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Abstract

Mechanization makes it feasible to calculate properties of formally specified
systems. This ability creates new opportunities for using formal methods as
an exploratory tool in system design. Achieving enough efficiency to make this
practical raises challenging problems in automated deduction. These challenges
can be met only by approaches that integrate consideration of its mechanization
into the design of a specification language.

1 Introduction

All formal methods rest on the conviction that requirements and designs for com-
puter systems and software can be modeled mathematically, and that many ques-
tions concerning properties of those requirements and designs can then be settled
by calculation. Advocates of formal methods differ, however, in the extent to which
they stress the conceptual and methodological aspects of these methods, as opposed
to their calculational aspects.

While appreciating the methodological benefits of mathematical concepts and
notations, 1 believe that the distinctive merit of specifically formal methods is
that they support calculation. Using automated deduction (i.e., theorem proving)
and related techniques (e.g., model checking) it is possible to calculate whether a
formally-described design satisfies its specification or possesses certain properties.
To be useful, it must be possible to perform these calculations for specifications and
properties of practical interest with reasonable ease and efficiency.

It takes a lot of theorem-proving power to do this, and mechanized specification
languages must be designed to mesh well with the most effective theorem-proving
techniques. For example, reasoning about equality in the presence of uninterpreted
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function symbols is crucial to most applications of mechanized formal methods,
and efficient techniques for achieving this (such as congruence closure [14]) require
that functions are total. However, it is draconian and rather unnatural to force all
functions (including, for example, division) to be total, so an effectively mechanized
formal method requires careful and integrated design choices to be made for both
the specification language and its supporting mechanization. In this particular case,
it is necessary to find some reasonably attractive treatment for partial functions
that does not compromise the efficiency of equality reasoning.

While developing such a treatment poses a challenge, the hypothesized avail-
ability of a powerful theorem prover creates new opportunities: for example, the
typechecker of our specification language could use the theorem prover to check
that partial functions are never applied outside their domains. This balancing of
challenges and opportunities, and the corresponding need for integrated design de-
cisions, arises again and again when mechanizing formal methods. In the following
sections, 1 will briefly describe the main opportunities created by mechanized for-
mal methods, and the technical challenges in achieving effective mechanization. My
perspective on these topics is influenced by experiences in the development and use

of PVS [9].

2 Opportunities for Making Effective Use of
Mechanized Formal Methods

It is often assumed that the main goal of mechanized formal methods is “proving
correctness” of programs or detailed hardware designs, and this assumption may
be reinforced by the term “verification system” that is commonly used to describe
mechanized tools for formal methods. In fact, however, this assumption is wrong
on both counts: most advocates of mechanized formal methods consider such early-
lifecycle products as requirements, architectural designs, and algorithms to be more
attractive targets for their tools than finished programs or gate layouts, and their
focus is at least as much on finding faults and on design exploration as it is on
verifying correctness.

Preference for early-lifecycle applications of mechanized formal methods is partly
a consequence of the strength of traditional methods for late-lifecycle activities.
Traditional methods for the development and quality assurance of program code and
detailed hardware designs are sufficiently effective that very few significant faults are
introduced and remain undetected at these late stages of the lifecycle (for example, of
197 critical faults found during integration testing of two JPL spacecraft, only three
were programming mistakes [8]), and only a small fraction of overall development
costs (typically, less than 10%) are incurred here. In contrast, mechanized formal
methods are quite expensive to apply at these stages. Primarily, this is because the
products of the late lifecycle are usually large—typically, hundreds of thousands, or
even millions, of gates or lines of code—and their sheer size makes formal verification
costly.



But if traditional methods are effective in the later stages of the lifecycle, the
same cannot be said of the earlier stages. Natural-language, diagrams, pseudocode,
and other conventional ways for describing requirements and preliminary designs do
not support calculation, so the main way to deduce their properties and consequences
is through the fallible processes of inspection and review. The fallibility of these
processes is illustrated by the JPL data cited earlier: since only three of the 197
critical faults were due to programming errors, it follows that the other 194 were
introduced at earlier stages. Lutz reports that 50% of these faults were due to flawed
requirements (mainly omissions) for individual components, 25% were due to flawed
designs for these components, and the remaining 25% were due to flawed interfaces
between components and incorrect interactions among them [8].

