
Using Active Learning
in Intrusion Detection

Magnus Almgren, Erland Jonsson
Chalmers University of Technology

Objective

Today’s state of the art of intrusion detection:
An expert must manually write a rule to detect new
attacks.
This process is

expensive, as the expert must be present,
slow, as a human is involved, and finally
inflexible, meaning that it is difficult to adapt the systems to
local site conditions.

Objective:
Reduce the amount of labeled data required for
self-learning intrusion detection systems.

Outline

Background
Introduction to Active Learning
Experiment Details
Results
Conclusion

Classification of IDS:
Detection Models

Misuse detection
(signature-based)

Define what is wrong and give
alarms for such behavior
(default permit)

Anomaly Detection
Define what is correct and give
alarms for everything else
(default deny)

Sound alarm, if
payload contains
/..%c0%af../

Normal behavior

N
um

ber

Detection Model Characteristics
Misuse Detection

Defines malicious behavior
Experts design attack “signatures”

Few(er) false alarms
Restricted ability to generalize

Anomaly Detection
Defines normal behavior (traditionally)
Self-learning algos used

Can generalize to new attacks, but
Plagued by a high false alarm rate

Hybrid systems
Defines both models (in some way)

Significant advantages – “best of both worlds”
Automatic learning: cheap?, fast?, veracious?
Detects unknown (novel) attacks, and
abuse-of-privilege attacks

(masqueraders, insider misuse)
Promising for future
Need extensive amount of (labeled) data

Data sets in Intrusion Detection (1)

Authentic data sets are difficult to come by in intrusion
detection
Real data collected at live sites

No ground truth
Cannot be shared due to privacy issues
No comparison possible because different live sites different
Often assumed for anomaly: No attacks in this dataset

Attack data collected from artificial
experiments/environments

Red Team attack
Expensive, and often not released. Also, no ground truth and might
not be representative

Capture The Flag (DefCon etc)
No ground truth, not representative of normal traffic

Data sets in Intrusion Detection (2)

Creating synthetic data (Lundin)
Need accurate seeding
Statistical distribution should be correct
Difficult to find variations on attacks

Simulated data sets
For example: Lincoln Labs experiment
Expensive and difficult undertaking
Criticized by McHugh and others

Outline

Background
Introduction to Active Learning
Experiment Details
Results
Conclusion

Active Learning
Human Teaching Analogy

Old Scheme
Off line labeling
Lecture w/one-way
communication

Active Learning
Interactive labeling
Lecture w/ Q&A

?

?

Bla bla

Confused

Bla bla

!!!

Aha!

Active Learning:
Basic Idea

All Machine Learning algorithms need lots of
data but data expensive to come by …
Past: Throw random data at the algorithm
Now: Algorithm actively chooses what

type of data it wants to train upon
Active Learning
Query Learning
Uncertainty Sampling

Active Learning:
Background

Suggested during the ’80s but not used for IDS.
Different flavors:

Let algorithm suggest new (artificial) instances that it
would like to get labeled.

Problem: Many such instances have no meaning to experts.
Use a pool of unlabeled examples that algorithm can
choose from.

All examples are “real.”
A pool must exist, and an expert must be able to label them
iteratively.

Definitions

Pool of unlabeled examples: P (iid)

Training set: D
The active learner, l, has two separate
components: (f, q)

f is any type of classifier (i.e. a machine learning algo)

q is a query function
In each step f is trained on D, and then q
chooses new examples from P to be added to D.

Support Vector Machines
In this study, we mainly used SVMs.

Simplified, SVMs can be seen as the fitting of a straight line to
data in a plane to a higher-dimensional case.

SVM classifier, nonlinear function:
φ is a nonlinear mapping from the input space to the
feature space.
The vector w defines a hyper plane that separates
benign from malicious events, where
w is constructed from some of the input data,
the so-called support vectors.
SVMs avoid the two problems of dimensionality:

generalize well to unseen data and they are
efficient by avoiding explicit use of higher-order dimensional
spaces.

bf +⋅=)()(xwx φ

Query Functions

Several variants found in literature:
Predicted Loss, Voting Committees, etc.

Simple query function (taken from Tong et al.)

1. Use the trained classifier on all examples in the pool
P.

2. Find the unlabeled example (x,) closest to the
decision boundary.

3. Present the expert with this example to find the
correct label and then add it to the training set D.

ŷ

Active Learning Example

1. Take unlabeled pool
of data

?

?

?
?

?

?

?

?
?

?

Active Learning Example

1. Take unlabeled pool
of data

2. Label some data
(seed)

?

A

?
?

?

?

B

?
?

?

Active Learning Example

1. Take unlabeled pool
of data

2. Label some data
(seed)

3. Label each point of
which the algo is
uncertain

?

A

?
?

?

?

B

?
?

?

