
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 25, NO. 5, SEPTEMBER/OCTOBER 1999 651Systemati Formal Veri�ation for Fault-TolerantTime-Triggered AlgorithmsJohn RushbyAbstrat|Many ritial real-time appliations are imple-mented as time-triggered systems. We present a systematiway to derive suh time-triggered implementations from al-gorithms spei�ed as funtional programs (in whih formtheir orretness and fault-tolerane properties an be for-mally and mehanially veri�ed with relative ease). Thefuntional program is �rst transformed into an untimed syn-hronous system, and then to its time-triggered implemen-tation. The �rst step is spei� to the algorithm onerned,but the seond is generi and we prove its orretness.This proof has been formalized and mehanially hekedwith the PVS veri�ation system. The approah providesa methodology that an ease the formal spei�ation andassurane of ritial fault-tolerant systems.Keywords|Formal methods, formal veri�ation, time-triggered algorithms, synhronous systems, PVS.I. IntrodutionSYNCHRONOUS systems are distributed omputer sys-tems where there are known upper bounds on the timethat it takes nonfaulty proessors to perform ertain oper-ations, and on the time that it takes for a message sent byone nonfaulty proessor to be reeived by another. The ex-istene of these bounds simpli�es the development of fault-tolerant systems beause nonfaulty proesses exeuting aommon algorithm an use the passage of time to prediteah others' progress. This property ontrasts with asyn-hronous systems, where there are no upper bounds onproessing and message delays, and where it is thereforeprovably impossible to ahieve ertain forms of onsistentknowledge or oordinated ation in the presene of evensimple faults [1, 2℄.For these reasons, fault-tolerant systems for ritial on-trol appliations in airraft, trains, automobiles, and indus-trial plants are usually based on the synhronous approah,though they di�er in the extent to whih the basi meha-nisms of the system really do guarantee satisfation of thesynhrony assumption.With systems based on onventional \ommerial o�the shelf" (COTS) omponents, synhrony is merely anassumption|these systems employ sheduling algorithmsthat an miss deadlines, their operating systems admit thepossibility of bu�er overows, they use ontention busessuh as Ethernet, and they have other harateristis thatThe author is with the Computer Siene Laboratory, SRI Interna-tional, Menlo Park CA 94025 USA. Email: Rushby�sl.sri.omThis work was supported by the Air Fore OÆe of Sienti� Re-searh, Air Fore Materiel Command, USAF, under ontrat F49620-95-C0044, by the National Siene Foundation under ontrat CCR-9509931, and by NASA Langley Researh Center under ontratNAS1-20334.

allow oasional violations of laimed time bounds. Vio-lation of the synhrony assumption may lead to failure ofthe higher-level system omponents that depend on it, soadopting this assumption when it is only probabilistiallyvalid has rami�ations on overall system reliability. No-tie that adding timeouts does not make an asynhronoussystem synhronous [3℄.While probabilisti satisfation of the synhrony assump-tion may be \good enough" for less ritial appliations,those that are truly ritial must either rest on weaker as-sumptions, or must be speially onstruted to ensure thatthe assumption is unonditionally valid. Those that takethe latter ourse often build on mehanisms that are notmerely synhronous, but synhronized and time-triggered:the loks of the di�erent proessors are kept lose together,proessors perform their ations at spei� times, and tasksand messages are globally and statially sheduled. Thebuses and operating systems used in these ontexts are spe-ialized and dediated to satisfation of the synhrony hy-pothesis [4℄. The Honeywell SAFEbusTM [5,6℄ that providesthe safety-ritial bakplane for the Boeing 777 AirplaneInformation Management System (AIMS) [7, 8℄, the on-trol system for the Shinkansen (Japanese Bullet Train) [9℄,and the Time-Triggered Protool (TTP) for safety-ritialautomobile funtions [10℄ all use this approah.A number of basi funtions have been identi�ed thatprovide important building bloks in the onstrutionof fault-tolerant synhronous systems [11, 12℄; these in-lude onsensus (also known as interative onsistenyand Byzantine agreement) [13℄, reliable and atomi broad-ast [14℄, and group membership [15℄. Numerous algo-rithms have been developed to perform these funtions and,beause of their ritiality and subtlety, several of themhave been subjeted to detailed formal [16{18℄ and me-hanially heked [19{23℄ veri�ations, as have their om-bination into larger funtions suh as diagnosis [24℄, andtheir synthesis into a fault-tolerant arhiteture based onative (state-mahine) repliation [25, 26℄.Formal, and espeially mehanially-heked, veri�a-tion of these algorithms is still something of a tour de fore,however. To have real impat on pratie, we need to re-due the diÆulty of formal veri�ation in this domain to aroutine and largely automated proess. In order to ahievethis, we should study the soures of diÆulty in existingtreatments and attempt to redue or eliminate them. Inpartiular, we should look for opportunities for systematitreatments: these may allow aspets ommon to a range ofalgorithms to be treated in a uniform way, and may even