Rapid prototyping and simulation provide more repeatable and systematic ex-
amination of these issues, but often force premature consideration of implementation
questions and thereby divert attention from the most important topics. Mechanized
formal methods, on the other hand, can support direct analysis and exploration of
the products of the early lifecycle: as soon as we have written down a few logical
formulas that describe some aspect of the system, so we can begin to check their
consequences—such as whether they entail some expected property, or are mutually
contradictory.

The purposes for which mechanized formal methods may be used in the early
lifecycle are as much those of validation and exploration as verification: the op-
portunities are to validate requirements specifications, to explore different system
architectures and the interactions of their components, to debug critical algorithms
and to understand their properties and assumptions, and to cope with changes.

Mechanized formal methods can assist requirements validation by checking
whether a formal statement of requirements entails other expected properties: intu-
itions such as “if I've got that right, then this ought to follow,” can be examined in
a formal manner using theorem proving or model checking. While confirmation of
an expected property is gratifying, a more common outcome—at least in the early
stages—is the discovery that the requirements must be revised, or that some new
assumption must be adopted. The rigor of mechanized analysis renders the dis-
covery of such oversights far more systematic than is the case for informal reviews.
Furthermore, mechanization allows us to check, rapidly and reliably, that previously
examined properties remain true following each revision to the requirements.

The assurance derived by checking that expected properties are entailed by a
requirements specification may be specious if the requirements are inconsistent (i.e.,
mutually contradictory): every property is entailed by an inconsistent specification.
Consistency of formal specifications can be demonstrated by exhibiting a model;
an equivalent demonstration can be checked mechanically using theory interpreta-
tions: the basic idea is to establish a translation from the types and constants of the
“source” specification (the one to be shown consistent) to those of a “target” spec-
ification and to show that the axioms of the source specification, when translated
into the terms of the target specification, become provable theorems of that target
specification. If this can be done, then we have demonstrated relative consistency:



the source specification is consistent if the target specification is. Generally, the
target specification is one that is specified definitionally, or one for which we have
some other good reason to believe in its consistency.

Following requirements validation, mechanized formal methods can be used to
explore candidate system architectures. Architectures consist of interacting compo-
nents; the concerns at this stage are generally to verify that the properties assumed
of the components and of their interaction are sufficient to ensure satisfaction of the
overall requirements. The chief benefits of applying mechanically checked formal
verification to this task are the ability to explore alternative designs and assump-
tions, and to prune unnecessary assumptions. For example, formal examination of
an architecture for fault masking and transient recovery in flight control systems re-
veals the need for interactive consistency on sensor inputs [11]. This can be achieved
by a Byzantine Agreement algorithm [5]. Inputs to the majority vote function must
also satisfy interactive consistency and it may therefore appear as if these, too, need
to be run through a Byzantine Agreement algorithm. In fact, this is not required:
it is possible to prove that interactive consistency of voter inputs is an inherent
property of the architecture. Mechanized formal analysis allows this attribute of
the architecture to be determined with certainty, and it also allows determination
of the exact circumstances under which a modified architecture provides recovery
from transient faults [11].

As with requirements validation, exploration of architectural design choices is an
iterative process that is greatly facilitated by the rigor and repeatability of mech-
anized formal methods. Simulation and direct execution share the repeatability of
formal methods but can examine only a few cases, whereas deductive formal meth-
ods allow consideration of all cases. But, unfortunately, the price of this generality
can be less automated and more difficult analysis: we may need to invent invari-
ants and to undertake proofs by induction in order to cover an infinite state space.
Often, however, an effective alternative is available: we may be able to abstract or
“downscale” a specification to a finite state space that can be examined, exhaus-
tively and automatically, by model checking or by explicit state exploration. The
great automation of formal finite-state methods creates new opportunities for apply-
ing formal methods in the design loop. Experience indicates that examining all the
cases of such an abstracted system description is generally more effective at finding
faults than testing or simulating some of the cases of the full description [3].

