A Distributed Calculus for Role-Based Access Control

Chiara Braghin

joint work with D. Gorla and V. Sassone

CSFW 2004, Asilomar, Pacific Grove, CA

RBAC

Why: *Role-Based Access Control* is attracting increasing attention because:

- it reduces complexity and cost of security administration;
- permission's management is less error-prone;
- it is flexible (rôle's hierarchy, separation of duty, etc.);
- it is *least privilege*-oriented.

RBAC

Why: *Role-Based Access Control* is attracting increasing attention because:

- it reduces complexity and cost of security administration;
- permission's management is less error-prone;
- it is flexible (rôle's hierarchy, separation of duty, etc.);
- it is *least privilege*-oriented.

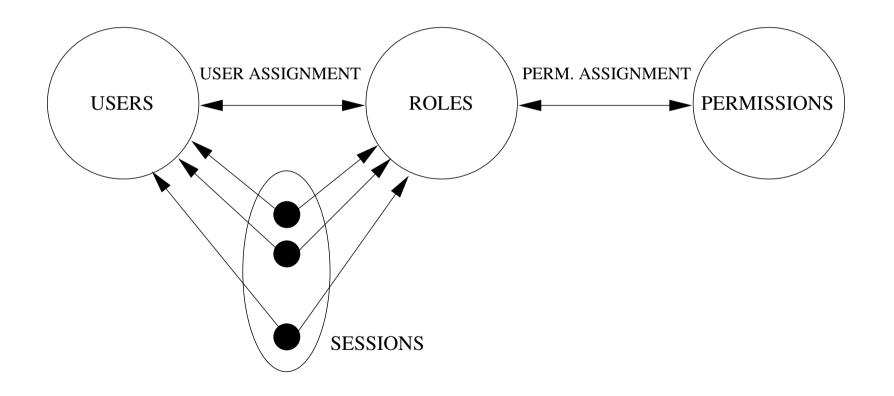
Our work: Formalize the behaviour of concurrent and distributed systems under security policies defined in a RBAC fashion, similar to

- the types developed in $D\pi$ and KLAIM to implement discretionary access control
- the types developed for Boxed Ambients to implement mandatory access control

Contents

- the *RBAC96* model
- a *formal framework* for concurrent systems running under a RBAC policy: an extension of the π -calculus
- a type system ensuring that the specified policy is respected during computations
- a *bisimulation* to reason on systems' behaviours
- some useful applications of the theory:
 - finding the *'minimal' schema* to run a given system
 - *refining a system* to be run under a given schema
 - *minimize the number of users* in a given system.

The Basic RBAC model



The starting point: π -calculus

Concurrent processes communicating on *channels*.

PROCESSES:
$$P, Q ::= a(x).P \mid u\langle v \rangle.P \mid [u = v]P \mid (\nu a : R)P$$

 $\mid \mathbf{nil} \mid P|Q \mid !P$

Concurrent processes communicating on *channels*.

PROCESSES:
$$P, Q ::= a(x).P \mid u\langle v \rangle.P \mid [u = v]P \mid (\nu a : R)P$$

 $\mid \mathbf{nil} \mid P|Q \mid !P$

USER SESSIONS: $r\{|P|\}_{\rho}$

Concurrent processes communicating on *channels*.

PROCESSES:
$$P, Q ::= a(x).P \mid u\langle v \rangle.P \mid [u = v]P \mid (\nu a : R)P$$

 $\mid \mathbf{nil} \mid P|Q \mid !P$

SYSTEMS: $A, B ::= \mathbf{0} \mid r\{|P|\}_{\rho} \mid A \parallel B \mid (\nu a^r : R)A$

Concurrent processes communicating on *channels*.

PROCESSES:
$$P, Q ::= a(x).P \mid u\langle v \rangle.P \mid [u = v]P \mid (\nu a : R)P$$

 $\mid \mathbf{nil} \mid P|Q \mid !P \mid \mathbf{role} R.P \mid \mathbf{yield} R.P$

SYSTEMS: $A, B ::= \mathbf{0} \mid r\{|P|\}_{\rho} \mid A \parallel B \mid (\nu a^r : R)A$

Concurrent processes communicating on *channels*.

