
A Distributed Calculus
for Role-Based Access Control

Chiara Braghin

joint work with D. Gorla and V. Sassone

CSFW 2004, Asilomar, Pacific Grove, CA

A Distributed Calculus for Role-Based Access Control – p. 1/18

RBAC

Why: Role-Based Access Control is attracting increasing attention because:
it reduces complexity and cost of security administration;
permission’s management is less error-prone;
it is flexible (rôle’s hierarchy, separation of duty, etc.);
it is least privilege-oriented.

A Distributed Calculus for Role-Based Access Control – p. 2/18

RBAC

Why: Role-Based Access Control is attracting increasing attention because:
it reduces complexity and cost of security administration;
permission’s management is less error-prone;
it is flexible (rôle’s hierarchy, separation of duty, etc.);
it is least privilege-oriented.

Our work: Formalize the behaviour of concurrent and distributed systems
under security policies defined in a RBAC fashion, similar to

the types developed in Dπ and Klaim to implement discretionary
access control
the types developed for Boxed Ambients to implement mandatory
access control

A Distributed Calculus for Role-Based Access Control – p. 2/18

Contents

the RBAC96 model
a formal framework for concurrent systems running under a RBAC
policy: an extension of the π-calculus
a type system ensuring that the specified policy is respected during
computations
a bisimulation to reason on systems’ behaviours
some useful applications of the theory:

finding the ‘minimal’ schema to run a given system
refining a system to be run under a given schema
minimize the number of users in a given system.

A Distributed Calculus for Role-Based Access Control – p. 3/18

The Basic RBAC model

USERS ROLES PERMISSIONS

SESSIONS

USER ASSIGNMENT PERM. ASSIGNMENT

A Distributed Calculus for Role-Based Access Control – p. 4/18

The starting point: π-calculus

Concurrent processes communicating on channels.

Processes: P,Q ::= a(x).P
∣∣ u〈v〉.P

∣∣ [u = v]P
∣∣ (νa :R)P∣∣ nil

∣∣ P |Q
∣∣ !P

A Distributed Calculus for Role-Based Access Control – p. 5/18

The Syntax of our Calculus

Concurrent processes communicating on channels.

Processes: P,Q ::= a(x).P
∣∣ u〈v〉.P

∣∣ [u = v]P
∣∣ (νa :R)P∣∣ nil

∣∣ P |Q
∣∣ !P

User Sessions: r{|P |}ρ

A Distributed Calculus for Role-Based Access Control – p. 5/18

The Syntax of our Calculus

Concurrent processes communicating on channels.

Processes: P,Q ::= a(x).P
∣∣ u〈v〉.P

∣∣ [u = v]P
∣∣ (νa :R)P∣∣ nil

∣∣ P |Q
∣∣ !P

Systems: A,B ::= 0
∣∣ r{|P |}ρ

∣∣ A ‖ B
∣∣ (νar :R)A

A Distributed Calculus for Role-Based Access Control – p. 5/18

The Syntax of our Calculus

Concurrent processes communicating on channels.

Processes: P,Q ::= a(x).P
∣∣ u〈v〉.P

∣∣ [u = v]P
∣∣ (νa :R)P∣∣ nil

∣∣ P |Q
∣∣ !P

∣∣ roleR.P
∣∣ yieldR.P

Systems: A,B ::= 0
∣∣ r{|P |}ρ

∣∣ A ‖ B
∣∣ (νar :R)A

A Distributed Calculus for Role-Based Access Control – p. 5/18

The Syntax of our Calculus

Concurrent processes communicating on channels.