Active Learning Example

1. Take unlabeled pool
of data

2. Label some data
(seed)

3. Label each point of
which the algo is
uncertain

?

A

?
?

?

?

B

?
B

?

Active Learning Example

1. Take unlabeled pool
of data

2. Label some data
(seed)

3. Label each point of
which the algo is
uncertain

?

A

?
?

?

?

B

B
B

?

Active Learning Example

1. Take unlabeled pool
of data

2. Label some data
(seed)

3. Label each point of
which the algo is
uncertain

?

A

?
?

A

?

B

B
B

?

Outline

Background
Introduction to Active Learning
Experiment Details
Results
Conclusion

Comparison of an AL with a
traditional self-learning system

Explore benefits active learning may bring to
intrusion detection.
Data used for experiment

Modified 10% KDD data
originally Lincoln Labs,
preprocessed by Columbia
Data chosen despite critique, as we wanted others
to be able to replicate our work.

Mainly used two different “active learners.”
Simple active learner

f is a support vector machine (SVMLight)
q is the simple query function described earlier.

Random learner (used as a reference)
f is a support vector machine.
q is a function that chooses examples randomly
from P.

Algorithms used in experiment

Experiment Series

50%200, 1000Normal3
1%200,1000, 5000Neptune2
50%200,1000, 5000Neptune1

AttacksPool SizeData setExp

Neptune= benign & DoS events from neptune
Manifested on network level (“easy” detection).

Normal = benign & all attack events
“Complex” and difficult to classify correctly.

Metrics Used

Accuracy:

Stable Point: Current accuracy remains
greater than a certain limit (here chosen to
be 0.1%) of the final accuracy of the run.
Random Catchup: Point where random
and simple learner equivalent (95% sign)

FPTPFNTN
TPTN

+++
+

More metrics described in paper.

Outline

Background
Introduction to Active Learning
Experiment Details
Results
Conclusion

0 100 200 300 400 500 600 700 800 900 1000
90

92

94

96

98

100
Neptune data set

Number of Labeled Examples

A
cc

ur
ac

y
(%

)

random, pool=1000 (50%)
simple, pool=1000 (50%)random, pool=1000 (50%)

simple, pool=1000 (50%)

Final accuracy: 99.90%
Stable point of AL classifier: 40
Random catchup of ref classifier: 799

Ac
cu

ra
cy

 (%
)

Number of Labeled Examples

Neptune data set

Reduction of labeled examples by 20 times.

0 10 20 30 40 50 60 70 80

random, pool=1000 (50%)
simple, pool=1000 (50%)

Exp 1.2 40 799

Number of Labeled Examples

Neptune data set
Ac

cu
ra

cy
 (%

)

0 20 40 60 80 100 120 140 160 180 200
90

92

94

96

98

100

random, pool=200 (50%)
simple, pool=200 (50%)

random, pool=200 (50%)
simple, pool=200 (50%)

Accuracy overall lower (97.70%)
(200 example pool too small).
Active learner 4.5 times more effective than ref
learner.

Exp 1.1
25 115

Number of Labeled Examples

Neptune data set
Ac

cu
ra

cy
 (%

)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
98

98.5

99

99.5

100

random, pool=5000 (50%)
simple, pool=5000 (50%)

random, pool=5000 (50%)
simple, pool=5000 (50%)

Very good accuracy (only a few misclassifications).
Ref learner needs 80 times as many labeled examples
as compared to the active learner.
Accuracy for the last 1000 examples remains the same
(sufficient pool size?)

Exp 1.3 48 3877
Acc: 99.99%

0 20 40 60 80 100 120 140 160 180 200
90

92

94

96

98

100
random, pool=200 (50%)
simple, pool=200 (50%)

Number of Labeled Examples

Normal data set
Ac

cu
ra

cy
 (%

)

random, pool=200 (50%)
simple, pool=200 (50%)

Final accuracy: 95.26%
Difficult set to classify correctly, and more support
vectors are needed.
Ref learner needs more than 3.5 times as many labeled
examples as compared to the active learner.

Exp 3.1

56 200

0 100 200 300 400 500 600 700 800 900 1000
90

92

94

96

98

100

random, pool=1000 (50%)
simple, pool=1000 (50%)

Number of Labeled Examples

Normal data set
Ac

cu
ra

cy
 (%

)

random, pool=1000 (50%)
simple, pool=1000 (50%)

Final accuracy: 96.71%
Ref learner needs 8 times as many labeled examples as
compared to the active learner.

Exp 3.2

100 786

Outline

Background
Introduction to Active Learning
Experiment Details
Results
Conclusions

Conclusion

AL reduces the number of examples an expert
needs to label.

Active learner still performs on a par with a traditional
learner.
Success depends on pool size and “complexity.”
If label reduction can be directly be translated into
saved time, we have in the best case:

1 hour work instead of 2 weeks
(which may in turn open up new apps for IDS).

Questions?