PROCESSES:
$$P, Q ::= a(x).P \mid u\langle v \rangle.P \mid [u = v]P \mid (\nu a : R)P$$

 $\mid \mathbf{nil} \mid P|Q \mid !P \mid \mathbf{role} R.P \mid \mathbf{yield} R.P$

Systems:
$$A, B ::= \mathbf{0} \mid r\{|P|\}_{\rho} \mid A \parallel B \mid (\nu a^r : R)A$$

Channels are allocated to users to enable a distibuted implementation

It is given in the form of a *reduction relation*

Communication:

 $s\{|a^r\langle n\rangle.P\}_{\rho} \parallel r\{|a(x).Q\}_{\rho'}$

It is given in the form of a *reduction relation*

Communication:

 $s\{|a^r \langle n \rangle . P\}_{\rho} \| r\{|a(x) . Q\}_{\rho'} \longmapsto s\{|P|\}_{\rho} \| r\{|Q[n/x]]\}_{\rho'}$

It is given in the form of a *reduction relation*

Communication:

 $s\{|a^r \langle n \rangle . P\}_{\rho} \| r\{|a(x) . Q\}_{\rho'} \longmapsto s\{|P\}_{\rho} \| r\{|Q[n/x]]\}_{\rho'}$

Rôle activation: $r\{|\mathbf{role} R.P|\}_{\rho}$

It is given in the form of a *reduction relation*

Communication:

 $s\{|a^r \langle n \rangle . P\}_{\rho} \| r\{|a(x) . Q\}_{\rho'} \longmapsto s\{|P\}_{\rho} \| r\{|Q[n/x]]\}_{\rho'}$

Rôle activation:

 $r\{|\mathbf{role}\,R.P|\}_{\rho} \longmapsto r\{|P|\}_{\rho \cup \{R\}}$

It is given in the form of a *reduction relation*

Communication:

 $s\{|a^r \langle n \rangle . P\}_{\rho} \| r\{|a(x) . Q\}_{\rho'} \longmapsto s\{|P\}_{\rho} \| r\{|Q[n/x]]\}_{\rho'}$

Rôle activation:

$$r\{|\mathbf{role}\,R.P|\}_{\rho} \longmapsto r\{|P|\}_{\rho\cup\{R\}}$$

Rôle deactivation:

 $r\{|\mathbf{yield} R.P|\}_{\rho}$

It is given in the form of a *reduction relation*

Communication:

 $s\{|a^r \langle n \rangle . P\}_{\rho} \| r\{|a(x) . Q\}_{\rho'} \longmapsto s\{|P\}_{\rho} \| r\{|Q[n/x]]\}_{\rho'}$

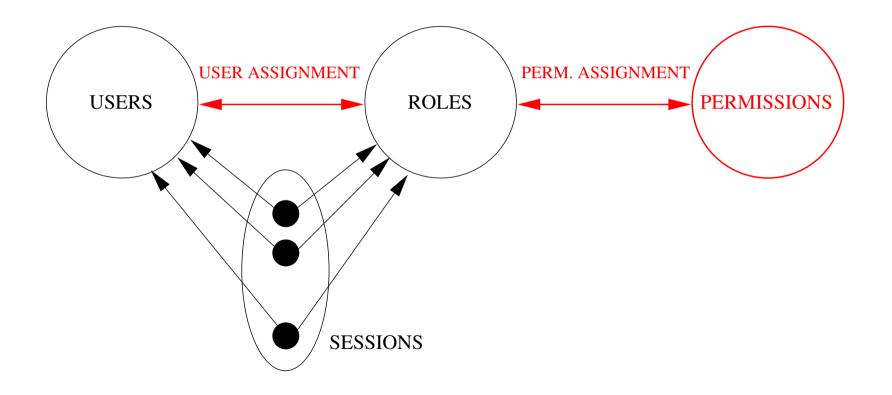
Rôle activation:

 $r\{|\mathbf{role}\,R.P|\}_{\rho} \longmapsto r\{|P|\}_{\rho\cup\{R\}}$

Rôle deactivation:

 $r{||\mathbf{yield} R.P||_{\rho}} \longmapsto r{||P||_{\rho-\{R\}}}$

The Basic RBAC model so far



RBAC schema

Permissions are *capabilities* that enable process actions. Thus, $\mathcal{A} \stackrel{\triangle}{=} \{R^{\uparrow}, R^?, R^!\}_{R \in \mathcal{R}} \text{ is the set of permissions.}$

RBAC schema

- Permissions are *capabilities* that enable process actions. Thus, $\mathcal{A} \stackrel{\triangle}{=} \{R^{\uparrow}, R^?, R^!\}_{R \in \mathcal{R}} \text{ is the set of permissions.}$
- In our framework, the *RBAC schema* is a pair of finite relations (u; P), such that:
 - u assigns rôles to users;
 - \mathcal{P} assigns permissions to rôles.

