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Outline of the Talk

Non-Interference: 2 in 1

Secure Flow: A Generalisation

Possibilistic Security (non-deterministic)

Characterization using CTL

Final Considerations
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Non Interference

Non Interference is a semantic property about any

TWO program executions
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� represents public
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Non-Interference

Type Systems

Static analysis to determine if a program is
non-interfering

Nice, but too conservative

E.g. this program is usually rejected as
insecure

Even more conservative with features that are
notoriously difficult to handle
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Our approach

Non Interference as a semantic property of every

SINGLE program execution

Based on the observation that NI can be
reduced to a property about every single
program execution

Use verification logics (e.g. Programming
Logics & Temporal Logics) and borrow all the
know-how.
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Non-Interference Revisited
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NI can be rewritten using ”;”
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Consequences of the Observation
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Because of soundness & completeness of Hoare
Logic, it is equivalent to:
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Example

if ��� �� � � �=0 then ��� � �	
 � :=0 else ��� � �	
 � � � �

Execution of this program is:

� �
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Example: Hoare Logic

Because of (relative) completeness of Hoare Logic, we can prove:

� � � � � �
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A Program that is interfering

if
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� � � � � � then �� � :=true else �� � � � � ��� �

Execution of this program is:

�	 � � � �	 
�� � ��� � � � ��

� � �
	� � � �	 
� � � ��� � � � ���

�

�	 � � � �	 
�� � ��� � � � ��
� � �
	� � � ���� � � ��� � � � ��
�

This program IS interfering, but . . .

is it really insecure? . . . It depends on the security policy.

NI is too strong to characterize some security policies.
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Secure Flow: A General Characterization

if

��� � � ��� then 	� � :=true else 	� � � � �	 
� �

The declassified information should only reveal whether the input code agrees with
the PIN number or not.

iff

iff

In Hoare Logic:
if then :=true else ;

if then :=true else
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Secure Flow: A General Characterization

General Securities Policies, including declassification (delimited release)

Termination Sensitive Security

Possibilistic Security (termination (in)sensitive)

Any language, including languages with pointers, featuring a composition
satisfying a couple of properties, including ”;” and ” ”.

Any logic, including:

1. Hoare Logic and Separation Logic

2. LTL and CTL

Specification Languages and calculus:

1. JML

2. wp-calculus
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Possibilistic Security (TS)
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Can be alternatively defined using ”;” by:
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Characterizing Possibilistic Security with CTL

Extend

� ��� � �
� � � with a function

��� � � � �� � � to sets of
atomic propositions:

mid � ��� � � � � 
� � � iff

� 
 	 � �� 
 �� �

(middle of
self-compose program)

Ind[

�

] � � � � � � �� � � iff � �� �
� � �� 
 � � �

(indistinguishability)

end � � � � � � �� � � iff � is a terminating configuration
(end of program)
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Characterizing Possibilistic Security with CTL
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Then, in our characterization:
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 � �
�

� � � �� � � 
 � � �� �
	 	 
� � 	 
 � �
�

� �
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Final Considerations

Limited to branching temporal Logics (CTL,

�� � �

,

�-calculus)

LTL can also characterize both types of security BUT
limited to determinism (The CTL formula AG(. . . EF) is
not expressible in LTL)

It can be done in wp-calculus+predicate logic with our
technique but limited to determinism
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Final Considerations

Completeness allows to reuse known proof rules and
automate or shorter proofs of NI.
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Final Considerations

Inmediate use of model checkers such as SMV or
SPIN.

An aside contribution is to provide a general method to
check secure flow for languages which no type system
is known (e.g. a language with pointers and arithmetic
for pointers).
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Final Considerations

Related Work

Joshi and Leino 2000: characterisation of
Possibilistic TS NI in the wp-calculus.

Darvas, Hahnle and Sands 2003: characterisation
of Possibilistic NI in Dynamic Logic using self
composition.

Amtoft and Banerjee 2004: information flow
analysis in Logical Form

Giacobazzi and Matroaini 2004: abstract
non-interference
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Separation Logic

{� � � �

_�� �
�

}� � � � �� � {� � � �� � �� �
�

}

� does not occur in� � or in� � then { �� � �� } � � � �	
 � �� � �� �
�

{ � � � �� � �� �
�

}

If �, � � and � � � are different and � does not occur in� , then { � � � �
� �� � � � � � � �� �
� �

} � � �� � �

{ � � � � � � �� � � � � � � �� �
� �

}

A predicate recursively defined in the Logic:

���� �
�

� �
� � � � � � � � � 	

� �� �
�

� � � � �� 	
� � � �� � �

� �� � �� � 	 	 � ���� �
� �� � � 	
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A Characterization in Separation Logic

Let

�
� 	 be:

� � �� � � �� 
 � � �

� � � � �
�� � ��� �� � � � � � 	 � � � � � �
�� � �� �� 
 � � � 
 � � �

� �� 	 � �� �

�
� 	 has two parts: the first part states the

separation of the heap, the second one, the
indistinguishability of the values.
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