652 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 25, NO. 5, SEPTEMBER/OCTOBER 1999allow some of those aspets to be broken out and veri�edin a generi manner one and for all.There is a wide range in the apparent level of diÆ-ulty and detail in the mehanized veri�ations ited above.Some of the di�erenes an be attributed to the ways inwhih the problems are formalized or to the di�erent re-soures of the formal spei�ation languages and theoremprovers employed. For example, Rushby [19℄ and Bevierand Young [23℄ desribe mehanially heked formal ver-i�ations of the same \Oral Messages" algorithm [27℄ forthe onsensus problem that were performed using di�erentveri�ation systems. Young [28℄ argues that di�erenes inthe diÆulty of these treatments (that of [19℄ is generallyonsidered simpler and learer than that of [23℄) are due tohoies in the way things are formalized, and not to the a-pabilities of the tools employed. We may assume that suhdi�erenes will be redued or eliminated as experiene isgained and the better hoies beome more widely known.More signi�ant than di�erenes due to how things areformalized are di�erenes due to what is formalized, andthe level of detail onsidered neessary. For example, bothveri�ations of the Oral Messages algorithm mentionedabove speify the algorithm as a funtional program andthe proofs are onventional indutions. Following this ap-proah, the speial ase of a two-round algorithm (a vari-ant of the algorithm known as OM(1)) is spei�ed in [22℄in a ouple of lines and its veri�ation is almost ompletelyautomati. In ontrast, the treatment of OM(1) in [18℄is long and detailed and quite ompliated. The reasonfor its length and omplexity is that this treatment ex-pliitly onsiders the distributed, message passing hara-ter of the intended implementation, and alulates tightreal-time bounds on the timeouts employed. All these de-tails are abstrated away in the treatments using funtionalprograms|but this does not mean these veri�ations areinferior to the more detailed analyses: on the ontrary, Iwould argue that they apture the essene of the algorithmsonerned (i.e., they explain why the algorithm is faulttolerant) and that message-passing and real-time boundsare implementation details that ought to be handled sep-arately. In fat, most of the papers that introdue thealgorithms onerned, and the standard textbook [29℄, usea similarly abstrat and time-free treatment. On the otherhand, it is undeniably important also to verify a spei�a-tion that is reasonably lose to the intended implementa-tion, and to establish that the orret timeouts are used,and that the onrete fault modes math those assumed inthe more abstrat treatment.The natural resolution for these ompeting laims forabstratness and onreteness is a hierarhial approah inwhih the essene of the algorithm is veri�ed in an abstratformulation, and a more realisti formulation is then shownto be a re�nement, in some suitable sense, of the abstratformulation. This may not always be possible (e.g., forevent-based systems) but, when it is, we may hope thatthe re�nement argument will be a routine alulation oftimeouts and other onrete details.

The purpose of this paper is to present suh a hierar-hial treatment for the important ase of time-triggeredimplementations of round-based algorithms, and to showthat most of the details of re�nement to a onrete formu-lation an be worked out one and for all.II. Round-Based AlgorithmsIn her textbook [29℄, Nany Lynh identi�es algorithmsfor the synhronous system model with those that exeutein a series of \rounds." Rounds have two phases: in the�rst, eah proessor1 sends a message to some or all of theother proessors (di�erent messages may be sent to di�er-ent proessors; the messages depend on the urrent state ofthe sending proessor); in the seond phase, eah proessorhanges its state in a manner that depends on its urrentstate and the olletion of messages it reeived in the �rstphase. There is no notion of real-time in this model: mes-sages are transferred \instantaneously" from senders to re-ipients between the two phases. The proessors operate inlokstep: all of them perform the two phases of the urrentround, then move on to the �rst phase of the next round,and so on.Several of the algorithms of interest here were expliitlyformulated in terms of rounds when �rst presented, andothers an easily be reast into this form. For example, theOral Messages algorithm for onsensus, OM(1), requirestwo rounds as follows.Algorithm OM(1).Round 0:Communiation Phase: A distinguished proessor alledthe transmitter sends a value to all the other proes-sors, whih are alled reeivers ; the reeivers send nomessages.Computation Phase: Eah reeiver stores the value re-eived from the transmitter in its state.Round 1:Communiation Phase: Eah reeiver sends the value itreeived from the transmitter to all the other reeivers;the transmitter sends no message.Computation Phase: Eah reeiver sets the \deision"omponent of its state to the majority value amongthose reeived from the other reeivers and that(stored in its state) reeived from the transmitter.In the presene of one or fewer arbitrary faults, OM(1)ensures that all nonfaulty reeivers deide on the samevalue and, if the transmitter is nonfaulty, that value is theone sent by the transmitter.There are two di�erent ways to implement round-basedalgorithms. In the time-triggered approah, the implemen-tation is very lose to the model: the proessors are loselysynhronized (e.g., to within a ouple of bit-times in thease of SAFEbus) and all run a ommon, deterministi1I refer to the partiipants as proessors to stress that they areassumed to fail independently; the agents that perform these ationswill atually be proesses.



