Using Active Learning in Intrusion Detection

Magnus Almgren, Erland Jonsson Chalmers University of Technology

Objective

Today's state of the art of intrusion detection:

- An expert must *manually* write a rule to detect new attacks.
- This process is
 - expensive, as the expert must be present,
 - slow, as a human is involved, and finally
 - inflexible, meaning that it is difficult to adapt the systems to local site conditions.

Objective:

Reduce the amount of labeled data required for self-learning intrusion detection systems.

Outline

- Background
- Introduction to Active Learning
- Experiment Details
- Results
- Conclusion

Classification of IDS: Detection Models

- Misuse detection (signature-based)
 - Define what is *wrong* and give alarms for such behavior (*default permit*)
- Anomaly Detection
 - Define what is correct and give alarms for everything else (*default deny*)

Detection Model Characteristics

Misuse Detection

Defines malicious behavior Experts design attack "signatures" Few(er) false alarms Restricted ability to generalize

Anomaly Detection

- ^CDefines normal behavior (traditionally) Self-learning algos used
- Can generalize to new attacks, but
- Plagued by a high false alarm rate

Hybrid systems

- Defines both models (in some way)
- Significant advantages "best of both worlds"
 - Automatic learning: cheap?, fast?, veracious?
 - Detects unknown (novel) attacks, and
 - abuse-of-privilege attacks
 - (masqueraders, insider misuse)
- Promising for future
- Need extensive amount of (labeled) data

Data sets in Intrusion Detection (1)

Authentic data sets are difficult to come by in intrusion detection

Real data collected at live sites

- No ground truth
- □ Cannot be shared due to privacy issues
- □ No comparison possible because different live sites different
- Often assumed for anomaly: No attacks in this dataset
- Attack data collected from artificial experiments/environments
 - Red Team attack
 - Expensive, and often not released. Also, no ground truth and might not be representative
 - □ Capture The Flag (DefCon etc)
 - No ground truth, not representative of normal traffic

Data sets in Intrusion Detection (2)

- Creating synthetic data (Lundin)
 - Need accurate seeding
 - Statistical distribution should be correct
 - Difficult to find variations on attacks
- Simulated data sets
 - □ For example: Lincoln Labs experiment
 - Expensive and difficult undertaking
 - Criticized by McHugh and others

Outline

Background

Introduction to Active Learning

- Experiment Details
- Results
- Conclusion

Active Learning Human Teaching Analogy

Old Scheme
 Off line labeling
 Lecture w/one-way communication

Active Learning
 Interactive labeling
 Lecture w/ Q&A

Active Learning: Basic Idea

- All Machine Learning algorithms need lots of data but data expensive to come by ...
- Past: Throw random data at the algorithm
- Now: Algorithm *actively* chooses what type of data it wants to train upon
 - Active Learning
 - Query Learning
 - Uncertainty Sampling

Active Learning: Background

- Suggested during the '80s but not used for IDS.
 Different flavors:
 - Let algorithm suggest new (artificial) instances that it would like to get labeled.
 - Problem: Many such instances have no meaning to experts.
 - Use a pool of unlabeled examples that algorithm can choose from.
 - All examples are "real."
 - A pool must exist, and an expert must be able to label them iteratively.

Definitions

- Pool of unlabeled examples: P (iid) Training set: D
- The active learner, *I*, has two separate components: (*f*, *q*)
 - $\Box f$ is any type of *classifier* (*i.e.* a machine learning algo)

 $\Box q$ is a query function

In each step f is trained on D, and then q chooses new examples from P to be added to D.

Support Vector Machines

- In this study, we mainly used SVMs.
 - Simplified, SVMs can be seen as the fitting of a straight line to data in a plane to a higher-dimensional case.
- SVM classifier, nonlinear function: $f(\mathbf{x}) = \langle \mathbf{w} \cdot \boldsymbol{\phi}(\mathbf{x}) \rangle + b$
- ϕ is a nonlinear mapping from the input space to the feature space.
- The vector w defines a hyper plane that separates benign from malicious events, where
- w is constructed from some of the input data, the so-called *support vectors*.
- SVMs avoid the two problems of dimensionality:
 - generalize well to unseen data and they are
 - efficient by avoiding explicit use of higher-order dimensional spaces.

