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Whitehead's system of Prinipia Mathematia [WR27℄ onsisted of a simple the-ory of types whih strati�ed the universe into the type of individuals, olletionsof individuals, olletions of olletions of individuals, et., and a rami�ed the-ory of types that strati�ed the elements within a type to rule out imprediativede�nitions.1In omputing, spei�ation languages are meant to formalize what is beingomputed rather than how it is omputed. There are many disernible divisionsaross these spei�ation languages inluding{ Set theory (Z [Spi88℄, VDM [Jon90℄) versus type theory (HOL [GM93℄,Nuprl [CAB+86℄, Coq [DFH+91℄, PVS [ORSvH95℄){ Construtive (Coq, Nuprl) versus lassial foundations (Z, HOL, PVS){ First-order (OBJ [FGJM85b℄, Maude [CDE+99℄, VDM, CASL [Mos98℄2)versus higher-order logi (HOL, Nuprl, Coq, PVS){ Model-oriented (Z, VDM) versus property-oriented (OBJ, Maude, CASL){ Total funtion (HOL, PVS) versus partial funtion (OBJ, Maude, VDM,CASL)The PVS spei�ation language is based on a strongly typed higher-orderlogi of total funtions that builds on Churh's simply typed higher-orderlogi [Chu40,And86℄. Higher-order logi aptures only a modest fragment of settheory, but it is one that is reasonably expressive and yet e�etively mehaniz-able. Types impose a useful disipline within a spei�ation language. They alsolead to the early detetion of a large lass of syntati and semanti errors. PVSadmits only total funtions but this is mitigated by the presene of subtypessine a partial funtion an be introdued as a total funtion when its domainof de�nition an be aptured as a subtype. For example, the division operationan be introdued with the domain given as the subtype of numbers onsistingof the nonzero numbers. If applied to a term not known to be nonzero, a proofobligation is generated. PVS is based on a lassial foundation as opposed toa onstrutive one sine onstrutive proofs impose a substantial ost in proofonstrution for a modest gain in the information that an be extrated from asuessful proof.We fous primarily on subtyping and the surrounding issues sine this is oneof the ore features of PVS. We also ompare PVS with other spei�ation lan-guages. The paper ondenses material from reports: The Formal Semantis ofPVS [OS97℄ (URL: www.sl.sri.om/reports/postsript/sl-97-2.ps.gz) and Ab-strat Datatypes in PVS [OS93℄ (URL: www.sl.sri.om/reports/ postsript/sl-93-9.ps.gz). These reports should be onsulted for further details. Rushby, Owre,and Shankar [ROS98℄ motivate the need for PVS-style subtyping in spei�ationlanguages.Following the style of the formal semantis of PVS [OS97℄, we present anidealized ore of the PVS language in small inrements by starting from the1 Rushby [Rus93℄ has a lengthy disussion of foundational issues and their impat onspei�ation language features.2 CASL also has a higher-order extension.2



simple type system, and adding prediate subtypes, dependent types, typingjudgements, and abstrat datatypes.1 The Simply Typed FragmentThe base types in PVS onsist of the booleans bool and the real number typereal.3 From types T1 and T2, a funtion type is onstruted as [T1!T2℄ and aprodut type is onstruted as [T1; T2℄.The preterms t onsist of{ onstants: , f{ variables: x{ pairs: ht1; t2i{ projetions: pi t{ abstrations: �(x : T ) t{ appliations: ftThe typeheking of a preterm a is arried out with respet to a delarationontext � by an operation �(� )(a) that returns the anonial type. A ontext isa sequene of bindings of names to types, kinds, and de�nitions. For an identi�ers, kind(� (s)) returns the kind CONSTANT, VARIABLE, or TYPE. Sine the ontextsand types also need to be typeheked, we have{ �()(� ) = CONTEXT for well-formed ontext � .{ �(� )(A) = TYPE for well-formed type A.The de�nition of �(� )(a) is�(� )(s) = type(� (s));if kind(� (s)) 2 fCONSTANT; VARIABLEg�(� )(f a) = B; if �(� )(f) = [A!B℄ and �(� )(a) = A�(� )(�(x : T ) a) = [T!�(�; x : VAR T )(a)℄; if � (x) is unde�nedand �(� )(T ) = TYPE�(� )(ha1; a2i) = [�(� )(a1); �(� )(a2))℄�(� )(pi a) = Ti; where�(� )(a) = [T1; T2℄Type rules [Car97℄ are onventionally given as inferene rules of the form� ` f : [A!B℄ � ` a : A� ` f a : B3 The atual base number type is an unspei�ed supertype of the reals alled numberwhih is there to aommodate possible extensions of the reals suh as the extendedreals (with +1 and �1) or the omplex numbers.3