Once a preferred system architecture has been selected we may, recursively,
explore architectures for its components or—once a sufficiently detailed level has
been reached—investigate algorithms for those components. As with the earlier
stages, the great benefits of using mechanized formal methods to examine algorithms
are the abilities to explore alternatives, to prune assumptions, and to adapt to design
changes. For example, the journal presentation of the interactive convergence clock
synchronization algorithm [4] has an assumption that all initial clock adjustments
are zero. Friedrich von Henke and I retained this assumption when we formally
verified the algorithm [13]. Subsequently, when contemplating design of a circuit to
implement part of the algorithm, it became clear that this assumption is exceedingly



inconvenient. I explored the conjecture that it is unnecessary by simply striking it
out of our formal specification and rerunning the proofs of all the lemmas and
theorems that constitute the verification. (There are about 200 proofs in the full
verification and it takes about 10 minutes for the theorem prover to check them all.)
It turned out that the proofs of a few lemmas failed without the assumption, but
examination showed that those lemmas could easily be restated, or given different
proofs. A few hours of work were sufficient to make these adjustments to the formal
specification and mechanically checked verification.

In other revisions to this algorithm and its verification, I have tightened the
bound on the achieved clock skew, and extended the fault model so that the al-
gorithm tolerates larger numbers of simple faults, without compromising its ability
to resist arbitrary (i.e., Byzantine) faults [12]. In each case, the effort required to
investigate the proposed revision and to rework the formal specification and verifica-
tion was on the order of a day or two. In another example, Lincoln and I developed
the formal specification and verification of a Byzantine Agreement algorithm for an
asymmetric architecture in less than a day by modifying an existing treatment for
a symmetric architecture [7].

The ability to make these enhancements to complex algorithms, rapidly and
reliably, is an opportunity created by mechanized formal methods. Informal methods
of proof are unreliable in these domains (see [6, 9, 13] for examples) and it requires
superhuman discipline to bring the same level of care and skepticism to the scrutiny
of a modified algorithm as to the original. A formal specification and verification, on
the other hand, is a reusable intellectual resource: its properties can be calculated,
and those calculations can be mechanized.

In summary, the opportunities created by mechanized formal methods are similar
to those offered by mechanized calculation in other fields, such as computational
fluid dynamics: exploration of design alternatives, early detection of design errors,
identification of assumptions, the ability to analyze the consequences of changes
and responses to them, and the acquisition of an enhanced understanding that can
lead to further improvements. In the next section, I will briefly examine some of
the challenges in developing mechanizations of formal methods that can make these
opportunities reality.

3 Technical Challenges in Mechanizing
Formal Methods

The primary challenge to achieving the benefits described above is the difficulty
of mechanizing formal deduction in a way that is both efficient and enlightening.
Since automated deduction—i.e., theorem proving—is a fairly well-developed field,
applying this technology to formal methods might seem to be simply a matter of
engineering. In fact, most of the challenges are those of engineering, but they are not
simple. Theorem proving in support of formal methods raises issues that are quite
different from those that have traditionally been of interest in the theorem-proving



community. Most notably, candidate theorems generated by formal methods in
their exploratory and debugging roles are very likely to be false. In these cases,
mechanization is expected to quickly reveal the falsehood, and to help identify its
causes. The traditional concern of theorem proving, however, has been to prove
true theorems, and most off-the-shelf theorem provers are therefore ill-suited to the
needs of formal methods.

But although an existing theorem prover is unlikely to be useful in support
of formal methods, we must not ignore the component techniques developed for
automated theorem proving. One of the principal reasons that many attempts at
mechanizing formal methods have failed is that their developers did not appreciate
the raw power and speed that is needed from their theorem-proving components,
and did not make use of the relevant techniques. The most important of these
techniques are decision procedures for specialized, but ubiquitous, theories such as
arithmetic, equality, function updates (i.e., overriding), and propositional calculus.
Decision procedures are helpful in discovering false theorems (especially if they can
be extended to provide counterexamples) as well as in proving true ones, and their
automation dramatically improves the efficiency of proof.