RUSHBY: FORMAL VERIFICATION FOR TIME-TRIGGERED ALGORITHMS 653shedule that will ause them to exeute spei� algorithmsat spei� times (aording to their loal loks). The se-quening of phases and rounds is similarly driven by theloal loks, and ommuniation bandwidth is also allo-ated as dediated, �xed, time slots. The �rst (ommuni-ation) phase in eah round must be suÆiently long thatall nonfaulty proessors will be able to exhange messagessuessfully; onsequently, no expliit timeouts are needed:a message that has not arrived by the time the seond(omputation) phase of a round begins is impliitly timedout.Whereas the alloation of resoures is statially deter-mined in the time-triggered approah, in the other, event-triggered, approah, resoures are sheduled dynamiallyand proessors respond to events as they our. In this im-plementation style, the initiation of a protool may be trig-gered by a loal lok, but subsequent phases and roundsare driven by the arrival of messages. In Lamport andMerz' treatment of OM(1), for example, a reeiver thathas reeived a message from the transmitter may forwardit immediately to the other reeivers without waiting forits lok to indiate that the next round has started (inother words, the paing of phases and rounds is deter-mined loally by the availability of messages). Unlike thetime-triggered approah, messages may have to be expli-itly timed out in the event-triggered approah. For exam-ple, in Lamport and Merz' treatment of OM(1), a reeiverwill not wait for relayed messages from other reeivers be-yond 2Æ + � past the start of the algorithm (where Æ is themaximum ommuniation delay and � the maximum timethat it an take a reeiver to deide to relay a message).Event-triggered systems are generally easier to onstrutthan time-triggered ones (whih require a big planning andsheduling e�ort upfront) and ahieve better CPU utiliza-tion under light load. On the other hand, Kopetz [4,10,30℄argues persuasively that time-triggered systems are morepreditable (and hene easier to verify), easier to test, eas-ier to ompose together, make better use of broadast om-muniations bandwidth, an operate loser to apaity, andare generally to be preferred for truly ritial appliations.The previously mentioned SAFEbus for the Boeing 777, theShinkansen train ontrol system, and the TTP protool forautomobiles are all time-triggered.Our goal is a systemati method for transforming round-based protools from very abstrat funtional programs,whose properties are omparatively easy to formally andmehanially verify, down to time-triggered implementa-tions with appropriate timing onstraints and onsidera-tion for realisti fault modes. The transformation is a-omplished in two steps: �rst from a funtional program toan (untimed) synhronous system, then to a time-triggeredimplementation. The �rst step is systemati but must beundertaken separately for eah algorithm (see Setion IV);the other is generi and deals with a large lass of algo-rithms and fault assumptions in a single veri�ation. Thisgeneri treatment of the seond step is desribed in thefollowing setion.

III. Implementation of Round-Based Algorithmsas Time-Triggered SystemsThe issues in transforming an untimed round-based al-gorithm to a time-triggered implementation are basiallyto ensure that the timing and duration of events in theommuniation phase are suh that messages between non-faulty proessors always arrive in the ommuniation phaseof the same round, and fault modes are interpreted ap-propriately. To verify the transformation, we introdueformal models for untimed synhronous systems and fortime-triggered systems, and then establish a simulation re-lation between them. We verify the simulation by meansof a traditional mathematial proof, and then desribe amehanized veri�ation performed using the PVS veri�a-tion system [31℄.A. Synhronous SystemsFor the untimed ase, we use Nany Lynh's formalmodel for synhronous systems [29, Chapter 2℄, with someslight adjustments to the notation that make it easier tomath up with the mehanially veri�ed treatment.De�nition 1: Untimed Synhronous Systems.We assume a set mess of messages that inludes a distin-guished value null , and a set pro of proessors. Proessorsare partially onneted by direted hannels ; eah hannelan be thought of a bu�er that an hold a single message.Assoiated with eah proessor p are the following sets andfuntions.� A set of proessors out-nbrsp to whih p is onneted byoutgoing hannels.� A set of proessors in-nbrsp to whih p is onneted byinoming hannels; the funtion inputsp : in-nbrsp ! messgives the message ontained in eah of those hannels.� A set statesp of states with a nonempty subset initp ofinitial states. It is onvenient to assume that there is aomponent in the state that ounts rounds; this ounter iszero in initial states.� A funtion msgp : statesp � out-nbrsp ! mess that de-termines the message to be plaed in eah outgoing hannelin a way that depends on the urrent state.� A funtion transp : statesp � inputsp ! statesp that de-termines the next state, in a way that depends on the ur-rent state and the messages reeived in the inoming han-nels.The system starts with eah proessor in an initial state.All proessors p then repeatedly perform the following twoations in lokstep.Communiation Phase: apply the message generationfuntion msgp to the urrent state to determine the mes-sages to be plaed in eah outgoing hannel. (The mes-sage value null is used to indiate \no message.")Computation Phase: apply the state transition funtiontransp to the urrent state and the message held in eah



654 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 25, NO. 5, SEPTEMBER/OCTOBER 1999inoming hannel to yield the next state (with the roundounter inremented).2A partiular algorithm is spei�ed by supplying interpre-tations to the various sets and funtions identi�ed above.A.1 FaultsDistributed algorithms are usually required to operate inthe presene of faults: the spei� kinds and numbers offaults that may arise onstitute the fault hypothesis. Usu-ally, proessor faults are distinguished from ommuniationfaults; the former an be modeled by perturbations to thetransition funtions transp , and the latter by allowing themessages reeived along a hannel to be hanged from thosesent. Following [29, page 20℄, an exeution of the system isthen an in�nite sequene of triples(S0;M0; N0); (S1;M1; N1); (S2;M2; N2); : : :where Sr is the global state at the start of round r, Mris the olletion of messages plaed in the ommuniationhannels, and Nr is the (possibly di�erent) olletion ofmessages reeived.Beause our goal is to show that a time-triggered im-plementation ahieves the same behavior as the untimedsynhronous system that serves as its spei�ation, we willneed some way to ensure that faults math up aross thetwo systems. For this reason, I prefer to model proessorand ommuniation faults by perturbations to the transpandmsgp funtions, respetively (rather than allowing mes-sages reeived to di�er from those sent); no faulty behaviorsare lost by this hange. In partiular, I assume that theurrent round number is reorded as part of the state andthat if proessor p is faulty in round r, with urrent states and the values of its input hannels represented by thearray i, then transp(s ; i) may yield a value other than thatintended; similarly, if the hannel from p to q is faulty, thenthe value msgp(s)(q) may be di�erent than intended (andmay be null). Exatly how these values may di�er fromthose intended depends on the fault assumption. For ex-ample, a rash fault in round r results in transp(s ; i) = sand msg(s)(q) = null for all i, q, and states s whose roundomponent is r or greater. Notie that although transpand msgp may no longer be the intended funtions, theyare still funtions; in fat, there is no need to suppose thatthe transp and msgp were hanged when the fault arrivedin round r: sine the round ounter is part of the state, wean just assume these funtions behave di�erently than in-tended when applied to states having round ounters equalor greater than r.The bene�t of this treatment is that, sine transp andmsgp are uninterpreted, they an represent any algorithmand any fault behavior whatsoever; if we an show that atime-triggered system supplied with arbitrary transp andmsgp funtions has the same behavior as the untimed syn-hronous system supplied with the same funtions, thenthis demonstration enompasses behavior in the presene

