Secure I nformation Flow by
Self-Composition

Gilles Barthe, Pedro D’Argenio and Tamara Rezk

EVEREST TEAM
INRIA SOPHIA ANTIPOLIS
http://wwsop.inria.fr/everest/

CSFW - June 2004

Secure Information Flow by Self-Composition — p.1/2'

Outlineof the Talk

Non-Interference: 2in 1

Secure Flow: A Generalisation
Possiblilistic Security (non-deterministic)
Characterization using CTL

© o o o o

Final Considerations

Secure Information Flow by Self-Composition — p.2/2'

Non | nterference

Non Interference is a semantic property about any

TWO program executions

P(z1,91) ~* (23,93)
Py, y1) ~* (23,95)

x represents public

y represents confidential

CSFW - June 2004

Secure Information Flow by Self-Composition — p.3/2'

Non-Interference

Type Systems

Secure Information Flow by Self-Composition — p.4/2'

Non-Interference

Type Systems

o Static analysis to determine If a program Is
non-interfering

Secure Information Flow by Self-Composition — p.4/2'

Non-l nterference

Type Systems

o Static analysis to determine If a program Is
non-interfering

» Nice, but too conservative

Secure Information Flow by Self-Composition — p.4/2'

Non-l nterference

Type Systems

o Static analysis to determine If a program Is
non-interfering

» Nice, but too conservative

» E.g. this program is usually rejected as
Insecure x := y;x := 0

Secure Information Flow by Self-Composition — p.4/2'

Non-l nterference

Type Systems

o Static analysis to determine If a program Is
non-interfering

» Nice, but too conservative

» E.g. this program is usually rejected as
Insecure x := y;x := 0

Even more conservative with features that are
notoriously difficult to handle

Secure Information Flow by Self-Composition — p.4/2'

Our approach

Non Interference as a semantic property of every

SINGLE program execution

o Based on the observation that NI can be
reduced to a property about every single
program execution

» Use verification logics (e.g. Programming
Logics & Temporal Logics) and borrow all the
know-how.

CSFW - June 2004

Secure Information Flow by Self-Composition — p.5/2'

Non-Interference Revisited

\
* (:Ij_)z)y_%) > (— —

>
Y1)~ (13, 95)

/

NI can be rewritten using

P; P2/ Z)(a1 @ &7, ?ﬁ@yl) (23 @ 22, D g
= (41 = 7h) = (& = b)

[z’ /Z] renames all variables with new names

Secure Information Flow by Self-Composition — p.6/2'

Conseguences of the Observation

PPl A(di @i, ®) ~* (55, 5% ®p)

Because of soundness & completeness of Hoare
Logic, It Is equivalent to:

Example

If Yseerer=0 then zp,p:.:=0 else . == 0

Execution of this program is:

(xp’llbl’ic = 2, Ysecret = 1) ~ (xpublic = 0, Ysecret = 1)

(mpublic = 2,Ysecret = 0) ~ (mpublic = 0, Ysecret = 0)

CSFW - June 2004

Secure Information Flow by Self-Composition — p.8/2'

Example

If ysecret:O then xpublic:zo else Lpublic = 0;

- / — / N / .
If ysecret_o then xpublic'_o else :Epublic .

]
-

Execution of this program is:

/ _ _ / _
public — 2’ Ysecret = 1’ ysecret - 0) ~

(mpublic =2,z

_ / _ _ / —_
(mpublic — 07 xp'u,bl'ic — 2) Ysecret = 17 Ysecret — 0) ~

— / _ - / _
(xpublic — Oa xpublic — 07 Ysecret = 1’ Ysecret — 0)

CSFW - June 2004

Secure Information Flow by Self-Composition — p.9/2'

Example: Hoare Logic

Because of (relative) completeness of Hoare Logic, we can prove:
7 =2’}
If Ysecret=0 then xpublz'c::o else Lpublic +— 0;

" / — / .« — / R
f Yseeret=0 then z . =0 else z ;.. :=0

{7 =21}

CSFW - June 2004

Secure Information Flow by Self-Composition — p.10/2!

A Program that isinterfering

If in = pin then acc:=true else acc := false

Execution of this program is:

(acc = false,in = 222, pin = 234234) ~ (acc = false,in = 222, pin = 234234)

(acc = false,in = 222, pin = 222) ~ (acc = true,in = 222, pin = 222)

CSFW - June 2004

Secure Information Flow by Self-Composition — p.11/2

A Program that isinterfering

If in = pin then acc:=true else acc := false

Execution of this program is:

(acc = false,in = 222,) ~ (acc = false,in = 222,)

(acc = false,in = 222,) ~ (acc = true,in = 222,)

CSFW - June 2004

Secure Information Flow by Self-Composition — p.12/2

A Program that isinterfering

If in = pin then acc:=true else acc := false

Execution of this program is:

(acc = false,in = 222,) ~ (acc = false,in = 222,)

(acc = false,in = 222,) ~ (acc = true,in = 222,)

® This program IS interfering, but . ..

