by rbles assigned to r, activable when having
activated p and enabling the execution of «

the refining procedure adapts the type system

A Distributed Calculus for Role-Based Access Control — p. 16/18

Relocating Activities

® (Goal: to transter a process from one user to another without changing
the overall system behaviour, in order to minimize the number of users
in a system

® 1t 1s possible to infer axiomatically judgments of the form:
(u;2) > P, = (u;2) > s{Pl},

This judgment says that the process P can be executed by r and s
without affecting the overall system behaviour.

® Thus, the session r{| P}, can be removed. If no other session of 7 is left
in the system, then 7 1s a useless user and 1s erased.

A Distributed Calculus for Role-Based Access Control — p. 17/18

Conclusion

We have defined a formal framework for reasoning about concurrent
systems running under an RBAC schema;

in the literature, a number of papers only deal with the specification and
verification of RBAC schema;

Future Works:
» extend the framework to deal with more complex RBAC models;
» prove that bisimilarity 1s complete for barbed congruence;
» study information flow in terms of RBAC?

A Distributed Calculus for Role-Based Access Control — p. 18/18

	RBAC
	RBAC

	Contents
	The Basic RBAC model
	onlySlide *{1}{The starting point: $pi $-calculus}�romSlide *{2}{The Syntax of our Calculus}
	onlySlide *{1}{The starting point: $pi $-calculus}�romSlide *{2}{The Syntax of our Calculus}
	onlySlide *{1}{The starting point: $pi $-calculus}�romSlide *{2}{The Syntax of our Calculus}
	onlySlide *{1}{The starting point: $pi $-calculus}�romSlide *{2}{The Syntax of our Calculus}
	onlySlide *{1}{The starting point: $pi $-calculus}�romSlide *{2}{The Syntax of our Calculus}

	Dynamic Semantics
	Dynamic Semantics
	Dynamic Semantics
	Dynamic Semantics
	Dynamic Semantics
	Dynamic Semantics

	The Basic RBAC model so far
	RBAC schema
	RBAC schema

	An Example
	Static Semantics - Types
	Static Semantics - Types
	Static Semantics - Types

	The Example Again
	The Example Again
	The Example Again

	LTS Semantics
	Bisimulation Equivalence
	Some Algebraic Laws
	Some Algebraic Laws
	Some Algebraic Laws

	Finding the ``Minimal'' Schema
	Refining Systems
	Relocating Activities
	Conclusion

