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Objective

Today’s state of the art of intrusion detection:
An expert must manually write a rule to detect new 
attacks.
This process is

expensive, as the expert must be present,
slow, as a human is involved, and finally
inflexible, meaning that it is difficult to adapt the systems to
local site conditions.

Objective:
Reduce the amount of labeled data required for 
self-learning intrusion detection systems.
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Classification of IDS:
Detection Models

Misuse detection
(signature-based)

Define what is wrong and give 
alarms for such behavior
(default permit)

Anomaly Detection
Define what is correct and give 
alarms for everything else
(default deny)

Sound alarm, if 
payload contains
/..%c0%af../

Normal behavior
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Detection Model Characteristics
Misuse Detection

Defines malicious behavior
Experts design attack “signatures”

Few(er) false alarms
Restricted ability to generalize

Anomaly Detection
Defines normal behavior (traditionally)
Self-learning algos used

Can generalize to new attacks, but
Plagued by a high false alarm rate

Hybrid systems 
Defines both models (in some way)

Significant advantages – “best of both worlds” 
Automatic learning: cheap?, fast?, veracious?
Detects unknown (novel) attacks, and
abuse-of-privilege attacks 

(masqueraders, insider misuse)
Promising for future
Need extensive amount of (labeled) data



Data sets in Intrusion Detection (1)

Authentic data sets are difficult to come by in intrusion 
detection
Real data collected at live sites

No ground truth
Cannot be shared due to privacy issues
No comparison possible because different live sites different
Often assumed for anomaly: No attacks in this dataset

Attack data collected from artificial 
experiments/environments

Red Team attack
Expensive, and often not released. Also, no ground truth and might 
not be representative

Capture The Flag (DefCon etc)
No ground truth, not representative of normal traffic



Data sets in Intrusion Detection (2)

Creating synthetic data (Lundin)
Need accurate seeding
Statistical distribution should be correct
Difficult to find variations on attacks

Simulated data sets
For example: Lincoln Labs experiment
Expensive and difficult undertaking
Criticized by McHugh and others
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Active Learning
Human Teaching Analogy

Old Scheme
Off line labeling
Lecture w/one-way 
communication

Active Learning
Interactive labeling
Lecture w/ Q&A

?

?

Bla bla

Confused

Bla bla

!!!

Aha!



Active Learning:
Basic Idea

All Machine Learning algorithms need lots of 
data but data expensive to come by …
Past: Throw random data at the algorithm
Now: Algorithm actively chooses what

type of data it wants to train upon
Active Learning
Query Learning
Uncertainty Sampling



Active Learning: 
Background

Suggested during the ’80s but not used for IDS.
Different flavors:

Let algorithm suggest new (artificial) instances that it 
would like to get labeled.

Problem: Many such instances have no meaning to experts.
Use a pool of unlabeled examples that algorithm can 
choose from.

All examples are “real.”
A pool must exist, and an expert must be able to label them 
iteratively.



Definitions

Pool of unlabeled examples: P (iid)

Training set: D
The active learner, l, has two separate 
components: (f, q)

f is any type of classifier (i.e. a machine learning algo)

q is a query function
In each step f is trained on D, and then q
chooses new examples from P to be added to D.



Support Vector Machines
In this study, we mainly used SVMs.

Simplified, SVMs can be seen as the fitting of a straight line to 
data in a plane to a higher-dimensional case.

SVM classifier, nonlinear function: 
φ is a nonlinear mapping from the input space to the 
feature space.
The vector w defines a hyper plane that separates 
benign from malicious events, where
w is constructed from some of the input data, 
the so-called support vectors.
SVMs avoid the two problems of dimensionality:

generalize well to unseen data and they are 
efficient by avoiding explicit use of higher-order dimensional 
spaces.

bf +⋅= )()( xwx φ



Query Functions

Several variants found in literature: 
Predicted Loss, Voting Committees, etc.

Simple query function (taken from Tong et al.)

1. Use the trained classifier on all examples in the pool 
P.

2. Find the unlabeled example (x,  ) closest to the 
decision boundary.

3. Present the expert with this example to find the 
correct label and then add it to the training set D.

ŷ
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Comparison of an AL with a 
traditional self-learning system

Explore benefits active learning may bring to 
intrusion detection.
Data used for experiment

Modified 10% KDD data
originally Lincoln Labs, 
preprocessed by Columbia
Data chosen despite critique, as we wanted others 
to be able to replicate our work.



Mainly used two different “active learners.”
Simple active learner

f is a support vector machine (SVMLight)
q is the simple query function described earlier.

Random learner (used as a reference)
f is a support vector machine.
q is a function that chooses examples randomly 
from P.

Algorithms used in experiment



Experiment Series

50%200, 1000Normal3
1%200,1000, 5000Neptune2
50%200,1000, 5000Neptune1

AttacksPool SizeData setExp

Neptune= benign & DoS events from neptune
Manifested on network level (“easy” detection).

Normal = benign & all attack events
“Complex” and difficult to classify correctly.



Metrics Used

Accuracy:

Stable Point: Current accuracy remains 
greater than a certain limit (here chosen to 
be 0.1%) of the final accuracy of the run.
Random Catchup: Point where random 
and simple learner equivalent (95% sign)

FPTPFNTN
TPTN

+++
+

More metrics described in paper.
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Accuracy overall lower (97.70%)
(200 example pool too small).
Active learner 4.5 times more effective than ref 
learner.
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Ref learner needs 80 times as many labeled examples 
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(sufficient pool size?)
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Final accuracy: 95.26%
Difficult set to classify correctly, and more support 
vectors are needed.
Ref learner needs more than 3.5 times as many labeled 
examples as compared to the active learner.
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Final accuracy: 96.71%
Ref learner needs 8 times as many labeled examples as 
compared to the active learner.

Exp 3.2
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Conclusion

AL reduces the number of examples an  expert 
needs to label.

Active learner still performs on a par with a traditional 
learner.
Success depends on pool size and “complexity.”
If label reduction can be directly be translated into 
saved time, we have in the best case: 

1 hour work instead of 2 weeks
(which may in turn open up new apps for IDS).



Questions?