We have adopted a funtional style of type omputation, as opposed to therelational style of type derivation above, sine eah PVS expression has a anon-ial type given by the type delarations of its onstants and variables.4 Withsubtypes, a single expression, suh as 2, an have multiple types suh as real,rat (rational number), int (integer), nat (natural number), and even. The fun-tional omputation of a anonial type removes any possibility for nondetermin-ism without loss of ompleteness (every typeable term is assigned a anonialtype, e.g., the anonial type of 2 is real). The soundness argument for the typesystem follows the de�nition of the � operation and is therefore quite straight-forward [OS97℄.The atual PVS spei�ation language di�ers from the ore PVS presentedabove. PVS also has reord types whih an be aptured by produt types andare therefore omitted from the ore language. PVS has n-ary produts instead ofthe binary produts used in the ore language. In this extended abstrat, we areignoring features of PVS suh as type-direted onversions, parametri theories,and reursive and indutive de�nitions.If we let 2 represent a two-element set for interpreting the type bool, andR represent the set of real numbers, the semantis for the simple type system isgiven with respet to a universe U = Si<! Ui, whereU0 = f2;RgUi+1 = Ui [ fX � Y j X;Y 2 Uig[ fXY j X;Y 2 UigAn assignment for a ontext � is a list of bindings of the form fx1  y1g : : : fxn  yng that assoiates the type, onstant, and variable delarationsof � with subsets and elements of the universe U . A valid assignment is one inwhih the assignment of a onstant or variable is an element of the assignment ofits delared type. The meaning of a well-formed type A in a ontext � is given asM(� j )(A). Correspondingly, the meaning of a well-typed term a with respetto a ontext � and  is given as M(� j )(a). The de�nitions and proofs ofsoundness an be found in the PVS semantis report [OS97℄.The soundness theorem asserts that for a well-formed ontext � , and validassignment , a well-formed type A, and a type-orret term a,1. M(� j )(A) 2 U , and2. M(� j )(a) 2M(� j )(�(� )(a)).PVS is quite liberal about overloading so that the same symbol an be de-lared multiply and an also be reused as a onstant, variable, type, or theoryname. Names delared within parametri theories an also be used without sup-plying the atual parameters. The type heker uses ontextual type informationto resolve ambiguities arising from overloading and to determine the preise the-ory parameters for the resolved names. Other than resolving overloaded namesand determining theory parameters, the simple type system does not pose anyserious implementation hallenges.4 This is also the style followed in the PVS Semantis Report [OS97℄.4



2 Prediate subtypingPrediate subtypes are perhaps the most important feature of the PVS typesystem. The subtype of elements of a type T satisfying the prediate p is writtenas fx : T j p(x)g. Here p(x) an be an arbitrary PVS formula. As examples, thetype of nonzero real numbers nzreal is given as fx : real jx 6= 0g, and thetype of division is given as [real; nzreal!real℄. Subtypes thus allow partialfuntions to be expressed as total funtions over a restrited domain spei�ed asa subtype.5Partial funtions do have the advantage of being more expressive. The subpexample from Cheng and Jones [CJ90℄ is given bysubp(i; j) = if i = j then 0 else subp(i; j + 1) + 1 endifand is unde�ned if i < j (when i � j; subp(i; j) = i� j). The formula(subp(i; j) = i� j) OR (subp(j; i) = j � i)is perfetly meaningful in most treatments for partial funtions, but sine itgenerates unprovable obligations, it is not onsidered type-orret in PVS. Inpratie, we have yet to enounter a need for this kind of expressiveness.Subtypes have many other uses. They an be used to speify intervals andsubranges of the integers. Thus arrays an be delared as funtions over anindex type that is a subrange. If below(10) represents the subtype of naturalnumbers below 10, then a ten-element integer array a an be given the type[below(10)!int℄. Subtypes are also useful for reording properties within thetype of an expression. For example, the type of the absolute value funtion absan be given as [real!nonnegreal℄, where nonnegreal is the type of nonneg-ative real numbers.Prediate subtypes orrespond to subsets of the parent type. The equalityrelation remains the same from a type to a subtype. One might think thatprediate subtypes ould be