
CSFW - June 2004

Secure Information Flow by
Self-Composition

Gilles Barthe, Pedro D’Argenio and Tamara Rezk

EVEREST TEAM

INRIA SOPHIA ANTIPOLIS

http://www-sop.inria.fr/everest/

Secure Information Flow by Self-Composition – p.1/29



CSFW - June 2004

Outline of the Talk

Non-Interference: 2 in 1

Secure Flow: A Generalisation

Possibilistic Security (non-deterministic)

Characterization using CTL

Final Considerations

Secure Information Flow by Self-Composition – p.2/29



CSFW - June 2004

Non Interference

Non Interference is a semantic property about any

TWO program executions

� �������
���� 	 
 � � ����� �
� �� 	

� ��
 ���
��
� 	 
 � � ��
 � �
� �
� 	

� � �� �
� �
 � 	 � � �� �
� �
 � 	

� represents public

� represents confidential

Secure Information Flow by Self-Composition – p.3/29



CSFW - June 2004

Non-Interference

Type Systems

Static analysis to determine if a program is
non-interfering

Nice, but too conservative

E.g. this program is usually rejected as
insecure

Even more conservative with features that are
notoriously difficult to handle

Secure Information Flow by Self-Composition – p.4/29



CSFW - June 2004

Non-Interference

Type Systems

Static analysis to determine if a program is
non-interfering

Nice, but too conservative

E.g. this program is usually rejected as
insecure

Even more conservative with features that are
notoriously difficult to handle

Secure Information Flow by Self-Composition – p.4/29



CSFW - June 2004

Non-Interference

Type Systems

Static analysis to determine if a program is
non-interfering

Nice, but too conservative

E.g. this program is usually rejected as
insecure

Even more conservative with features that are
notoriously difficult to handle

Secure Information Flow by Self-Composition – p.4/29



CSFW - June 2004

Non-Interference

Type Systems

Static analysis to determine if a program is
non-interfering

Nice, but too conservative

E.g. this program is usually rejected as
insecure �� � �� � � � �

Even more conservative with features that are
notoriously difficult to handle

Secure Information Flow by Self-Composition – p.4/29



CSFW - June 2004

Non-Interference

Type Systems

Static analysis to determine if a program is
non-interfering

Nice, but too conservative

E.g. this program is usually rejected as
insecure �� � �� � � � �

Even more conservative with features that are
notoriously difficult to handle

Secure Information Flow by Self-Composition – p.4/29



CSFW - June 2004

Our approach

Non Interference as a semantic property of every

SINGLE program execution

Based on the observation that NI can be
reduced to a property about every single
program execution

Use verification logics (e.g. Programming
Logics & Temporal Logics) and borrow all the
know-how.

Secure Information Flow by Self-Composition – p.5/29



CSFW - June 2004

Non-Interference Revisited

� �����
���� 	 
 � � ���� �
� �� 	

� ��
 ���
��
� 	 
 � � ��
 � �
� �
� 	

� � �� �
� �
 � 	 � � �� �
� �
 � 	

NI can be rewritten using ”;”

�

� �
� 
 � �� � � � �� � �� 

�

��� � �� 
 	 
 � � ����� � �� 

�

��� ���� 
 	

� ���� �
� �
 � 	 � ���� �
��
 � 	

� ��� � 	 � �
 renames all variables with new names

Secure Information Flow by Self-Composition – p.6/29



CSFW - June 2004

Consequences of the Observation

�

� �
� 
 � �� � � � �� � �� 

�

���� � �� 
 	 
 � � � �� � �� 

�

���� � �� 
 	

Because of soundness & completeness of Hoare
Logic, it is equivalent to:

� � � � � �
 �

�

� �
� 
 � �� � � � � � � �
 �

Secure Information Flow by Self-Composition – p.7/29



CSFW - June 2004

Example

if ��� �� � � �=0 then ��� � �	
 � :=0 else ��� � �	
 � � � �

Execution of this program is:

� �
� � ��� � � ��� ���� �� � � � � � � � �� � ��� � � �� ���� � � � � � � �

� � � � ��� � � ��� �!�� �� � � � � � � � �� � ��� � � �� �!�� � � � � � � �

Secure Information Flow by Self-Composition – p.8/29



CSFW - June 2004

Example

if ��� �� � � �=0 then ��� � �	
 � :=0 else ��� � �	
 � � � �

;
if �


� �� � � �=0 then �

� � �	
 � :=0 else �

� � �	
 �

� � �

Execution of this program is:

� �
� � ��� � � �� � �� � �� � � � ��� �!�� �� � � � � � � ��� �� � � � � � �

� �� � ��� � � �� � �� � �� � � � ��� ��� �� � � � � � � ��� �� � � � � � �

� �
� � �� � � � �� � �� � ��� � � �� �!�� � � � � � � � � ��� �� � � � � �

Secure Information Flow by Self-Composition – p.9/29



CSFW - June 2004

Example: Hoare Logic

Because of (relative) completeness of Hoare Logic, we can prove:

� � � � � �
 �

if �� �� � � �=0 then �� � �	
 � :=0 else �� � �	
 � � � �

;
if �


� �� � � �=0 then �

� � �	
 � :=0 else �

� � �	
 �

� � �

� � � � � �
 �

Secure Information Flow by Self-Composition – p.10/29



CSFW - June 2004

A Program that is interfering

if

� � � � � � then �� � :=true else �� � � � � ��� �

Execution of this program is:

�
	� � � �	 
��� � ��� � � � �� � ��� � �� � �� � � � �
	� � � �	 
��� � ��� � � � �� � ��� � �� � �� � �

�
	� � � �	 
� � � ��� � � � ��� � ��� � � � � � � �
	� � � ���� � � ��� � � � �� � ��� � � � � �

Secure Information Flow by Self-Composition – p.11/29



CSFW - June 2004

A Program that is interfering

if

� � � � � � then �� � :=true else �� � � � � ��� �

Execution of this program is:

�	 � � � �	 
�� � ��� � � � ��

� � �
	� � � �	 
� � � ��� � � � ���

�

�	 � � � �	 
�� � ��� � � � ��
� � �
	� � � ���� � � ��� � � � ��
�

This program IS interfering, but . . .

is it really insecure? . . . It depends on the security policy.

NI is too strong to characterize some security policies.

Secure Information Flow by Self-Composition – p.12/29



CSFW - June 2004

A Program that is interfering

if

� � � � � � then �� � :=true else �� � � � � ��� �

Execution of this program is:

�	 � � � �	 
�� � ��� � � � ��

� � �
	� � � �	 
� � � ��� � � � ���

�

�	 � � � �	 
�� � ��� � � � ��
� � �
	� � � ���� � � ��� � � � ��
�

This program IS interfering, but . . .

is it really insecure? . . . It depends on the security policy.

NI is too strong to characterize some security policies.

Secure Information Flow by Self-Composition – p.12/29



CSFW - June 2004

A Program that is interfering

if

� � � � � � then �� � :=true else �� � � � � ��� �

Execution of this program is:

�	 � � � �	 
�� � ��� � � � ��

� � �
	� � � �	 
� � � ��� � � � ���

�

�	 � � � �	 
�� � ��� � � � ��
� � �
	� � � ���� � � ��� � � � ��
�

This program IS interfering, but . . .

is it really insecure? . . .

It depends on the security policy.

NI is too strong to characterize some security policies.

Secure Information Flow by Self-Composition – p.12/29



CSFW - June 2004

A Program that is interfering

if

� � � � � � then �� � :=true else �� � � � � ��� �

Execution of this program is:

�	 � � � �	 
�� � ��� � � � ��

� � �
	� � � �	 
� � � ��� � � � ���

�

�	 � � � �	 
�� � ��� � � � ��
� � �
	� � � ���� � � ��� � � � ��
�

This program IS interfering, but . . .

is it really insecure? . . . It depends on the security policy.

