Modelling Downgrading in Information Flow Security

A. Bossi, C. Piazza, and S. Rossi

Dipartimento di Informatica Università Ca' Foscari di Venezia

{bossi, piazza, srossi}@dsi.unive.it

CSFW'04, Asilomar, Pacific Grove, CA.

Information Flow Security

- Information Flow Security aims at characterizing the complete absence of any information flow from high level entities to low level ones
- Noninterference [Goguen-Meseguer'82]: information does not flow from high to low if the high behavior has no effect on what can be observed at low level
- Total Noninterference can hardly be achieved in real systems: in order to deal with real applications, it is often necessary to admit mechanisms for downgrading or declassifying information

Downgrading

- The term *downgrading* is used to refer to those situations in which trusted entities are permitted to move information from a higher to a lower security level.
- Example: there is a downgrading when the classification of a previously sensitive file is turned to unclassified by a security officer.

Plan of the Talk

- ▷ the specification language SPA, syntax and semantics
- ▷ the security properties NDC and BNDC and P_BNDC
- ▷ a generalized unwinding condition for total noninterference
- ▷ a generalized unwinding condition admitting downgrading
- ▷ compositionality
- ▷ decidability

The SPA syntax

E	::=	0	empty process
		a.E	prefix
		E + E	nondeterministic choice
		$E \mid E$	parallel composition
		$E\setminus v$	restriction
		E[f]	relabelling
		Z	constant

 \triangleright each constant Z has to be associated to a definition $Z \stackrel{\text{def}}{=} E$

 \triangleright *H* high actions and *L* low actions

The SPA semantics

Semantics given through transition relations

Input	OI	utput
	$a.E \xrightarrow{a} E$	$\bar{a}.E \xrightarrow{\bar{a}} E$
Parallel	$E_1 \xrightarrow{a} E'_1$	$E_1 \xrightarrow{a} E'_1 E_2 \xrightarrow{\bar{a}} E'_2$
	$E_1 E_2 \xrightarrow{a} E_1' E_2$	$E_1 E_2 \xrightarrow{\tau} E_1' E_2'$

▷ Behavioral equivalences, e.g., trace equivalence \approx_T and weak bisimilarity \approx_B

Noninterference for SPA processes

▷ *A general definition* [Focardi-Gorrieri '95]

 \forall high level process $\Pi, \quad E \sim^l (E|\Pi)$

 $\begin{array}{l} \triangleright \ \sim \ \text{- equivalence relation over SPA processes} \\ \\ \triangleright \ \sim^l \ \text{- equivalence relation on low level actions} \\ \\ E \ \sim^l F \ \text{if} \ E \ Comp(L) \ \sim F \ Comp(L) \\ \\ \text{where } Comp(L) \ \text{is the complementary set of low actions } L. \end{array}$

The security properties NDC and BNDC

▷ NDC: Non-Deducibulity on Compositions

$$orall$$
 high level process $\Pi, \quad E pprox_T^l (E|\Pi)$

▷ BNDC: Bisimulation-based Non-Deducibulity on Compositions

$$orall$$
 high level process $\Pi, \quad E pprox_B^l (E|\Pi)$

 $arproptom pprox_T^l$ - trace equivalence on low actions, $pprox_B^l$ - weak bisimilarity $Epprox_*^lF$ if $E\setminus Hpprox_*F\setminus H$

Persistent Information Flow security

- ▷ Properties NDC and BNDC are difficult to use in practice
 - ▷ NDC is PSPACE complete
 - ▷ BNDC: decidability is still an open problem
- Persistent_BNDC [Focardi-Rossi '02] is a sufficient condition for BNDC and it is decidable in polynomial time.
- Generalized Unwinding Condition [Bossi-Focardi-Piazza-Rossi'03]: a general framework for defining persistent information flow security properties

CSFW 2004

P_BNDC: Persistent Bisimulation-based Non-Deducubulity on Compositions

P_BNDC and Unwinding

If E reaches a state E' which can perform a high level action h reaching F then E' may also perform a sequence of invisible actions reaching G such that F and G are indistinguishable for the low level user

P_BNDC: $\forall E'$ reachable from E, if $E' \xrightarrow{h} F$ then $E' \xrightarrow{\hat{\tau}} G$ and $F \approx_B^l G$

Generalized Unwinding Condition

Let \sim^l be a low level observational equivalence

Let $-- \rightarrow$ be a reachability relation

Generalized Unwinding Condition

 $\mathcal{W}(\sim^{l}, \dashrightarrow) = \{ E \mid \forall E' \in Reach(E), \text{ if } E' \xrightarrow{h} F \text{ then} \\ \exists G \text{ such that } E' \dashrightarrow G \text{ and } F \sim^{l} G \}$

Security as Unwinding Condition

▷ The notion of *generalized unwinding* on SPA entails a complete absence of information fbw from H to L since

all the high level actions $(\stackrel{h}{\rightarrow})$ are required to be simulated

(--→) in a way which is transparent to the low level users (\sim^l).

Downgrading - Motivation

- The notion of noninterference is too demanding when dealing with practical applications:
 - no real policy ever calls for total absence of information flow over any channel.
- In many practical applications confidential data can flow from high to low provided that the flow is not direct and it is controlled by the system, i.e., a trusted part of the system can control the downgrading of sensitive information.

CSFW 2004

Downgrading - an Example

- A high level user edits a file and sends it through a private channel to an encrypting protocol
- the encrypting protocol encrypts the file and sends it through a public channel

- ▷ the encryption ensures that the low users cannot read the data.
- the encrypting protocol represents the trusted part of the system which controls the flow from high to low.

Noninterference and Downgrading

Question: How Noninterference can be modified in order to deal with processes admitting downgrading ?