translated away sine any subtype onstraints onquanti�ed variables an be moved into the body of the quanti�ation. However,this is not the ase for lambda-expressions sine �(x : A) a where A is a subtype,is not expressible in the system without subtypes.Prediate subtyping on higher-order types is espeially useful for introduingtypes orresponding to{ Injetive, surjetive, bijetive, and order-preserving maps{ Reexive, transitive, symmetri, anti-symmetri, partially ordered, well-ordered relations{ Monotone prediate transformers. This is at least a third-order onept.5 Note that in PVS, unlike in Maude or CASL, one division is delared to be ofthis type, no further delarations may extend its domain. Any use of division whosedenominator is not known to be nonzero will generate a proof obligation when type-heked. 5



Prediate subtyping is orthogonal to strutural subtyping used in type sys-tems for objet-oriented languages [Car97℄. In partiular, with prediate subtyp-ing, subtyping on funtion types is not ontravariant on the domain type. Thefuntion type [A!B℄ is a prediate subtype of [A0!B0℄ i� B is a prediate sub-type of B0, and A � A0. Sine A and A0 may ontain prediate subtypes, typeequivalene an also generate proof obligations orresponding to the equivaleneon prediates.The proof obligations generated by the PVS typeheker are alled type-orretness onditions (TCCs). Subtype TCCs take into aount the logial on-text within whih a subtype proof obligation is generated. For example, the ex-pression x 6= y � (x+ y)=(x� y) generates proof obligation x 6= y � (x� y) 6= 0orresponding to the subtype nonnegreal for the denominator of the divisionoperation. The logial ontext of the subtype ondition is inluded as the an-teedent to the proof obligation.The most signi�ant feature of subtyping in PVS is the division of typehek-ing into1. Simple type orretness whih is established algorithmially by the type-heker, and2. Proof obligations orresponding to the subtype prediates that are onje-tures that have to be proved within a proof system.As a onsequene, typeheking in PVS is undeidable insofar as the generatedproof obligations may not always fall within a deidable fragment of the logi.This is the only soure of undeidability in the PVS type system. For example,the type fx : bool jxg is the subtype of booleans that are TRUE. Naturally, anytheorem has this type and it is easy to see that typeheking with respet tosuh a subtype is equivalent to theorem proving in general.Undeidability is not a serious drawbak in pratie. The typeheker ismerely generates proof obligations without atually trying to verify them. Typ-ial proof obligations do fall within an eÆiently deidable fragment of the logiand an be disharged by simple proof strategies that rely heavily on the PVSdeision proedures. The proliferation of type-orretness proof obligations is apotentially serious drawbak, but is mitigated by other features of the PVS typesystem, partiularly,{ Subsumption whih ensures that when a stronger proof obligation alreadyexists, a weaker one is never generated. For example, a TCC x 6= y � x�y 6=0 would be subsumed by a TCC of the form x� y 6= 0 and would thereforebe suppressed.{ Typing judgements that an ahe subtype information about spei� ex-pressions. These are disussed below in greater detail.There are two basi operations assoiated with typeheking in the typesystem with subtypes. One operation �(A) returns the maximal supertype ofa type A, and the other �(A) returns the prediate onstraints in the type Awith respet to the maximal supertype �(A). A variant �0(A) returns the diret6



supertype so that �0(fx : T j ag) = �0(T ), and otherwise, �0(T ) = T . In ontrastto �0, �([A!B℄) is de�ned to be [A!�(B)℄.Two types A and B are ompatible i� �(A) and �(B) are equivalent. Whentypeheking an appliation f a where the anonial type of f is [A!B℄ andthe anonial type of a is A0, we have to ensure that A and A0 are ompatible(whih might generate type equivalene proof obligations) and disharge anyproof obligations orresponding to the subtype prediates imposed by A on a.For example, the type of positive integers posint and the type of nonzero naturalnumbers nznat are equivalent. The ompatibility proof obligations in the ontext� are represented as (A � A0)� . The type rules are given by�(� )(fx : T j ag) = TYPE; if � (x) is unde�ned;�(� )(T ) = TYPE; and �(�; x : VAR T )(a) = bool�(� )(f a) = B; where �0(�(� )(f)) = [A!B℄;�(� )(a) = A0;(A � A0)� ;`� �(A)(a)�(� )(pi a) = Ai; where �0(�(� )(a)) = [A1; A2℄For example, let g: ff: [nat -> nat℄ | f(0) = 0g, and x: int. Then�0(�(� )(g)) = [nat -> nat℄;�(� )(x) = int; andint � nat; sine �(int) = �(nat) = number; hene�(� )(g(x)) = nat; with the proof obligation �(nat)(x) = (x >= 0)The type rules with subtyping are quite a bit more ompliated than thoseof the simple type system. The implementation of these rules within the PVStypeheker has to ope with the interation between subtyping and name res-olution sine there is no longer an exat math between the domain type of afuntion and its argument type.For the interpretation of subtyping, the semanti universe has to be expandedto inlude subsets.U0 = f2;RgUi+1 = Ui [ fX � Y j X;Y 2 Uig[ fXY j X;Y 2 Uig[ [X2Ui }(X)The semantis of a prediate subtype is given by the de�nitionM(� j )(fx : T j ag)= fy 2 M(� j )(T ) j M(�; x : VAR T j fx yg)(a) = 1g:Subtyping is one of several soures of proof obligations in PVS. Other souresof proof obligations inlude 7



1. Reursive funtions, orresponding to termination.2. Parametri theory instanes, orresponding to the assumptions in the theoryabout its parameters.3. Constant de�nitions, sine the delared type must be shown to be nonempty.This hek is not stritly neessary sine suh a delaration orresponds toan inonsistent axiom. However, the hek is there to prevent inonsisteniesfrom being introdued through onstant delarations.4. Indutive relation de�nitions, sine these must be de�ned as �xed points ofmonotone prediate transformers.In general, proof obligations are used in PVS to implement omplete, or relativelyomplete, semanti heks instead of inomplete syntati heks on the well-formedness of PVS spei�ations.3 Dependent TypingThe ombination of dependent typing with prediate subtyping is extremelypowerful and an be used to apture the relationship between the output and theinput of a funtion. This allows the spei�ation of an operation to be apturedwithin the type system. The type below(n) is atually a dependent type and isdelared as below(n) : TYPE = fs : nat j s < ng:The de�nition of binomial oeÆients �nk� serves as a good illustration of de-pendent typing.First, the fatorial operation is de�ned reursively. Prediate subtyping isused to note that the result of fatorial(n) is always a positive integer.n: VAR natfatorial(n):RECURSIVE posnat =(IF n > 0 THEN n * fatorial(n - 1)ELSE 1 ENDIF)MEASURE nThen �nk� given by hooses0(n, k) is omputed using the fatorial op-eration.hooses0(n, (k : upto(n))) : rat =fatorial(n)/(fatorial(k) * fatorial(n-k))In the de�nition of hooses0, the domain type of the operation is a dependenttuple type where the type of the seond omponent upto(n) depends on the �rstomponent n, where upto(n) is de�ned as fs: nat | s <= ng. The prediate8



subtyping on the seond argument is idential to the informal restrition givenin textbook de�nitions [Lev90℄.The type of hooses0(n, (k : upto(n))) has been given as rat instead ofthe more aurate posnat. This is beause it is neessary to establish that theright-hand side of the de�nition is a positive integral quantity. This nontrivialproof obligation is typially overlooked in textbook presentations. In the PVSdevelopment, the de�nition of hooses0 is used to prove the basi reurrene�n+ 1k + 1� = �nk�+� nk + 1�, for 0 � k < n. This is stated below as the lemmahooses0 reurrene.hooses0_reurrene: LEMMA(FORALL (k:upto(n)):hooses0(n, k) =(IF (k = 0 OR n = k) THEN 1ELSE hooses0(n-1, k) + hooses0(n-1, k-1)ENDIF))The above reurrene an be used to show that the de�nition of �nk� alwaysomputes a positive integral quantity.hooses(n, (k : upto(n))): posnat =hooses0(n, k)The de�nition of hooses, when typeheked, generates a proof obligation orre-sponding to the laim that �nk� returns a positive integral quantity. This proofobligation is disharged using the reurrene by an interative indutive proof.6PVS admits only a very restrited form of type dependeny. In a dependenttype T (n), the parameter n an our only within subtype prediates in T (n).This means that the struture of T (n) is invariant with respet to n. All possibleways of introduing type dependenies in PVS preserve this invariant. It followsthat there is no way of de�ning a type T (n), where T (n) is An, i.e., the n-tupleover the type A. Similarly, the D1 model of lambda-alulus [Bar78℄ is also notde�nable as a type sine its onstrution involves a dependent type T (n) whereT (n+ 