of faults as well as the fault-free ase. Furthermore, sinewe no longer need to hypothesize that faults an ause dif-ferenes between those messages sent and those reeived(we instead assume the fault is in msgp and the \di�erent"messages were atually sent), exeutions an be simpli�edfrom sequenes of triples to simple sequenes of statesS0; S1; S2; : : :where Sr is the global state at the start of round r. Conse-quently, to demonstrate that a time-triggered system im-plements the behavior spei�ed by an untimed synhronoussystem, we simply need to establish that both systems havethe same exeution sequenes; by mathematial indution,this will redue to showing that the global states of the twosystems are the same at the start of eah round r.B. Time-Triggered SystemsFor the time-triggered system, we elaborate the modelof the previous setion as follows.Eah proessor is supplied with a lok that provides areasonably aurate approximation to \real" time. Follow-ing [32℄, we distinguish two notions of time: loktime, de-noted C is the loal notion of time supplied by eah proes-sor's lok, while realtime, denoted R is an abstrat globalquantity. We follow the usual onvention and denote lok-time quantities by upper ase Roman or Greek letters, andrealtime quantities by lower ase letters.Formally, proessor p's lok is a funtion Cp : R ! C.The intended interpretation is that Cp(t) is the value of p'slok at realtime t.2 The loks of nonfaulty proessors areassumed to be well-behaved in the sense that they satisfythe following assumptions.Assumption 1: Monotoniity. Nonfaulty loks aremonotoni inreasing funtions:t1 < t2 � Cp(t1) < Cp(t2):3Satisfying this assumption requires some are in implemen-tation, beause lok synhronization algorithms an makeadjustments to loks that ause them to jump bakwards.Lamport and Melliar-Smith desribe some solutions [32℄,and a partiularly lever and eonomial tehnique for onepartiular algorithm is introdued by Torres-Pomales [33℄and formally veri�ed by Miner and Johnson [34℄. Shmukand Cristian [35℄ examine the general ase and show thatmonotoniity an be ahieved with no loss of preision.Assumption 2: Clok Drift Rate. Nonfaulty loks driftfrom realtime at a rate bounded by a small positive quan-tity �:(1� �)(t1 � t2) � Cp(t1)� Cp(t2) � (1 + �)(t1 � t2):This assumption onerns the hardware loks employedInexpensive devies an ahieve � < 10�6.2In the terminology of [32℄, these are atually \inverse" loks.3The symbol � indiates logial impliation.



RUSHBY: FORMAL VERIFICATION FOR TIME-TRIGGERED ALGORITHMS 655Assumption 3: Clok Synhronization. The loks ofnonfaulty proessors are synhronized within some smallloktime bound �:jCp(t)� Cq(t)j � �:This assumption an be disharged by a suitable lok syn-hronization algorithm. There are many suh algorithms,several of whih have been formally veri�ed [36{41℄.De�nition 2: Time-Triggered Systems.The feature that haraterizes a time-triggered system isthat all ativity is driven by a global shedule: a proessorperforms an ation when the time on its loal lok mathesthat for whih the ation is sheduled. In our formal model,the shedule is a funtion shed : N ! C, where shed(r) isthe loktime at whih round r should begin. The durationof the r'th round is given bydur(r) = shed(r + 1 )� shed(r):In addition, there are �xed global loktime onstantsD and P that give the o�sets into eah round when mes-sages are sent, and when the omputation phase begins,respetively. Obviously, we need the following onstraint.Constraint 1: 0 < D < P < dur(r).Notie that the duration of the ommuniation phase is�xed (by P ); it is only the duration of the omputationphase that an di�er from one round to another.4The states, messages, and hannels of a time-triggeredsystem are the same as those for the orresponding un-timed synhronous system, as are the transition and mes-sage funtions. In addition, proessors have a one-plaebu�er for eah inoming message hannel.The time-triggered system operates as follows. Initiallyeah proessor is in an initial state, with its round ounterzero and its lok synhronized with the others and ini-tialized so that Cp(t0) � shed(0 ), where t0 is the urrentrealtime. All proessors p then repeatedly perform the fol-lowing two ations.Communiation Phase: This begins when the loal lokreads shed (r), where r is the urrent value of the roundounter. Apply the message generation funtion msgp tothe urrent state to determine the messages to be senton eah outgoing hannel. The messages are plaed inthe hannels at loal lok time shed(r) +D . Inomingmessages that arrive during the ommuniation phase(i.e., no later than shed (r)+P) are moved to the orre-sponding input bu�er where they remain stable throughthe omputation phase. These bu�ers are initialized tonull at the beginning of eah ommuniation phase and4There is no diÆulty in generalizing the treatment to allow thetime at whih messages are sent, and the duration of the ommunia-tion phase, to vary from round to round. That is, the �xed loktimeonstants D and P an be systematially replaed by funtions D(r)and P (r), respetively. This generalization was developed during themehanized veri�ation; see Setion III-D.