We need to extend the SPA language with a set of downgrading actions which are used to model the behavior of a trusted component

Intransitive noninterference: noninterference under an intransitive security policy

 $H \rightsquigarrow D \quad D \rightsquigarrow L \quad \text{but} \quad H \not \rightsquigarrow L$

- The SPA^D language is obtained from CCS by partitioning the set of visible actions into
 - ▷ H set of high level actions
 - ▷ L set of low level actions
 - D set of of downgrading actions
- It is reasonable to assume that an attacker cannot simulate the trusted part of the system, i.e., it cannot perform the actions in D.
- Moreover, we can assume that the low level users cannot observe the actions performed by the trusted part.

Towards a Generalization of Noninterference

▷ By generalizing the definition of Noninterference we obtain

 \forall high level process Π , $E \sim^{l} (E|\Pi)$

 $\triangleright\,\sim$ - equivalence relation over SPA D processes

 $\triangleright \sim^l$ - equivalence relation on low level actions

 $E \sim^l F$ if $E \setminus HD \sim F \setminus HD$

Is this enough to prevent all uncontrolled flows ?

Example 1 - The encrypting protocol

$$Enc = file_{\mathbf{h}}.enc_{d}.\overline{file_{l}}.\mathbf{0}$$

> If we consider any possible high level process Π we get that

 $Enc \setminus HD \approx_B \mathbf{0} \approx_B (Enc|\Pi) \setminus HD$

which means that Enc satisfies BNDC in SPA^D.

Example 2 - The encrypting protocol

$$Enc = file_{\mathbf{h}}.enc_{d}.\overline{ok_{\mathbf{h}}}.\overline{file_{l}}.\mathbf{0}$$

Again, for any possible high level process Π

 $Enc \setminus HD \approx_B \mathbf{0} \approx_B (Enc|\Pi) \setminus HD$

- i.e., Enc satisfies BNDC in SPA^D.
 - ▷ However, the action $\overline{ok_h}$ causes an uncontrolled information flow from high to low, but this flow is not revealed by BNDC.

Generalized Unwinding in the SPA^D language

Let \sim^l be a low level observational equivalence

Let --→ be a reachability relation

Generalized Unwinding

 $\mathcal{W}^{D}(\sim^{l}, \dashrightarrow) = \{ E \mid \forall E' \in Reach(E), \text{ if } E' \xrightarrow{h} F \text{ then} \\ \exists G \text{ such that } E' \dashrightarrow G \text{ and } F \sim^{l} G \}$

where $F \sim^l G$ is equivalent to $F \setminus HD \sim G \setminus HD$.

Generalized Unwinding and Intransitive Noninterference

 $H \rightsquigarrow D$ The fact that the low level observation equivalence \sim^l does not care about the actions in D implies that the flows from H to D are allowed

 $D \rightsquigarrow L$ The fact that the unwinding condition imposes constraints only on the high level transitions ($\stackrel{h}{\rightarrow}$) implies that the flows from D to L are also allowed

We proved general compositionality properties of our unwinding framework with respect to the SPA^{D} operators. For instance:

- Let E, F be SPA^D processes. If $E, F \in \text{DP}_\text{BNDC}$, then
 - ▷ $a.E \in \mathsf{DP_BNDC}$, for all $a \in L \cup \{\tau\}$;
 - $\triangleright E \setminus v \in \mathsf{DP_BNDC}$, for any set of visible actions v;
 - $\triangleright E[g] \in \mathsf{DP_BNDC}$, for all relabelling function g.

Moreover, if E and F cannot synchronize on downgrading actions then

 $\triangleright E | F \in \mathsf{DP_BNDC}.$

Secure Refinement

- We studied conditions ensuring that the security properties obtained as instances of our unwinding framework are preserved under refinement
- ▷ we considered two forms of refinement:
 - horizontal refinement: i.e., preorders relations, such as trace inclusion, which aim at removing possible sources of nondeterminism
 - vertical refinement: replacement of abstract actions by processes which represent their implementation.

Decidability and Complexity

Let E be a SPA^D process.

$$E \in \mathcal{W}^{D}(\sim^{l}, \dashrightarrow)$$
 iff $\forall E' \in Reach(E), E' \setminus D \in \mathcal{W}(\sim^{l}, \dashrightarrow).$

▷ By exploiting this property it is possible to decide E ∈ DP_BNDC in time O(n³) and space O(n²), where n is the number of states of the LTS associated to E.

Conclusion

- We defined a general unwinding framework to model both transitive and intransitive noninterference properties
- We proved general compositionality properties of our unwinding framework with respect to the SPA^D operators
- We studied conditions ensuring that the security properties obtained as instances of our unwinding framework are preserved under refinement
- ▷ We proposed a decision procedure to check properties in polynomial time

Future Work : apply our generalized unwinding framework to different settings, e.g., process algebras for mobility, imperative and multi-threaded languages.

Downgrading in the literature

- Downgrading for deterministic systems
 - ▷ *conditional noninterference* [Goguen-Messeguer'84, Haigh-Young'87]
 - ▷ *intransitive noninterference* [Rushby'92, Pinsky'95]
- Downgrading for distributed systems and based on traces
 - ▷ *intransitive noninterference* [Roscoe-Goldsmith'99, Mantel'01]
 - ▷ *intransitive probabilistic noninterference* [Backes-Pfitzmann'03]
 - ▷ *admissible flows* [Giambiagi-Dams'00, Mullins'00]
- Downgrading for distributed systems and based on stronger equivalences
 - ▷ *partial noninterference* [Rayn-Schneider'01]
 - ▷ robust declassifi cation [Zdancewic-Myers'01]
 - ▷ *bisimulation-based admissible interference* [Lafrance-Mullins'02]