CSFW - June 2004

Secure Information Flow by Self-Composition — p.12/2

A Program that isinterfering

If in = pin then acc:=true else acc := false

Execution of this program is:

(acc = false,in = 222,) ~ (acc = false,in = 222,)

(acc = false,in = 222,) ~ (acc = true,in = 222,)

® This program IS interfering, but . ..

® isitreally insecure? ...

CSFW - June 2004

Secure Information Flow by Self-Composition — p.12/2

A Program that isinterfering

If in = pin then acc:=true else acc := false

Execution of this program is:

(acc = false,in = 222,) ~ (acc = false,in = 222,)

(acc = false,in = 222,) ~ (acc = true,in = 222,)

® This program IS interfering, but . ..

® isitreallyinsecure? ... It depends on the security policy.

CSFW - June 2004

Secure Information Flow by Self-Composition — p.12/2

A Program that isinterfering

If in = pin then acc:=true else acc := false

Execution of this program is:

(acc = false,in = 222,) ~ (acc = false,in = 222,)

(acc = false,in = 222,) ~ (acc = true,in = 222,)

® This program IS interfering, but . ..
® isitreallyinsecure? ... It depends on the security policy.

® NI is too strong to characterize some security policies.

CSFW - June 2004

Secure Information Flow by Self-Composition — p.12/2

Secure Flow: A General Characterization

if in = pin then acc:=true else acc := false

® The declassified information should only reveal whether the input code agrees with
the PIN number or not.

CSFW - June 2004

Secure Information Flow by Self-Composition — p.13/2!

Secure Flow: A General Characterization

if in = pin then acc:=true else acc := false

® The declassified information should only reveal whether the input code agrees with
the PIN number or not.

O (u,p) € Iiff p(in) = p(pin) < p' (in) = p' (pin)

CSFW - June 2004

Secure Information Flow by Self-Composition — p.13/2!

Secure Flow: A General Characterization

if in = pin then acc:=true else acc := false

® The declassified information should only reveal whether the input code agrees with

the PIN number or not.
O (u,p) € Iiff p(in) = p(pin) < p' (in) = p' (pin)
® (u,p') € I iff place) = p(acc’)

CSFW - June 2004

Secure Information Flow by Self-Composition — p.13/2!

Secure Flow: A General Characterization

if in = pin then acc:=true else acc := false

9

9
9

The declassified information should only reveal whether the input code agrees with

the PIN number or not.

(1, 1) € In iff p(in) = p(pin) < p'(in) = p'(pin)

(1, p') € Iz iff p(acc) = p(acc’)

{(in = pin) < (in' = pin’)}

_ if in = pin then acc:=true else acc := false;

In Hoare Logic:
if in’ = pin’ then acc’:=true else acc’ := false

{acc = acc’}

CSFW - June 2004

Secure Information Flow by Self-Composition — p.13/2!

Secure Flow: A General Characterization

® General Securities Policies, including declassification (delimited release)

CSFW - June 2004

Secure Information Flow by Self-Composition — p.14/2

Secure Flow: A General Characterization

® General Securities Policies, including declassification (delimited release)

® Termination Sensitive Security

CSFW - June 2004

Secure Information Flow by Self-Composition — p.14/2

Secure Flow: A General Characterization

® General Securities Policies, including declassification (delimited release)
® Termination Sensitive Security

® Possibilistic Security (termination (in)sensitive)

CSFW - June 2004

Secure Information Flow by Self-Composition — p.14/2

Secure Flow: A General Characterization

General Securities Policies, including declassification (delimited release)
Termination Sensitive Security

Possibilistic Security (termination (in)sensitive)

o0 b0

Any language, including languages with pointers, featuring a composition
satisfying a couple of properties, including ;" and ”||”.

CSFW - June 2004

Secure Information Flow by Self-Composition — p.14/2

Secure Flow: A General Characterization

General Securities Policies, including declassification (delimited release)
Termination Sensitive Security

Possibilistic Security (termination (in)sensitive)

o0 b0

Any language, including languages with pointers, featuring a composition

satisfying a couple of properties, including ”;” and”’

°

Any logic, including:
0. Hoare Logic and Separation Logic
0. LTLand CTL

CSFW - June 2004

Secure Information Flow by Self-Composition — p.14/2

Secure Flow: A General Characterization

General Securities Policies, including declassification (delimited release)
Termination Sensitive Security

Possibilistic Security (termination (in)sensitive)

o0 b0

Any language, including languages with pointers, featuring a composition
satisfying a couple of properties, including ;" and ”||”.