There are decision procedures for many useful theories, but few problems fall
precisely in the domain of any single one of them, so one of the big engineering
challenges in mechanizing formal methods is to develop effective combinations of
decision procedures. This requires very careful selection of the individual proce-
dures. For example, the decision procedure for Presburger arithmetic (i.e., the
first order theory of linear arithmetic with relation symbols such as <) does not
consider uninterpreted function symbols. Since function symbols are pervasive in
formal specifications, a better choice than true Presburger arithmetic is the theory
of ground (i.e., unquantified) linear arithmetic, which can be combined with the
theory of equality over uninterpreted function symbols [15].

Small extensions to decidable theories can have considerable value. For example,
it is not possible to add full nonlinear multiplication to the decision procedures for
linear arithmetic, but it is possible to add the ability to reason about the signs of
products (e.g., “a minus times a minus is a plus”) and this proves to be a significant
benefit in practice.

Rewriting is another technique that is essential to efficient mechanization of
formal methods. Unrestricted rewriting provides a decision procedure for theories
axiomatized by terminating and confluent sets of rewrite rules, but few such theories
arise in practice. Consequently, rewriting cannot be unrestricted, in general, but
must be performed under some control strategy. For example, one of the control
strategies used in PVS will rewrite a definition whose body involves a top-level
if-then-else only if the condition to the if can be reduced to true or false. This
reduction may involve use of decision procedures and further rewriting, and it is
possible to expend considerable resources on a search that is ultimately unsuccessful
(because it does not succeed in reducing the condition). These resources will not
have been wasted, however, if they allow the theorem prover to avoid making an
unprofitable rewrite: in most contexts, the heuristic effectiveness of a good control



strategy is likely to be more beneficial than the raw speed of a blind rewriter. As this
description suggests, rewriting and decision procedures cannot stand apart: truly
effective theorem provers must integrate them very tightly. A classic account of the
issues in such integration is given by Boyer and Moore [1].

Integration is a pervasive theme in the effective mechanization of formal methods:
many individual techniques work well on selected examples, but fail in more realis-
tic contexts because problems seldom fall exactly within the scope of one method.
Sometimes the integration must be tight, as in cooperating decision procedures, and
the integration of decision procedures with rewriting. In other cases, the integra-
tion can be less tight; a good example is model checking within a theorem-proving
context. Whereas theorem proving attempts to show that a formula follows from
given premises, model checking attempts to show that a given system description is
a model for the formula. As noted in the previous section, an advantage of model
checking is that, for certain finite state systems and temporal logic formulas, it is
much more automatic and efficient than theorem proving. The additional benefits
of a system that provides both theorem proving and model checking are that model
checking can be used to discharge some cases of a larger proof or, dually, that theo-
rem proving can be used to justify the reduction to finite state that is required for
automated model checking [10].

Model checking can provide a further benefit: before undertaking a potentially
difficult and costly proof, we may be able to use model checking to examine some
restricted or special cases. Any errors that can be discovered and eliminated in
this way will save time and effort in theorem proving. This is a particular case of
a more general desideratum: mechanized formal methods should provide a grad-
uated collection of tools and techniques that apply increasingly strict scrutiny at
correspondingly increasing cost. Representative techniques include typechecking,
animation or direct execution, model checking, and theorem proving. These tech-
niques become more effective if they are integrated so that each can use capabilities
of the others. For example, typechecking can be made more strict if it is allowed to
use theorem proving, rather than being restricted to trivially decidable properties;
certain specifications can be executed on test cases by using the theorem prover to
perform rewriting (in this case, fast “blind” rewriting may be desirable); and theo-
rem proving can be more efficient if it makes use of type information provided by
the typechecker.