1) = [T (n)!T (n)℄.Dependent typing adds quite a bit of omplexity to the type rules. The sub-stitution operation is needed in the de�nition of the type rules. The de�nitionof type equivalene and maximal supertype is not straightforward. The PVSformal semantis report [OS97℄ an be onsulted for further details. The imple-mentation of the typeheker for dependent typing is also orrespondingly morediÆult sine it requires more ontextual information and quite heavy use ofsubstitution. We intend to investigate whether a representation of types using6 Note that hooses0 ould be de�ned as a posnat to begin with, but the resultingproof obligation is not trivial to prove. It was in attempting to prove this obligationthat the hooses0 reurrene lemma was developed.9



expliit substitutions might be more eÆient for typeheking with dependenttypes.4 JudgementsWith subtyping, the same term an have more than one type. As we have alreadyseen, the term 2 has the types real, rat, int, nat, posnat, even, and prime. Anoperation an return a result of a more re�ned subtype than its delared rangetype, if it is given arguments of a more re�ned domain type than its delareddomain type. The arithmeti operation of multipliation is a good example here.The produt of two positive numbers or two negative numbers is positive. Suhsubtype propagation information an be spei�ed using a JUDGEMENT delara-tion. Typing judgements generate proof obligations orresponding to the validityof the judgement. The judgements are used by the typeheker in a proativemanner to propagate subtype information whih minimizes the generation ofredundant proof obligations.There are two kinds of judgements in PVS. Typing judgements assert that agiven operation propagates type information in a spei� manner. For example,two simple judgements about the propagation of sign information by the additionoperation are reorded below.px, py: VAR posrealnx, ny: VAR negrealnnx, nny: VAR nonneg_realnnreal_plus_posreal_is_posreal: JUDGEMENT +(nnx, py) HAS_TYPE posrealnegreal_plus_negreal_is_negreal: JUDGEMENT +(nx, ny) HAS_TYPE negrealThe �rst judgement asserts that the sum of a nonnegative and a positive realis a positive real. The seond judgement asserts that the sum of two negativereals is negative. When the typeheker is applied to a term, say (�2 +�5), itis able to onlude that the term has the type negative real number. Strongerjudgements allow the typeheker to onlude that the term (�2 +�5) has thetype of negative integers. This, in turn, allows the typeheker to onlude that(�2 +�5) +�3 has the type negreal.Judgements thus allow ertain lasses of proof obligations to be proved oneand for all. The typeheker uses judgements to propagate type information fromsubterms to the terms in a proative manner. The re�ned type information om-puted by the typeheker not only minimizes the number of proof obligations,it is also used by the PVS proof heker in simpli�ation. For example, judge-ments failitate the omputation of sign information for arithmeti terms. Suhsign information is reorded in the data strutures of the deision proeduresand is employed in arithmeti simpli�ation. The PVS deision proedures areonly modestly e�etive at nonlinear arithmeti so the statially inferred signinformation omes in quite handy during simpli�ation.10



5 Abstrat DatatypesPVS, like many other spei�ation languages, has a de�nition mehanism for aertain lass of reursive datatypes given by onstrutors, aessors, and reog-nizers. The list datatype is given in terms of the onstrutors{ null with reognizer null? and with no aessors, and{ ons with reognizer ons? and aessors ar and dr.list [T: TYPE℄: DATATYPEBEGINnull: null?ons (ar: T, dr:list):ons?END listThe datatype is parametri in the element type T. This de�nition generatesvarious PVS theories that ontain the relevant datatype axioms and a numberof useful operators for de�ning operations over datatype terms.The prediate subtype of the datatype orresponding to the reognizer ons?is represented by the type expression (ons?). Then the aessor ar has thetype [(ons?)!T℄ and the aessor dr has the type [(ons?)!list℄.Whenever an aessor is used in an expression, as in ar(dr(x)), the type-heker generates proof obligations requiring that ons?(x) and ons?