°

Any logic, including:
0. Hoare Logic and Separation Logic
0. LTLand CTL

® Specification Languages and calculus:
0. JML
0. wp-calculus

CSFW - June 2004

Secure Information Flow by Self-Composition — p.14/2

Possibilistic Security (TS)

—

P(Z_i) ad (Z_é) /. 7 * (1 — 7
= dzg : P(2]) ~" (25) and 23,25 € I,
and z1,2] € I

CSFW - June 2004

Secure Information Flow by Self-Composition — p.15/2

Possibilistic Security (TS)

P(z7) ~* (25 7 N Y]
(21) _)(2) = dzo : P(27) ~* (25) and 23,25 € I
and 71,2, € I

Can be alternatively defined using ”;” by:

P, P77, 72) ~* PlZ)Z(%, 7)) and 7,7 € I; =
32 P[;f/g](z;,zl) *(5,720)and 2,2, € I

CSFW - June 2004

Secure Information Flow by Self-Composition — p.15/2

Characterizing Possibilistic Security with CTL

Extend (Conf,~») with a function Prop(P, c) to sets of

atomic propositions:

® mid € Prop(P’,c) iff P' = P|2'/z] (middle of
self-compose program)

® Ind[I] € Prop(P,c) iff c(z),c(z") € I (indistinguishability)

® end € Prop(P,c) iff cis a terminating configuration
(end of program)

CSFW - June 2004

Secure Information Flow by Self-Composition — p.16/2

Characterizing Possibilistic Security with CTL

Py P[Z/Z(5,72) ~* P|#/Z(%, 7)) and #4,7 € I =

—

325 [z’/,?](zg,zl) ~* (23, zh)and z‘é,zz c I,
Then, In our characterization:

CSFW - June 2004

Secure Information Flow by Self-Composition — p.17/2

Final Considerations

Limited to branching temporal Logics (CTL, CTL*,
p-calculus)

® LTL can also characterize both types of security BUT
limited to determinism (The CTL formula AG(...EF) is

not expressible in LTL)

® [t can be done in wp-calculus+predicate logic with our
technigue but limited to determinism

CSFW - June 2004

Secure Information Flow by Self-Composition — p.18/2

Final Considerations

#® Completeness allows to reuse known proof rules and
automate or shorter proofs of NI.

CSFW - June 2004

Secure Information Flow by Self-Composition — p.19/2

Final Considerations

#® Completeness allows to reuse known proof rules and
automate or shorter proofs of NI.

y : high, £ :lowF P : 7 cmd

T =12} P (P77 /7,y]) 17 = 7'}

{¥=2"} P, Pld,y/Z,y] {x =4"}

{(7=0"} Q; Q7. ¢ /2,9 {# = 7'}
(=2} (P;Q); (P Q)@ ¢ /%,y { ="}

CSFW - June 2004

Secure Information Flow by Self-Composition — p.19/2

Final Considerations

® [nmediate use of model checkers such as SMV or
SPIN.

#® An aside contribution is to provide a general method to
check secure flow for languages which no type system
IS known (e.g. a language with pointers and arithmetic
for pointers).

CSFW - June 2004

Secure Information Flow by Self-Composition — p.20/2!

Final Considerations

® Related Work

» Joshi and Leino 2000: characterisation of
Possibilistic TS NI in the wp-calculus.

s Darvas, Hahnle and Sands 2003: characterisation
of Possibilistic NI in Dynamic Logic using self
composition.

s Amtoft and Banerjee 2004: information flow
analysis in Logical Form

o Gilacobazzi and Matroaini 2004: abstract
non-interference

CSFW - June 2004

Secure Information Flow by Self-Composition — p.21/2

Separation Logic

® {e— (Lex)lei:=e1{e— (e1,e2)}
® 1 does not occurin ey orin e; then {empty } = := cons(eq, e2) {x — (e1,e2) }

® |fx, 2’ and z'’ are different and = does not occur in e, then {z=z’ A (e — (2, e2))
Yo :=el{z=z" A (e — (z",e2))}

A predicate recursively defined in the Logic:

list.| |.p = (p=ml)
list.(z :: xs).p (Fr: (p+— (z,7)) * list.zs.r)

CSFW - June 2004

Secure Information Flow by Self-Composition — p.22/2

A Characterization in Separation Logic

Let I,; be:

das, 75 ((/\195” list.zs;.2;) * (/\1§z§n list.zs).x}))
5 = I§)

I,; has two parts: the first part states the

separation of the heap, the second one, the
iIndistinguishability of the values.

CSFW - June 2004

Secure Information Flow by Self-Composition — p.23/2!

	Outline of the Talk
	Non Interference
	Non-Interference
	Our approach
	Non-Interference Revisited
	Consequences of the Observation
	Example
	Example
	Example: Hoare Logic
	A Program that is interfering
	A Program that is interfering
	small Secure Flow: A General Characterization
	small Secure Flow: A General Characterization
	Possibilistic Security (TS)
	small Characterizing Possibilistic Security with CTL
	small Characterizing Possibilistic Security with CTL
	Final Considerations
	Final Considerations
	Final Considerations
	Final Considerations
	Separation Logic
	small A Characterization in Separation Logic