NI is too strong to characterize some security policies.

Secure Information Flow by Self-Composition – p.12/29



CSFW - June 2004

A Program that is interfering

if

� � � � � � then �� � :=true else �� � � � � ��� �

Execution of this program is:

�	 � � � �	 
�� � ��� � � � ��

� � �
	� � � �	 
� � � ��� � � � ���

�

�	 � � � �	 
�� � ��� � � � ��
� � �
	� � � ���� � � ��� � � � ��
�

This program IS interfering, but . . .

is it really insecure? . . . It depends on the security policy.

NI is too strong to characterize some security policies.

Secure Information Flow by Self-Composition – p.12/29



CSFW - June 2004

Secure Flow: A General Characterization

if

��� � � ��� then 	� � :=true else 	� � � � �	 
� �

The declassified information should only reveal whether the input code agrees with
the PIN number or not.

iff

iff

In Hoare Logic:
if then :=true else ;

if then :=true else

Secure Information Flow by Self-Composition – p.13/29



CSFW - June 2004

Secure Flow: A General Characterization

if

��� � � ��� then 	� � :=true else 	� � � � �	 
� �

The declassified information should only reveal whether the input code agrees with
the PIN number or not.

� �� � � � � ��� iff � � ��� � � � � � ��� � � � � � ��� � � � � � � ��� �

iff

In Hoare Logic:
if then :=true else ;

if then :=true else

Secure Information Flow by Self-Composition – p.13/29



CSFW - June 2004

Secure Flow: A General Characterization

if

��� � � ��� then 	� � :=true else 	� � � � �	 
� �

The declassified information should only reveal whether the input code agrees with
the PIN number or not.

� �� � � � � ��� iff � � ��� � � � � � ��� � � � � � ��� � � � � � � ��� �

� �� � � � � ��� iff � �
	� � � � � �	 � � � �

In Hoare Logic:
if then :=true else ;

if then :=true else

Secure Information Flow by Self-Composition – p.13/29



CSFW - June 2004

Secure Flow: A General Characterization

if

��� � � ��� then 	� � :=true else 	� � � � �	 
� �

The declassified information should only reveal whether the input code agrees with
the PIN number or not.

� �� � � � � ��� iff � � ��� � � � � � ��� � � � � � ��� � � � � � � ��� �

� �� � � � � ��� iff � �
	� � � � � �	 � � � �

In Hoare Logic:

� � ��� � � ��� � � � ��� � � � ��� � ��

if

��� � � ��� then 	 � � :=true else 	 � � � � �	 
� � ;

if

��� � � � ��� �

then 	� � �

:=true else 	 � � �
� � �	 
� �

� 	� � � 	� � ��

Secure Information Flow by Self-Composition – p.13/29



CSFW - June 2004

Secure Flow: A General Characterization

General Securities Policies, including declassification (delimited release)

Termination Sensitive Security

Possibilistic Security (termination (in)sensitive)

Any language, including languages with pointers, featuring a composition
satisfying a couple of properties, including ”;” and ” ”.

Any logic, including:

1. Hoare Logic and Separation Logic

2. LTL and CTL

Specification Languages and calculus:

1. JML

2. wp-calculus

Secure Information Flow by Self-Composition – p.14/29



CSFW - June 2004

Secure Flow: A General Characterization

General Securities Policies, including declassification (delimited release)

Termination Sensitive Security

Possibilistic Security (termination (in)sensitive)

Any language, including languages with pointers, featuring a composition
satisfying a couple of properties, including ”;” and ” ”.

Any logic, including:

0. Hoare Logic and Separation Logic

0. LTL and CTL

Specification Languages and calculus:

0. JML

0. wp-calculus

Secure Information Flow by Self-Composition – p.14/29



CSFW - June 2004

Secure Flow: A General Characterization

General Securities Policies, including declassification (delimited release)

Termination Sensitive Security

Possibilistic Security (termination (in)sensitive)

Any language, including languages with pointers, featuring a composition
satisfying a couple of properties, including ”;” and ” ”.