their value is unspei�ed if more than one message ar-rives on their assoiated ommuniations hannel in agiven ommuniation phase.Computation Phase: This begins at loal lok timeshed (r)+P . Apply the state transition funtion transpto the urrent state and the messages held in the in-put bu�ers to yield the next state. The omputationwill be omplete at some loal lok time earlier thanshed (r +1 ). Inrement the round ounter, and wait forthe start of the next round.2Message transmission in the ommuniation phase is ex-plained as follows. We use sent(p; q ;m; t) to indiate thatproessor p sent message m to proessor q (a member ofout-nbrs(p)) at real time t (whih must satisfy Cp(t) =shed (r) +D for some round r). We use rev(q ; p;m; t) toindiate that proessor q reeived message m from proes-sor p (a member of in-nbrs(q)) at real time t (whih mustsatisfy the onstraint shed(r) � Cq (t) < shed (r) +P forsome round r). These two events are related as follows.Assumption 4: Maximum Delay. When p and q are non-faulty proessors,sent(p; q ;m; t) � rev(q ; p;m; t + d)for some 0 � d � Æ.In addition, we require no spontaneous generation of mes-sages (i.e., rev(q ; p;m; t) only if there is a orrespondingsent(p; q ;m; t 0) with t0 < t).Provided there is exatly one rev(q ; p;m; t) event foreah p in the ommuniation phase for round r on pro-essor q (as there will be if p is nonfaulty), that uniquemessage m is moved into the input bu�er assoiated withp on proessor q before the start of the omputation phasefor that round and remains there throughout the phase.Beause the loks are not perfetly synhronized, it ispossible for a message sent by a proessor with a fast lokto arrive while its reipient is still on the previous round.It is for this reason that we do not send messages until Dloktime units into the start of the round. In general, weneed to ensure that a message from a proessor in roundr annot arrive at its destination before that proessor hasstarted round r, nor after it has �nished the ommunia-tion phase for round r. We must establish onstraints onparameters to ensure these onditions are satis�ed.Now proessor p sends its message to proessor q, say, atrealtime t where Cp(t) = shed(r) + D and, by the maxi-mum delay assumption, the message will arrive at realtimet+ d where d � Æ. We need to be sure thatshed(r) � Cq (t + d) < shed(r) + P : (1)By lok synhronization, we have jCq(t) � Cp(t)j � �;substituting Cp(t) = shed (r) +D we obtain�� � Cq(t)� shed(r)�D � � : (2)



656 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 25, NO. 5, SEPTEMBER/OCTOBER 1999By the monotoni loks assumption, this givesshed (r) +D � � � Cq(t) � Cq(t + d)and so the �rst inequality in (1) an be ensured byConstraint 2: D � �.The lok synhronization alulation (2) above alsogives Cq(t) � shed(r) +D + �and the lok drift rate assumption gives(1� �)d � Cq(t+ d)� Cq(t) � (1 + �)dfrom whih it follows thatCq(t+ d) � Cq(t) + (1 + �)d:Combining these and realling that d � Æ, the seond in-equality in (1) an be ensured byConstraint 3: P > D +�+ (1 + �)Æ.B.1 FaultsWe will prove that a time-triggered system satisfyingthe various assumptions and onstraints identi�ed aboveahieves the same behavior as an untimed synhronous sys-tem supplied with the same transp and msgp funtions. Iexplained earlier that faults are assumed to be modeled inthe transp and msgp funtions; by using the same fun-tions in both the untimed and time-triggered systems, weensure that the latter inherits the same fault behavior andany fault-tolerane properties of the former. Thus, if wehave an algorithm that has been shown, in its untimed for-mulation, to ahieve some fault-tolerane properties (e.g.,\this algorithm resists a single Byzantine fault or two rashfaults"), then we may onlude that the implementationhas the same properties.This simple view is somewhat ompromised, however,beause the time-triggered system ontains a mehanism|time triggering|that is not present in the untimed system.This mehanism admits faults (notably, loss of lok syn-hronization) that do not arise in the untimed system.The implementation of a time-triggered system is re-quired to satisfy the synhrony hypothesis and the four as-sumptions about nonfaulty loks listed previously. Thesean be ahieved using a suitable fault-tolerant lok syn-hronization algorithm. The algorithm and its various pa-rameters must be hosen to tolerate the number and kindsof faults spei�ed for the system onerned. For exam-ple, the lok synhronization algorithm of TTP (whihis based on that of [42℄) has reently been formally veri-�ed using PVS, and shown to satisfy the assumptions werequire [41℄. However, a lok synhronization algorithmonly onstrains the behavior of nonfaulty loks: a proes-sor with a faulty lok may behave in a way that violatesthe fault model of our time-triggered onstrution. For ex-ample, if one proessor's lok drifts to suh an extent thatit is in the wrong round, then it will exeute the transition