Processes: P,Q ::= a(x).P
∣∣ u〈v〉.P

∣∣ [u = v]P
∣∣ (νa :R)P∣∣ nil

∣∣ P |Q
∣∣ !P

∣∣ roleR.P
∣∣ yieldR.P

Systems: A,B ::= 0
∣∣ r{|P |}ρ

∣∣ A ‖ B
∣∣ (νar :R)A

Channels are allocated to users to enable a distibuted implementation

A Distributed Calculus for Role-Based Access Control – p. 5/18

Dynamic Semantics

It is given in the form of a reduction relation

Communication:

s{|ar〈n〉.P |}ρ ‖ r{|a(x).Q|}ρ′

7−→ s{|P |}ρ ‖ r{|Q[n/x] |}ρ′

A Distributed Calculus for Role-Based Access Control – p. 6/18

Dynamic Semantics

It is given in the form of a reduction relation

Communication:

s{|ar〈n〉.P |}ρ ‖ r{|a(x).Q|}ρ′ 7−→ s{|P |}ρ ‖ r{|Q[n/x] |}ρ′

A Distributed Calculus for Role-Based Access Control – p. 6/18

Dynamic Semantics

It is given in the form of a reduction relation

Communication:

s{|ar〈n〉.P |}ρ ‖ r{|a(x).Q|}ρ′ 7−→ s{|P |}ρ ‖ r{|Q[n/x] |}ρ′

Rôle activation:

r{|roleR.P |}ρ

A Distributed Calculus for Role-Based Access Control – p. 6/18

Dynamic Semantics

It is given in the form of a reduction relation

Communication:

s{|ar〈n〉.P |}ρ ‖ r{|a(x).Q|}ρ′ 7−→ s{|P |}ρ ‖ r{|Q[n/x] |}ρ′

Rôle activation:

r{|roleR.P |}ρ 7−→ r{|P |}ρ∪{R}

A Distributed Calculus for Role-Based Access Control – p. 6/18

Dynamic Semantics

It is given in the form of a reduction relation

Communication:

s{|ar〈n〉.P |}ρ ‖ r{|a(x).Q|}ρ′ 7−→ s{|P |}ρ ‖ r{|Q[n/x] |}ρ′

Rôle activation:

r{|roleR.P |}ρ 7−→ r{|P |}ρ∪{R}

Rôle deactivation:

r{|yieldR.P |}ρ

A Distributed Calculus for Role-Based Access Control – p. 6/18

Dynamic Semantics

It is given in the form of a reduction relation

Communication:

s{|ar〈n〉.P |}ρ ‖ r{|a(x).Q|}ρ′ 7−→ s{|P |}ρ ‖ r{|Q[n/x] |}ρ′

Rôle activation:

r{|roleR.P |}ρ 7−→ r{|P |}ρ∪{R}

Rôle deactivation:

r{|yieldR.P |}ρ 7−→ r{|P |}ρ−{R}

A Distributed Calculus for Role-Based Access Control – p. 6/18

The Basic RBAC model so far

USERS ROLES

SESSIONS

PERM. ASSIGNMENTUSER ASSIGNMENT

PERMISSIONS

A Distributed Calculus for Role-Based Access Control – p. 7/18

RBAC schema

Permissions are capabilities that enable process actions. Thus,

A
4
= {R↑, R?, R!}R∈R is the set of permissions.

A Distributed Calculus for Role-Based Access Control – p. 8/18

RBAC schema

Permissions are capabilities that enable process actions. Thus,

A
4
= {R↑, R?, R!}R∈R is the set of permissions.

In our framework, the RBAC schema is a pair of finite relations (U ; P),
such that:

U assigns rôles to users;
P assigns permissions to rôles.

A Distributed Calculus for Role-Based Access Control – p. 8/18

An Example

A banking scenario:
two users, the client r and the bank s
cashiers are modelled as channels c1, . . . , cn of user s
the rôles available are client and cashier.

r{|role client.enqueues〈r〉.dequeue(z).z〈req1〉. · · · .z〈reqk〉.z〈stop〉.yield client|}ρ ‖

s{|(ν free)(!enqueue(x).free(y).dequeuex〈y〉 | Πni=1frees〈csi 〉 |
Πni=1 !ci(x).([x = withdrw_req] <

� � � �� � � �� � �
	 � � 	 �� � � � > |
[x = dep_req] <

� � � �� � � �� � �� 	 �� � � � > | . . . |
[x = stop]frees〈csi 〉))|}ρ′

A Distributed Calculus for Role-Based Access Control – p. 9/18

Static Semantics - Types

The syntax of types:

Message Types T ::= ρ[a1 : R1(T1), . . . , an : Rn(Tn)] | C
Channel Types C ::= R(T)

A Distributed Calculus for Role-Based Access Control – p. 10/18

Static Semantics - Types

The syntax of types:

Message Types T ::= ρ[a1 : R1(T1), . . . , an : Rn(Tn)] | C
Channel Types C ::= R(T)

Γ; ρ `P
r P states that P respects Γ and P when it is run in a session of r

with rôles ρ activated

A Distributed Calculus for Role-Based Access Control – p. 10/18

Static Semantics - Types

The syntax of types:

Message Types T ::= ρ[a1 : R1(T1), . . . , an : Rn(Tn)] | C
Channel Types C ::= R(T)

Γ; ρ `P
r P states that P respects Γ and P when it is run in a session of r

with rôles ρ activated

An example: performing input actions.

(T-Input)
Γ ` a : R(T) R?∈ P (ρ) Γ, x 7→ T ; ρ `P

r P

Γ; ρ `P
r a(x).P

A Distributed Calculus for Role-Based Access Control – p. 10/18

The Example Again

The banking scenario again:
now each available operation is modelled as a different channel
(wdrw = withdraw, opn = open account, cc = credit card request)
the communication among different channels requires different
rôles
P is such that {(rich_client, cc!) , (rich, rich_client↑)} ⊆ P .

A Distributed Calculus for Role-Based Access Control – p. 11/18

The Example Again

The banking scenario again:
now each available operation is modelled as a different channel
(wdrw = withdraw, opn = open account, cc = credit card request)
the communication among different channels requires different
rôles
P is such that {(rich_client, cc!) , (rich, rich_client↑)} ⊆ P .

6` r{|role client.enqueues〈r〉.dequeue(z).z〈creditcard_req〉.ccs〈signature〉.z〈stop〉|}{user}

A Distributed Calculus for Role-Based Access Control – p. 11/18

The Example Again

The banking scenario again:
now each available operation is modelled as a different channel
(wdrw = withdraw, opn = open account, cc = credit card request)
the communication among different channels requires different
rôles
P is such that {(rich_client, cc!) , (rich, rich_client↑)} ⊆ P .

6` r{|role client.enqueues〈r〉.dequeue(z).z〈creditcard_req〉.ccs〈signature〉.z〈stop〉|}{user}

` r{|role rich_client.enqueues〈r〉.dequeue(z).z〈creditcard_req〉.ccs〈signature〉.z〈stop〉|}{rich}

A Distributed Calculus for Role-Based Access Control – p. 11/18

LTS Semantics

The labels of the LTS are derived from those of the π-calculus:

µ ::= τ | arn | arn : R | arn | arn : R

the LTS relates configurations, i.e. pairs (U; P) . A made up of a
RBAC schema (U; P) and a system A.
Example:

(LTS-F-Input)
U(ar) = {R} R? ∈ P (ρ) n 6∈ dom(U)

(U; P) . r{|a(x).P |}ρ arn:S−−−−→ (U] {n : S}; P) . r{|P [n/x] |}ρ

A Distributed Calculus for Role-Based Access Control – p. 12/18

Bisimulation Equivalence

We can define a standard bisimulation over the LTS
(Bisimulation) It is a binary symmetric relation S between
configurations such that, if (D,E) ∈ S and D

µ−→ D′, there exists a

configuration E ′ such that E
µ̂

=⇒ E ′ and (D′, E ′) ∈ S . Bisimilarity, ≈,
is the largest bisimulation.
the bisimulation is adequate with respect to a standardly defined (typed)
barbed congruence.