An Example

A banking scenario:

- two users, the client r and the bank s
- cashiers are modelled as channels c_1, \ldots, c_n of user s
- the rôles available are client and cashier.

$$\begin{split} r\{|\text{role client}.enqueue^{s}\langle r\rangle.dequeue(z).z\langle req_{1}\rangle.\cdots.z\langle req_{k}\rangle.z\langle stop\rangle.\text{yield client}\}_{\rho} & \|\\ s\{|(\nu\,free)(!enqueue(x).free(y).dequeue^{x}\langle y\rangle \ | \ \Pi_{i=1}^{n}free^{s}\langle c_{i}^{s}\rangle \ | \\ \Pi_{i=1}^{n}\,!c_{i}(x).(\ [x=withdrw_req] < \text{handle withdraw request} > \ | \\ [x=dep_req] < \text{handle deposit request} > \ | \ \dots \ | \\ [x=stop]free^{s}\langle c_{i}^{s}\rangle)\,)]\}_{\rho'} \end{split}$$

Static Semantics - Types

The syntax of types:

Message Types $T ::= \rho[a_1 : R_1(T_1), \dots, a_n : R_n(T_n)] \mid C$ Channel Types C ::= R(T)

Static Semantics - Types

The syntax of types:

Message Types $T ::= \rho[a_1 : R_1(T_1), \dots, a_n : R_n(T_n)] \mid C$ Channel Types C ::= R(T)

• $\Gamma; \rho \vdash_r^{\mathcal{P}} P$ states that P respects Γ and \mathcal{P} when it is run in a session of r with rôles ρ activated

Static Semantics - Types

The syntax of types:

Message Types $T ::= \rho[a_1 : R_1(T_1), \dots, a_n : R_n(T_n)] \mid C$ Channel Types C ::= R(T)

- $\Gamma; \rho \vdash_r^{\mathcal{P}} P$ states that P respects Γ and \mathcal{P} when it is run in a session of r with rôles ρ activated
- An example: performing input actions.

 $\begin{array}{ll} (\text{T-INPUT}) \\ \hline \Gamma \vdash a \colon R(T) & R^? \in \mathscr{P}(\rho) & \Gamma, x \mapsto T; \rho \vdash_r^{\mathscr{P}} P \\ \hline \Gamma; \rho \vdash_r^{\mathscr{P}} a(x).P \end{array}$

The Example Again

- The banking scenario again:
 - now each available operation is modelled as a different channel (wdrw = withdraw, opn = open account, cc = credit card request)
 - the communication among different channels requires different rôles
 - \mathcal{P} is such that {(rich_client, cc[!]), (rich, rich_client[↑])} $\subseteq \mathcal{P}$.

The Example Again

- The banking scenario again:
 - now each available operation is modelled as a different channel (wdrw = withdraw, opn = open account, cc = credit card request)
 - the communication among different channels requires different rôles
 - \mathcal{P} is such that {(rich_client, cc[!]), (rich, rich_client[↑])} $\subseteq \mathcal{P}$.

 $\not\vdash r\{|\texttt{role client}.enqueue^{s}\langle r\rangle.dequeue(z).z\langle creditcard_req\rangle.cc^{s}\langle signature\rangle.z\langle stop\rangle\}_{\{\texttt{user}\}}$

The Example Again

- The banking scenario again:
 - now each available operation is modelled as a different channel (wdrw = withdraw, opn = open account, cc = credit card request)
 - the communication among different channels requires different rôles
 - \mathcal{P} is such that {(rich_client, cc[!]), (rich, rich_client[↑])} $\subseteq \mathcal{P}$.