and message funtions appropriate to that round and willsupply systematially inorret messages to the other pro-essors. This ould appear as Byzantine behavior at thelevel of the untimed synhronous algorithm. Less drastisynhronization faults may leave a proessor in the rightround, but sending messages at the wrong time, so thatthey arrive during the omputation phases of other (or-ret) proessors, possibly disrupting their ativity.The implementation of the time-triggered system mustinlude mehanisms that transform faults (suh as thosedue to loss of lok synhronization) that are outside themodel onsidered here, into those that are adequately mod-eled as perturbations to the transp and msgp funtions.For example, the round number should be inluded inmessages, so that those from the wrong round an be re-jeted at the message ommuniation layer (thereby redu-ing the manifestation of suh a synhronization fault to fail-silene). TTP goes further and inludes all ritial state in-formation (operating mode, time, and group membership)in its messages as part of the CRC alulation [10℄; mes-sages from a proessor that is out of step with respet toany of these items will be rejeted by the TTP ontrollersof other proessors.The impat of messages that arrive in the right roundbut at the wrong time an be partly ountered by movingmessages from their input hannels to an input bu�er at thestart of the ommuniation phase: this shields the reeivingproessor from any hanges in hannel ontents during theomputation phase. However, the performane of the om-putation phase may be degraded by the need to handleinterrupts from messages arriving unexpetedly, therebyhallenging the synhrony hypothesis. Strong eliminationof suh timing faults is ahieved in pratie by tehniquesto ontrol the \babbling idiot" fault mode. This fault modeours when a faulty or unsynhronized proessor transmitsat arbitrarily wrong times. As well as undesirable mani-festations at the synhronous system level, this fault is po-tentially devastating to the underlying implementation ifthat implementation multiplexes its ommuniation han-nels onto shared buses|beause the faulty proessor anthen disrupt the ommuniations of nonfaulty proessors.Babbling is eliminated by use of a Bus Interfae Unit (BIU)that only grants its proessor aess to the bus at appropri-ate times. For example, in SAFEbus, proessors are paired,with eah member of a pair ontrolling the other's BIU; inTTP, the BIU has an independent lok and independentknowledge of the shedule [43℄. In both ases, babbling anour only if there are undeteted double failures. Thesemehanisms prevent messages being sent at inappropriatetimes and ensure that the fault modes of the time-triggeredimplementation orrespond those assumed for the untimedsynhronous system.C. Veri�ationWe now need to show that a time-triggered systemahieves the same behavior as its orresponding untimedsynhronous system. We do this in the traditional way by



RUSHBY: FORMAL VERIFICATION FOR TIME-TRIGGERED ALGORITHMS 657establishing a simulation relationship between the states ofan exeution of the time-triggered system and those of theorresponding untimed exeution. It is usually neessary toinvent an \abstration funtion" to relate the states of animplementation to those of its spei�ation; here, however,the states of the two systems are the same, and the onlydiÆult point is to selet the moments in time at whihstates of the time-triggered system should orrespond tothose of the untimed system.The untimed system makes progress in disrete globalsteps: all omponent proessors perform their ommunia-tion and omputation phases in lokstep, so it is possibleto speak of the omplete system being in a round r. Theproessors of the time-triggered system, however, progressseparately at a rate governed by their internal loks, whihare imperfetly synhronized, so that one proessor maystill be on round r while another has moved on to roundr+1. We need to establish some onsistent \ut" throughthe time-triggered system that provides a global state inwhih all proessors are at the same point in the sameround. In some treatments of distributed systems, it is notneessary for the global ut to orrespond to a snapshot ofthe system at a partiular realtime instant: the ut maybe an abstrat onstrution that has no diret realization.In our ase, however, it is natural to assume that the time-triggered system is used in some ontrol appliation andthat outputs of the individual proessors (i.e., some fun-tions of their states) are used to provide redundant ontrolsignals in real time|for example, a typial appliation willbe one in whih the outputs of the proessors are subjetedto majority voting, or separately drive some atuator ina \fore-summing" on�guration.5 Consequently, we dowant to identify the ut through the system with its globalstate at a spei� real time instant.In partiular, we need some realtime instant gs(r) thatorresponds to the \global start" of the r'th round. Wewant this instant to be one in whih all nonfaulty proessorshave started the r'th round, but have not yet started itsomputation phase (when they will hange their states).We an ahieve this by de�ning the global start timegs(r) for round r to be the realtime when the proessor withthe slowest lok begins round r. That is, gs(r) satis�esthe following onditions:8q : Cq(gs(r)) � shed (r); (3)and 9p : Cp(gs(r)) = shed(r) (4)(intuitively, p is the proessor with the slowest lok).Sine the proessors are not perfetly synhronized, weneed to be sure that they annot drift so far apart that someproessor q has already reahed its omputation phase|oris even on the next round|at gs(r). Thus, we need8q : Cq(gs(r)) < shed (r) + P : (5)5For example, the outputs of di�erent proessors may energize sep-arate oils of a single solenoid, or multiple hydrauli pistons may belinked to a single shaft (see, e.g., [44, Figure 3.2{2℄).