A Distributed Calculus for Role-Based Access Control – p. 13/18

Some Algebraic Laws
if an action is not enabled, then the process cannot evolve:

r{|α.P |}ρ ≈ 0 if P (ρ) does not enable α

A Distributed Calculus for Role-Based Access Control – p. 14/18

Some Algebraic Laws
if an action is not enabled, then the process cannot evolve:

r{|α.P |}ρ ≈ 0 if P (ρ) does not enable α

differently from some distributed calculi, a terminated session does not
affect the evolution of the system:

r{|nil|}ρ ≈ 0

A Distributed Calculus for Role-Based Access Control – p. 14/18

Some Algebraic Laws
if an action is not enabled, then the process cannot evolve:

r{|α.P |}ρ ≈ 0 if P (ρ) does not enable α

differently from some distributed calculi, a terminated session does not
affect the evolution of the system:

r{|nil|}ρ ≈ 0

the user performing an output action is irrelevant; the only relevant
aspect is the set of permissions activated when performing the action:

r{|bs〈n〉.nil|}ρ ≈ t{|bs〈n〉.nil|}ρ

A Distributed Calculus for Role-Based Access Control – p. 14/18

Finding the “Minimal” Schema

Goal: to look for a ‘minimal’ schema to execute a given system A
while mantaining its behaviour w.r.t. (U; P)

Algorithm:
fix a metrics (number of rôles in the schema, permissions
associated to each rôle, etc.)
define the set
CONFA = {(U′; P ′) . A : (U′; P ′) is a RBAC schema} of
configurations for A
partition CONFA w.r.t. ≈ and consider the equivalence class
containing (U; P) . A

choose the minimal schema according to the chosen metrics

A Distributed Calculus for Role-Based Access Control – p. 15/18

Refining Systems

Goal: to add rôle activations/deactivations within a system in such a
way that the resulting system can be executed under a given schema
(U; P)

we want a rôle to be active only when needed
the refining procedure replaces any input/output prefix α occurring in
session r{| · · · |}ρ with the sequence of prefixes role ~R.α.yield ~R

where ~R is formed by rôles assigned to r, activable when having
activated ρ and enabling the execution of α
the refining procedure adapts the type system

A Distributed Calculus for Role-Based Access Control – p. 16/18

Relocating Activities

Goal: to transfer a process from one user to another without changing
the overall system behaviour, in order to minimize the number of users
in a system
it is possible to infer axiomatically judgments of the form:

(U; P) . r{|P |}ρ ≈ (U; P) . s{|P |}ρ
This judgment says that the process P can be executed by r and s
without affecting the overall system behaviour.

Thus, the session r{|P |}ρ can be removed. If no other session of r is left
in the system, then r is a useless user and is erased.

A Distributed Calculus for Role-Based Access Control – p. 17/18

Conclusion

We have defined a formal framework for reasoning about concurrent
systems running under an RBAC schema;
in the literature, a number of papers only deal with the specification and
verification of RBAC schema;
Future Works:

extend the framework to deal with more complex RBAC models;
prove that bisimilarity is complete for barbed congruence;
study information flow in terms of RBAC?

A Distributed Calculus for Role-Based Access Control – p. 18/18

	RBAC
	RBAC

	Contents
	The Basic RBAC model
	onlySlide *{1}{The starting point: $pi $-calculus}�romSlide *{2}{The Syntax of our Calculus}
	onlySlide *{1}{The starting point: $pi $-calculus}�romSlide *{2}{The Syntax of our Calculus}
	onlySlide *{1}{The starting point: $pi $-calculus}�romSlide *{2}{The Syntax of our Calculus}
	onlySlide *{1}{The starting point: $pi $-calculus}�romSlide *{2}{The Syntax of our Calculus}
	onlySlide *{1}{The starting point: $pi $-calculus}�romSlide *{2}{The Syntax of our Calculus}

	Dynamic Semantics
	Dynamic Semantics
	Dynamic Semantics
	Dynamic Semantics
	Dynamic Semantics
	Dynamic Semantics

	The Basic RBAC model so far
	RBAC schema
	RBAC schema

	An Example
	Static Semantics - Types
	Static Semantics - Types
	Static Semantics - Types

	The Example Again
	The Example Again
	The Example Again

	LTS Semantics
	Bisimulation Equivalence
	Some Algebraic Laws
	Some Algebraic Laws
	Some Algebraic Laws

	Finding the ``Minimal'' Schema
	Refining Systems
	Relocating Activities
	Conclusion