Query Functions

Several variants found in literature: Predicted Loss, Voting Committees, etc.

Simple query function

(taken from Tong et al.)

- 1. Use the trained classifier on all examples in the pool *P*.
- 2. Find the unlabeled example (\mathbf{x}, \hat{y}) closest to the decision boundary.
- 3. Present the expert with this example to find the correct label and then add it to the training set D.

1. Take unlabeled pool of data

- 1. Take unlabeled pool of data
- 2. Label some data (seed)

- 1. Take unlabeled pool of data
- 2. Label some data (seed)
- Label each point of which the algo is uncertain

- 1. Take unlabeled pool of data
- 2. Label some data (seed)
- Label each point of which the algo is uncertain

- 1. Take unlabeled pool of data
- 2. Label some data (seed)
- Label each point of which the algo is uncertain

- 1. Take unlabeled pool of data
- 2. Label some data (seed)
- Label each point of which the algo is uncertain

Outline

- Background
- Introduction to Active Learning
- Experiment Details
 - Results
 - Conclusion

Comparison of an AL with a traditional self-learning system

- Explore benefits active learning may bring to intrusion detection.
- Data used for experiment
 - Modified 10% KDD data
 - originally Lincoln Labs,
 - preprocessed by Columbia
 - Data chosen despite critique, as we wanted others to be able to replicate our work.

Algorithms used in experiment

- Mainly used two different "active learners."
 - Simple active learner
 - *f* is a support vector machine (SVMLight)
 - q is the simple query function described earlier.
 - Random learner (used as a reference)
 - f is a support vector machine.
 - q is a function that chooses examples randomly from P.

Experiment Series

Exp	Data set	Pool Size	Attacks
1	Neptune	200,1000, 5000	50%
2	Neptune	200,1000, 5000	1%
3	Normal	200, 1000	50%

Neptune = benign & DoS events from *neptune* Manifested on network level ("easy" detection).
 Normal = benign & all attack events

□ "Complex" and difficult to classify correctly.

Metrics Used

• Accuracy: $\frac{TN + TP}{TN + FN + TP + FP}$

Stable Point: Current accuracy remains greater than a certain limit (here chosen to be 0.1%) of the final accuracy of the run.

Random Catchup: Point where random and simple learner equivalent (95% sign)

More metrics described in paper.

Outline

- Background
- Introduction to Active Learning
- Experiment Details
- Results
 - Conclusion

Number of Labeled Examples

- Final accuracy: 99.90%
- Stable point of AL classifier: 40
- Random catchup of ref classifier: 799

Reduction of labeled examples by 20 times.

Neptune data set

- Accuracy overall lower (97.70%) (200 example pool too small).
- Active learner 4.5 times more effective than ref learner.

- Very good accuracy (only a few misclassifications).
- Ref learner needs 80 times as many labeled examples as compared to the active learner.
- Accuracy for the last 1000 examples remains the same (sufficient pool size?)

Exp 3.1

- Final accuracy: 95.26%
- Difficult set to classify correctly, and more support vectors are needed.
- Ref learner needs more than 3.5 times as many labeled examples as compared to the active learner.

Exp 3.2

- Final accuracy: 96.71%
- Ref learner needs 8 times as many labeled examples as compared to the active learner.

Outline

- Background
- Introduction to Active Learning
- Experiment Details
- Results

Conclusions

Conclusion

- AL reduces the number of examples an expert needs to label.
 - Active learner still performs on a par with a traditional learner.
 - Success depends on pool size and "complexity."
 - If label reduction can be directly be translated into saved time, we have in the best case:

1 hour work instead of 2 weeks

(which may in turn open up new apps for IDS).

Questions?