(dr(x))hold in the ontext of any onditions given by the ontext.Prediate subtypes allow mutually reursive datatypes to be introdued us-ing the same mehanism as reursive datatypes. For a simple example, supposewe wish to onstrut datatypes onsisting of arithmeti expressions onstrutedfrom numbers by means of addition and branhing, and boolean expressions thatare equalities between arithmeti expressions. This ould be expressed asexpr: DATATYPEBEGINeq(t1: term, t2: term): eq?END exprterm: DATATYPEBEGINnum(n:int): num?sum(t1:term,t2:term): sum?ift(e: expr, t1: term, t2: term): ift?END termBut now the indution shema for eah of these datatypes relies on the other,making it diÆult to work with.7 We hose a simpler approah that relies onsubtypes:7 This is similar to the problem of desribing measures that derease aross mutuallyreursive funtion de�nitions. 11



arith: DATATYPE WITH SUBTYPES expr, termBEGINnum(n:int): num? :termsum(t1:term,t2:term): sum? :termeq(t1: term, t2: term): eq? :exprift(e: expr, t1: term, t2: term): ift? :termEND arithIn this datatype, term is the subtype fx: arith | num?(x) OR sum?(x) ORift?(x)g, and a single indution shema is generated that simultaneously in-duts over terms and exprs.Ordered binary trees are another demonstration of the interation ofdatatypes and prediate subtyping. The type of ordered binary trees an bede�ned as a subtype of the binary trees datatype that satis�es the orderingondition.6 ComparisonsLamport and Paulson [LP99℄ argue that types are harmful in a spei�ationlanguage. They aknowledge that prediate subtypes remedy some of the ex-pressiveness limitations of type systems, but argue that subtypes are inherentlyompliated. Indeed, a sizable fration of the bugs in early implementations ofPVS were due to prediate subtyping in partiular, and proof obligation gen-eration, in general. However, these bugs stem largely from minor oding errorsrather than foundational issues or omplexities. The reently released PVS ver-sion 2.3 overomes most of these problems is quite robust and eÆient. Muhof the popularity of PVS as a spei�ation framework stems from its e�etivetreatment of prediate subtyping. Prediate subtyping is not a trivial additionto a spei�ation language, but the payo� in terms of expressiveness more thanjusti�es the implementation ost.The spei�ation language VDM [Jon90℄ has a notion of data type invari-ants where types an be de�ned with onstraints that are similar to those ofprediate subtypes. Typeheking expressions with respet to types onstrainedwith invariants generates proof obligations.8 In VDM, suh invariants are partof the type de�nition mehanism rather than the type system itself. Sine VDMis based on a �rst-order logi, there is nothing orresponding to a higher-orderprediate subtype. Dependent types are absent from the VDM type system.VDM treats partiality with a 3-valued logi instead of subtyping.8 To quote Jones [Jon90℄:This [the onept of data type invariants℄ has a profound onsequene for thetype mehanism of the notation. In programming languages, it is normal toassoiate type heking with a simple ompiler algorithm. The inlusion ofa sub-typing mehanism whih allows truth-valued funtions fores the typeheking here to rely on proofs. 12



Systems like HOL [GM93℄ and Isabelle/HOL [Pau94℄ are based on Churh'ssimply typed higher-order logi [Chu40℄. These have the advantage that theimplementations are simple and reliable. PVS extends the simple type system ina number of ways, but these extensions are well supported by means of the proofautomation in PVS. PVS has been ompared with HOL by Gordon [Gor95℄ andwith Isabelle by GriÆoen and Huisman [GH98℄. The type systems of PVS andNuprl [CAB+86℄ have been ompared by Jakson [Ja96℄.Dependent type theories were introdued as a formalization of onstrutivelogis based on the Curry-Howard isomorphism. Construtive logis like AU-TOMATH [dB80℄, Nuprl [CAB+86℄, and Coq [DFH+91℄ feature dependent typ-ing in their type system. The dependenies in these logis are di�erent fromthose in the PVS type system. In PVS, the dependenies an only a�et theprediates in a type but not its struture. For example, the type [n : nat!An℄annot be de�ned in PVS. Whereas, the onstrutive type theories admit de-pendent types where the struture of the range an depend on the value of theargument. Nuprl also has a form of prediate subtyping but it does not separatetypeheking into an algorithmi omponent and proof obligation generation: alltypeheking is arried out within a proof by invoking the type rules. Coq hasa fully polymorphi type system whereas PVS features only a limited degree ofpolymorphism