By (3) we have Cq(gs(r)) = shed(r) +X for some X � 0,and (4) plus the lok synhronization assumption thengives X � �. Now proessor q will still be on round r andin its ommuniation phase provided X < P and this isensured by the inequality just derived when taken togetherwith Constraint 3.We now wish to establish that the global state of a time-triggered system at time gs(r) will be the same as that ofthe orresponding untimed synhronous system at the startof its r'th round. We denote the global state of the untimedsystem at the start of the r'th round by gu(r) (for globaluntimed). Global states are simply arrays of the states ofthe individual proessors, so that the state of proessor pat this point is gu(r)(p). Similarly, the global state of thetime-triggered system at time gs(r) is denoted gt(r) (forglobal timed), and the state of its proessor p is gt(r)(p).We an now state and prove the desired result.Theorem 1: Given the same initial states, the globalstates of the untimed and time-triggered systems are thesame at the beginning of eah round:8r : gt(r) = gu(r):Proof: The proof is by indution.Base ase. This is the ase r = 0. Both systems are thenin their initial states whih, by hypothesis, are the same.Indutive step. We assume the result for r and prove itfor r + 1. For the untimed ase, the message inputsq(p)from proessor p reeived by q in the r'th round ismsgp(gu(r)(p))(q).6By the indutive hypothesis, the global state of proessorp in the time-triggered system at time gs(r) is gu(r)(p)also. Furthermore, proessor p is in its ommuniationphase (ensured by (5)) and has not hanged its state sinestarting the round. Thus, at loal loktime shed(r) +D ,it sends msgp(gu(r)(p))(q) to q. By (1), this is reeivedby q while in the ommuniation phase of round r, andtransferred to its input bu�er inputsq(p). Thus, the or-responding proessors of the untimed and time-triggeredsystems have the same state and input omponents whenthey begin the omputation phase of round r. The samestate transition funtions transp are then applied by theorresponding proessors of the two systems to yield thesame values for the orresponding elements of gu(r + 1)and gt(r + 1), thereby ompleting the indutive proof.D. Mehanized Veri�ationThe treatment of synhronous and time-triggered sys-tems in Setions III-A and III-B has been formally spei-�ed in the language of the PVS veri�ation system [31℄,and the veri�ation of Setion III-C has been mehan-ially heked using PVS's theorem prover. The PVS6For the bene�t of those not used to reading Curried higher-orderfuntion appliations, this is deoded as follows: gu(r)(p) is p's statein round r; p's message funtion msgp applied to that state givesmsgp(gu(r)(p)), whih is an array of the messages sent to its outgoinghannels; q's omponent of that array is msgp(gu(r)(p))(q).



658 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 25, NO. 5, SEPTEMBER/OCTOBER 1999language is a higher-order logi with subtyping, and for-malization of the semiformal treatment in Setions III-Aand III-B was quite straightforward. The PVS theoremprover inludes deision proedures for integer and reallinear arithmeti and mehanized heking of the alu-lations in Setion III-C, and the proof of the Theorem,were also quite straightforward. The omplete formaliza-tion and mehanial veri�ation took less than a day, andno errors were disovered. A desription, and the formalspei�ations and proofs themselves, are available at URLhttp://www.sl.sri.om/da97.html.While it is reassuring to know that the semiformal de-velopment of the previous setions withstands mehani-al srutiny, we have argued before (for example, [31, 39℄)that mehanized formal veri�ation provides several bene-�ts in addition to the \erti�ation" of proofs. In partiu-lar, mehanization supports reliable and inexpensive explo-ration of alternative designs, assumptions, and onstraints.After ompleting the �rst version of the work reported here,I wondered whether the requirement that messages be sentat the �xed o�set D loktime units into eah round, andthat the omputation phase begin at the �xed o�set P ,might not be unduly restritive. It was the work of a fewminutes to generalize the formal spei�ation to allow theseo�sets to beome funtions of the round, and to adjust themehanized proofs. I ontend that orresponding revisionsto the semiformal development in Setions III-B and III-Cwould take longer than this, and that it would be diÆultto summon the fortitude to srutinize the revised proofswith the same are as the originals.IV. Round-Based Algorithms as FuntionalProgramsThe Theorem of Setion III-C ensures that synhronousalgorithms are orretly implemented by time-triggered im-plementations that satisfy the various assumptions, on-straints, and onstrutions introdued in the previous se-tion. The next (though logially preeding) step is to askhow one might verify properties of a partiular algorithmexpressed as an untimed synhronous system.Although simpler than its time-triggered implementa-tion, the spei�ation of an algorithm as a synhronoussystem is not espeially onvenient for formal (and par-tiularly mehanized) veri�ation beause it requires rea-soning about attributes of imperative programs: expliitstate and ontrol. It is generally easier to verify funtional,rather than imperative, programs beause these representstate and ontrol in an appliative manner that an be ex-pressed diretly in onventional logi.There is a fairly systemati transformation between syn-hronous systems and funtional programs that an easethe veri�ation task by allowing it to be performed ona funtional program. I illustrate the idea (whih omesfrom Bevier and Young [23℄) using the OM(1) algorithmfrom Setion II. Beause that algorithm has already beenintrodued as a synhronous system, I will illustrate itstransformation to a funtional program; one the tehnique