 $\forall r \{ | \mathbf{role client}. enqueue^{s} \langle r \rangle. dequeue(z). z \langle creditcard_req \rangle. cc^{s} \langle signature \rangle. z \langle stop \rangle \}_{\{ user \}}$

 $\vdash r\{|\texttt{rolerich_client}.enqueue^{s}\langle r\rangle.dequeue(z).z\langle creditcard_req\rangle.cc^{s}\langle signature\rangle.z\langle stop\rangle|\}_{\{\texttt{rich}\}}$

LTS Semantics

• The labels of the LTS are derived from those of the π -calculus:

 $\mu \quad ::= \quad \tau \quad | \quad a^r n \quad | \quad a^r n : R \quad | \quad \overline{a}^r n \quad | \quad \overline{a}^r n : R$

- the LTS relates *configurations*, i.e. pairs $(u; P) \triangleright A$ made up of a RBAC schema (u; P) and a system A.
- Example:

$$(\text{LTS-F-INPUT})$$

$$u(a^{r}) = \{R\} \qquad R^{?} \in \mathcal{P}(\rho) \qquad n \notin dom(u)$$

$$(u; \mathcal{P}) \triangleright r\{|a(x).P|\}_{\rho} \xrightarrow{a^{r}n:S} (u \uplus \{n:S\}; \mathcal{P}) \triangleright r\{|P[n/x]|\}_{\rho}$$

Bisimulation Equivalence

- We can define a standard bisimulation over the LTS
- (Bisimulation) It is a binary symmetric relation S between configurations such that, if (D, E) ∈ S and D → D', there exists a configuration E' such that E ⇒ E' and (D', E') ∈ S. Bisimilarity, ≈, is the largest bisimulation.
- the bisimulation is adequate with respect to a standardly defined (typed) barbed congruence.

Some Algebraic Laws

• if an action is not enabled, then the process cannot evolve: $r\{|\alpha.P|\}_{\rho} \approx 0$ if $\mathcal{P}(\rho)$ does not enable α

Some Algebraic Laws

- if an action is not enabled, then the process cannot evolve: $r\{|\alpha.P|\}_{\rho} \approx 0$ if $\mathcal{P}(\rho)$ does not enable α
- In differently from some distributed calculi, a terminated session does not affect the evolution of the system:

 $r\{|\mathbf{nil}|\}_{\rho} \approx \mathbf{0}$

Some Algebraic Laws

• if an action is not enabled, then the process cannot evolve:

 $r\{|\alpha.P|\}_{\rho} \approx \mathbf{0} \quad \text{if } \mathcal{P}(\rho) \text{ does not enable } \alpha$

 differently from some distributed calculi, a terminated session does not affect the evolution of the system:

 $r\{|\mathbf{nil}|\}_{\rho} \approx \mathbf{0}$

the user performing an output action is irrelevant; the only relevant aspect is the set of permissions activated when performing the action:

 $r\{|b^s\langle n\rangle.\mathbf{nil}\}_{\rho} \approx t\{|b^s\langle n\rangle.\mathbf{nil}\}_{\rho}$

Finding the "Minimal" Schema

- Goal: to look for a 'minimal' schema to execute a given system A while mantaining its behaviour w.r.t. (u; P)
- Algorithm:
 - fix a *metrics* (number of rôles in the schema, permissions associated to each rôle, etc.)
 - define the set $CONF_A = \{(u'; P') \triangleright A : (u'; P') \text{ is a RBAC schema}\}$ of configurations for A
 - partition $CONF_A$ w.r.t. \approx and consider the equivalence class containing $(u; P) \triangleright A$
 - choose the minimal schema according to the chosen metrics

Refining Systems

- Goal: to add rôle activations/deactivations within a system in such a way that the resulting system can be executed under a given schema (u; P)
- we want a rôle to be active only when needed
- the refining procedure replaces any input/output prefix α occurring in session $r\{|\cdots|\}_{\rho}$ with the sequence of prefixes role $\vec{R}.\alpha$.yield \vec{R} where \vec{R} is formed by rôles assigned to r, activable when having activated ρ and enabling the execution of α
- the refining procedure adapts the type system

Relocating Activities

- Goal: to transfer a process from one user to another without changing the overall system behaviour, in order to minimize the number of users in a system
- it is possible to infer axiomatically judgments of the form:

$$(u; \mathcal{P}) \triangleright r\{|P|\}_{\rho} \approx (u; \mathcal{P}) \triangleright s\{|P|\}_{\rho}$$

This judgment says that the process P can be executed by r and s without affecting the overall system behaviour.

• Thus, the session $r\{|P|\}_{\rho}$ can be removed. If no other session of r is left in the system, then r is a useless user and is erased.

Conclusion

- We have defined a formal framework for reasoning about concurrent systems running under an RBAC schema;
- in the literature, a number of papers only deal with the specification and verification of RBAC schema;
- Future Works:
 - extend the framework to deal with more complex RBAC models;
 - prove that bisimilarity is complete for barbed congruence;
 - study information flow in terms of RBAC?