through type parametriity at the theory level. Nuprl also has ahierarhy of type universes where the terms at eah level are assigned types atthe next level in the hierarhy. PVS on the other hand admits no reasoning atthe level of types so that even type equivalene is algorithmially redued to anordinary proof obligation.Algebrai spei�ation languages [FGJM85a,Mos98℄ typially employ multi-sorted �rst-order logis. In ontrast, PVS is based on a more expressive higher-order logi. In algebrai spei�ation languages, subsorting is analogous to sub-typing in PVS. However, the subsorting is not enfored so that, e.g., divisionby zero is allowed, and in the ase of programming languages suh as OBJ andMaude simply results in a runtime error. In the ase of spei�ation languagessuh as CASL, proofs involving partial terms tend to require de�nedness argu-ments. In prinipal, this is the same as dealing with PVS proof obligations, butin pratie the PVS judgement mehanism greatly redues the burden on theuser.7 ConlusionsWe have argued that prediate subtypes are a fundamental and important exten-sion to a spei�ation language. They allow partial operations suh as divisionto be given as total operations over a subtype. Properties of the result of an op-eration an be ahed in the type. For example, mod(a; b) an be de�ned so thatb must be positive, and the result mod(a; b) is at most b. In PVS, there are norestritions on the prediates that an be used to onstrut prediate subtypes.Typeheking with prediate subtypes is undeidable in general. PVS separatestypeheking in the presene of prediate subtypes into simple typeheking and13



proof obligation generation. An expression is not onsidered type-orret unlessall generated proof obligations have been disharged.Dependent typing allows the prediates in one omponent of a ompoundtype to be de�ned in terms of the other omponents. With the ombination ofprediate subtyping and dependent typing, a substantial part of the spei�ationof an operation an be embedded in its type.With reursive datatypes, several problems assoiated with the use ofmultiple-onstrutor datatypes an be avoided through the use of prediate sub-typing. Proof obligations ensure that an aessor is never improperly applied.A substantial fragment of the PVS language is exeutable. An exeutionengine has been implemented for PVS by means of ode generation from PVS toCommon Lisp [Sha99℄. The PVS type system ensures that the exeution of everywell-typed ground term is safe, i.e., the only possible runtime error ours whensome resoure bound has been exhausted. Annotations derived from subtypeinformation also yield an eÆieny improvement of about 30%. For example,if the type of a PVS ground term is known to be positive and smaller thanthe Common Lisp fixnum type, a delaration may be added to the generatedode that allows the ompiler to omit some runtime heks. On some hardwaresimulation examples, the generated ode exeutes at roughly a �fth of the speedof hand-rafted C.In summary, PVS is an experimental e�ort aimed at supporting the devel-opment of expressive spei�ations for both human and mahine onsumption.Experiments with PVS reveal that subtyping is a ruial language feature thatsupports expressiveness, larity, safety, and dedutive automation. It merits loseonsideration for programming languages as well as spei�ation languages.Referenes[And86℄ Peter B. Andrews. An Introdution to Logi and Type Theory: To Truththrough Proof. Aademi Press, New York, NY, 1986.[Bar78℄ H. P. Barendregt. The Lambda Calulus, its Syntax and Semantis. North-Holland, Amsterdam, 1978.[CAB+86℄ R. L. Constable, S. F. Allen, H. M. Bromley, W. R. Cleaveland, J. F. Cre-mer, R. W. Harper, D. J. Howe, T. B. Knoblok, N. P. Mendler, P. Panan-gaden, J. T. Sasaki, and S. F. Smith. Implementing Mathematis with theNuprl Proof Development System. Prentie Hall, Englewood Cli�s, NJ,1986.[Car97℄ Lua Cardelli. Type systems. In Handbook of Computer Siene and En-gineering, hapter 103, pages 2208{2236. CRC Press, 1997. Available athttp://www.researh.digital.om/SRC.[CDE+99℄ M. Clavel, F. Dur�an, S. Eker, P. Linoln, N. Mart��-Oliet, J. Meseguer,and J. F. Quesada. Maude: Spei�ation and programming in rewritinglogi. Tehnial Report CDRL A005, Computer Siene Laboratory, SRIInternational, Marh 1999.[Chu40℄ A. Churh. A formulation of the simple theory of types. Journal of SymboliLogi, 5:56{68, 1940. 14
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