Achieving the necessary integrations involves more than careful engineering of
theorem proving and support tools: it extends to the design of the specification
language itself. As noted in the introduction, efficient equality reasoning, for ex-
ample, requires that functions are total. If we allow the concerns of mechanization
to dominate language design, we may then decide that our specification language
should provide only total functions. Similar considerations may lead us to restrict
quantification to first-order (or to eliminate explicit quantification altogether), to
restrict recursive definitions to the syntactic form of primitive recursion, or to re-
quire all formulas to be equations. In the limit, we may provide a raw logic devoid
of the features expected of a specification language. Conversely, concerns for an



expressive notation may lead us to provide a specification language that cannot be
mechanized effectively. This is not to say that expressiveness cannot be combined
with mechanization, but that expressiveness must not be considered in isolation from
mechanization. For this reason, I consider it dangerous to look to the classical foun-
dations of mathematics for guidance when designing a specification language. These
formal systems (notably, first-order logic with axiomatic set theory) were created in
order to be studied, not in order to be used—the“. . .interest in formalized languages
being less often in their actual and practical use as languages than in the general
theory of such use and its possibilities in principle” [2, page 47]. Unsurprisingly,
therefore, set theory has characteristics that pose difficulty for mechanization—for
example, as already noted, functions are inherently partial in set theory (they are
sets of pairs). Also, it is difficult to provide really strict typechecking (and hence,
early error detection) for set theory without sacrificing some of its flexibility: for
example, a function is a set, so it can (sometimes) make sense to form its union
with another set, and it is therefore not clearcut whether type restrictions should
prohibit or allow this sort of construction.

If mechanization is a goal, then design of the specification language and selection
of its underlying logic should not be undertaken independently of consideration
of its mechanization. This does not mean that concern for mechanization must
inevitibly restrict or impoverish a notation—rather, 1 believe that availability of
powerful mechanization creates new opportunities for the design of expressive, yet
mechanically tractable, notations. An example is provided by the treatment of
partial functions such as division in PVS, whose specification language supports the
notion of predicate subtypes. These allow the nonzero real numbers to be defined as
follows.

nonzero real: TYPE = { r: real | r # 0 }
We can then give the signature of division as
/: [real, nonzero_real — reall

and the function is total on this precisely specified domain. We can then state and
prove the following result.

inverse_sum: LEMMA
V (a, b: real):
a # 0 A b #0 D (I/a + 1/b) = (a + b)/(a x b)

PVS allows a value of a supertype to appear where one of a subtype is required,
provided the value can be proved, in its context, to satisfy the defining predicate
of the subtype concerned. In this case, PVS will generate the following three proof
obligations, called Type Correctness Conditions (TCCs), that must be discharged
before inverse_sum is considered fully type-correct. The three TCCs correspond to
the three appearances of division in the formula inverse_sum and collectively ensure
that the value of the formula does not require division by zero. The first two TCCs



can be discharged automatically by a decision procedure for linear arithmetic; the
third requires extensions mentioned earlier that reason about the signs of nonlinear
products.

tccl: OBLIGATION V (a, b: real): a # 0 A b # 0 D a # 0
tcc2: OBLIGATION V (a, b: real): a # 0 A b # 0 D b # 0

tcc3: OBLIGATION V (a, b: real): a # 0 A b # 0 D (axb) # 0

Predicate subtypes in PVS provide many more capabilities than are suggested by
this simple example: in particular, injections and surjections are defined as predicate
subtypes of the functions, and state-machine invariants can be enforced by the same
mechanism. The source of these conveniences and benefits is allowing typechecking
to require theorem proving (i.e., to become algorithmcally undecidable), which is
only feasible if a powerful and automated theorem prover is assumed to be available.
Conversely, the power of the theorem prover is enhanced by the precision of the type
information that is provided by the language and its typechecker.

4 Conclusion

Mechanization creates new opportunities for formal methods: by making it feasible
to calculate properties of formally specified designs, mechanization allows explo-
ration of alternative designs, examination of assumptions, adaptation to changed
requirements, and verification of desired properties. These opportunities are likely
to have maximum benefit when applied early in the development lifecycle, and to
the hardest and most important problems of design.

To realize these benefits, mechanizations of formal methods must provide several
capabilities ranging from very strict typechecking, to powerfully automated theo-
rem proving. These individual capabilities need to be closely integrated with each
other, and with the specification language. Because of the integration required, con-
sideration of its mechanization must be factored into the design of a specification
language.
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