Any logic, including:

0. Hoare Logic and Separation Logic

0. LTL and CTL

Specification Languages and calculus:

0. JML

0. wp-calculus

Secure Information Flow by Self-Composition – p.14/29



CSFW - June 2004

Secure Flow: A General Characterization

General Securities Policies, including declassification (delimited release)

Termination Sensitive Security

Possibilistic Security (termination (in)sensitive)

Any language, including languages with pointers, featuring a composition
satisfying a couple of properties, including ”;” and ”

� �

”.

Any logic, including:

0. Hoare Logic and Separation Logic

0. LTL and CTL

Specification Languages and calculus:

0. JML

0. wp-calculus

Secure Information Flow by Self-Composition – p.14/29



CSFW - June 2004

Secure Flow: A General Characterization

General Securities Policies, including declassification (delimited release)

Termination Sensitive Security

Possibilistic Security (termination (in)sensitive)

Any language, including languages with pointers, featuring a composition
satisfying a couple of properties, including ”;” and ”

� �

”.

Any logic, including:

0. Hoare Logic and Separation Logic

0. LTL and CTL

Specification Languages and calculus:

0. JML

0. wp-calculus

Secure Information Flow by Self-Composition – p.14/29



CSFW - June 2004

Secure Flow: A General Characterization

General Securities Policies, including declassification (delimited release)

Termination Sensitive Security

Possibilistic Security (termination (in)sensitive)

Any language, including languages with pointers, featuring a composition
satisfying a couple of properties, including ”;” and ”

� �

”.

Any logic, including:

0. Hoare Logic and Separation Logic

0. LTL and CTL

Specification Languages and calculus:

0. JML

0. wp-calculus

Secure Information Flow by Self-Composition – p.14/29



CSFW - June 2004

Possibilistic Security (TS)

� ���� �
� � � ���� �
�

�	 
 �� ���
�� 


� � �
�

�
�

� �� 

� � � ���� 

�

� � � ���� 

�

� �	 
 ��� ��
�� 


� � �
�

Can be alternatively defined using ”;” by:

Secure Information Flow by Self-Composition – p.15/29



CSFW - June 2004

Possibilistic Security (TS)

� ���� �
� � � ���� �
�

�	 
 �� ���
�� 


� � �
�

�
�

� �� 

� � � ���� 

�

� � � ���� 

�

� �	 
 ��� ��
�� 


� � �
�

Can be alternatively defined using ”;” by:

��
�

� �� � 
 �� � � ���� ��
�� 


�
� � � � �� � 
 �� � � ���� ��
�� 


�
� �	 
 �� ��
�� 


� � �
� �

�� 

� � � �� � 
 �� � � ���� ��

�� 

�

� � � ���� ��
�� 


�
� �	 
 ��� ��
�� 


� � �
�

Secure Information Flow by Self-Composition – p.15/29



CSFW - June 2004

Characterizing Possibilistic Security with CTL

Extend

� ��� � �
� � � with a function

��� � � � �� � � to sets of
atomic propositions:

mid � ��� � � � � 
� � � iff

� 
 	 � �� 
 �� �

(middle of
self-compose program)

Ind[

�

] � � � � � � �� � � iff � �� �
� � �� 
 � � �

(indistinguishability)

end � � � � � � �� � � iff � is a terminating configuration
(end of program)

Secure Information Flow by Self-Composition – p.16/29



CSFW - June 2004

Characterizing Possibilistic Security with CTL

��
�

� �� � 
 �� � � ���� ���
�� 


�
� � � � �� � 
 �� � � ���� ��
�� 


�
� �	 
 �� ��
�� 


� � �
� �

�� 

� � � �� � 
 �� � � ���� ��

�� 

�

� � � ���� ��
�� 


�
� �	 
 ��� ��
�� 


� � �
�

Then, in our characterization:

� 	 
 � �
�

� � � �� � � 
 � � �� �
	 	 
� � 	 
 � �
�

� �

Secure Information Flow by Self-Composition – p.17/29



CSFW - June 2004

Final Considerations

Limited to branching temporal Logics (CTL,

�� � �

,

�-calculus)

LTL can also characterize both types of security BUT
limited to determinism (The CTL formula AG(. . . EF) is
not expressible in LTL)

It can be done in wp-calculus+predicate logic with our
technique but limited to determinism

Secure Information Flow by Self-Composition – p.18/29



CSFW - June 2004

Final Considerations

Completeness allows to reuse known proof rules and
automate or shorter proofs of NI.

Secure Information Flow by Self-Composition – p.19/29



CSFW - June 2004

Final Considerations

Completeness allows to reuse known proof rules and
automate or shorter proofs of NI.

��� � �� � �� � � � ��� 	 
 � � � �
 �

�� � 	 � � 
 � �
�

� � �� � 
� � � 
 �� �� � � � � �� � 	 � � 
 �

�� � 	 � � 
 � �
�

� �� � 
� � � 
 �� �� � � � �� � 	 � � 
 �

�� � 	 � � 
 � �
�

� �� � 
� ��� 
 �� �� ��� � �� � 	 � � 
 �

�� � 	 � � 
 � � �
�

� �
�

� ��
�

� � �� � 
� ��� 
 �� �� � � � �� � 	 � � 
 �

Secure Information Flow by Self-Composition – p.19/29



CSFW - June 2004

Final Considerations

Inmediate use of model checkers such as SMV or
SPIN.

An aside contribution is to provide a general method to
check secure flow for languages which no type system
is known (e.g. a language with pointers and arithmetic
for pointers).

Secure Information Flow by Self-Composition – p.20/29



CSFW - June 2004

Final Considerations

Related Work

Joshi and Leino 2000: characterisation of
Possibilistic TS NI in the wp-calculus.

Darvas, Hahnle and Sands 2003: characterisation
of Possibilistic NI in Dynamic Logic using self
composition.

Amtoft and Banerjee 2004: information flow
analysis in Logical Form

Giacobazzi and Matroaini 2004: abstract
non-interference

Secure Information Flow by Self-Composition – p.21/29



CSFW - June 2004

Separation Logic

{� � � �

_�� �
�

}� � � � �� � {� � � �� � �� �
�

}

� does not occur in� � or in� � then { �� � �� } � � � �	
 � �� � �� �
�

{ � � � �� � �� �
�

}

If �, � � and � � � are different and � does not occur in� , then { � � � �
� �� � � � � � � �� �
� �

} � � �� � �

{ � � � � � � �� � � � � � � �� �
� �

}

A predicate recursively defined in the Logic:

���� �
�

� �
� � � � � � � � � 	

� �� �
�

� � � � �� 	
� � � �� � �

� �� � �� � 	 	 � ���� �
� �� � � 	

Secure Information Flow by Self-Composition – p.22/29



CSFW - June 2004

A Characterization in Separation Logic

Let

�
� 	 be:

� � �� � � �� 
 � � �

� � � � �
�� � ��� �� � � � � � 	 � � � � � �
�� � �� �� 
 � � � 
 � � �

� �� 	 � �� �

�
� 	 has two parts: the first part states the

separation of the heap, the second one, the
indistinguishability of the values.

Secure Information Flow by Self-Composition – p.23/29


	Outline of the Talk
	Non Interference
	Non-Interference
	Our approach
	Non-Interference Revisited
	Consequences of the Observation 
	Example
	Example
	Example: Hoare Logic
	A Program that is interfering
	A Program that is interfering
	small Secure Flow: A General Characterization
	small Secure Flow: A General Characterization
	Possibilistic Security (TS)
	small Characterizing Possibilistic Security with CTL
	small Characterizing Possibilistic Security with CTL
	Final Considerations
	Final Considerations
	Final Considerations
	Final Considerations
	Separation Logic
	small A Characterization in Separation Logic