beomes familiar, it is easy to perform the transformationin the other diretion.We begin by introduing a funtion send(r ; v ; p; q) torepresent the sending of a message with value v from pro-essor p to proessor q in round r. The value of the funtionis the message reeived by q. If p and q are nonfaulty, thenthis value is v:nonfaulty(p) ^ nonfaulty(q) � send(r ; v ; p; q) = v ;otherwise it depends on the fault modes onsidered (in theByzantine ase it is left entirely unonstrained, as here).If T represents the transmitter, v its value, and q anarbitrary reeiver, then the ommuniation phase of the�rst round of OM(1) is represented bysend(0 ; v ;T ; q):The omputation phase of this round simply moves themessages reeived into the states of the proessors on-erned, and an be ignored in the funtional treatment(though see Footnote 7).In the ommuniation phase of the seond round, eahproessor q sends the value reeived in the �rst round (i.e.,send(0 ; v ;T ; q)) on to the other reeivers. If p is one suhreeiver, then this is desribed by the funtional omposi-tion send(1 ; send (0 ; v ;T ; q); q ; p): (6)In the omputation phase for the seond round, proessorp gathers all the messages reeived in the ommuniationphase and subjets them to majority voting.7 Now (6) rep-resents the value p reeives from q, so we need to gathertogether in some way the values in the messages p reeivesfrom all the other reeivers q, and use that ombinationas an argument to the majority vote funtion. How this\gathering together" is represented will depend on the re-soures of the spei�ation language and logi onerned:in the treatment using the Boyer-Moore logi, for example,it is represented by a list of values [23℄. In a higher-orderlogi suh as PVS [31℄, however, it an be represented bya funtion, spei�ed as a �-abstration:�q : send(1 ; send (0 ; v ;T ; q); q ; p)(i.e., a funtion that, when applied to q, returns the valuethat p reeived from q).Majority voting is represented by a funtion maj thattakes two arguments: the \partiipants" in the vote, anda funtion over those partiipants that returns the valueassoiated with eah of them. The funtion maj returns themajority value if one exists; otherwise some funtionallydetermined value. (This behavior an either be spei�ed7 In the formulation of the algorithm as a synhronous system,p votes on the messages from the other reeivers, and the messagethat it reeived diretly from the transmitter, whih it has saved inits state. In the funtional treatment, q inludes itself among thereipients of the message that it sends in the ommuniation phaseof the seond round, and so the vote is simply over messages reeivedin that round.



RUSHBY: FORMAL VERIFICATION FOR TIME-TRIGGERED ALGORITHMS 659axiomatially, or de�ned onstrutively using an algorithmsuh as Boyer and Moore's linear time MJRTY [45℄.) Thus,p's deision in the omputation phase of the seond roundis represented bymaj (rvrs ; �q : send(1 ; send (0 ; v ;T ; q); q ; p))where rvrs is the set of all reeiver proessors. We an usethis formula as the de�nition for a higher-order funtionOM1(T; v) whose value is a funtion that gives the dei-sion reahed by eah reeiver p when the (possibly faulty)transmitter T sends the value v :OM1(T; v)(p) (7)= maj (rvrs ; �q : send(1 ; send(0 ; v ;T ; q); q ; p)):The properties required of this algorithm are the follow-ing, whenever the number of reeivers is three or more, andat most one proessor is faulty.Requirement 1: Agreementnonfaulty(p) ^ nonfaulty(q)� OM1(T; v)(p) = OM1(T; v)(q);Requirement 2: Validitynonfaulty(T ) ^ nonfaulty(p) � OM1 (T ; v)(p) = v :De�nition (7) and the requirements for Agreement and Va-lidity stated above are aeptable as spei�ations to PVSalmost as given (PVS requires us to be a little more ex-pliit about the types and quanti�ation involved). Usinga onstrutive de�nition for maj, PVS an prove Agree-ment and Validity for a spei� number of proessors (e.g.,4) ompletely automatially. For the general ase of n � 4proessors, PVS is able to prove Agreement with only asingle user-supplied proof diretive, while Validity requireshalf a dozen (the only one requiring \insight" is a ase-spliton whether the transmitter is faulty).Not all synhronous systems an be so easily transformedinto a reursive funtion, nor an their properties alwaysbe formally veri�ed so easily. Nonetheless, I believe theapproah has promise for many algorithms of pratial in-terest. V. ConlusionMany round-based fault-tolerant algorithms an be for-mulated as synhronous systems. I have shown that syn-hronous systems an be implemented as time-triggeredsystems and have proved that, provided are is taken withfault modes, the orretness and fault-tolerane propertiesof an algorithm expressed as a synhronous system are in-herited by its time-triggered implementation. The proofidenti�es neessary timing onstraints and is independentof the partiular algorithm onerned; it an be onsidereda more general and abstrat treatment of the analysis per-formed for a partiular system by Di Vito and Butler [46℄.The relative simpliity of the proof supports the argument

that time-triggered systems allow for straightforward anal-ysis and should be preferred in ritial appliations for thatreason [30℄.In reent work, Pfeifer, Shwier, and von Henke of Uni-versit�at Ulm have formally veri�ed the lok synhroniza-tion algorithm used in TTP [41℄. Their veri�ation wasonduted in PVS and expliitly inorporates the PVSspei�ation, desribed in Setion III-D, that establishesonditions under whih synhronous systems an be im-plemented as time-triggered systems. Thus, in partiular,their work provides a mehanially heked formal veri�a-tion that the TTP lok synhronization algorithm satis�esthe four assumptions of Setion III-B.I also showed, by example in Setion IV, how a round-based algorithm formulated as a synhronous system anbe transformed into a funtional \program" in a spei�a-tion logi, where its properties an be veri�ed more easily,and more mehanially. I have used the same tehniqueto mehanially verify the three-phase ommit algorithm(with its termination protool) [29, Setion 7.3.3℄. This isa more diÆult algorithm than OM(1) and its veri�ationrequires proof by indution (in this respet, it is ompara-ble to the r-round algorithm OM(r)), but its representationas a funtional program made the mehanized veri�ationquite straightforward and allowed it to be aomplished ina ouple of days. Reently, I have veri�ed a group member-ship algorithm based on [47℄ (whih is related to the groupmembership algorithm of TTP) using a similar representa-tion. This is a muh more hallenging exerise and requiredfurther methodologial development to make it tratable.I hope this paper has demonstrated that systematitransformations of fault-tolerant algorithms from fun-tional programs to synhronous systems to time-triggeredimplementations provides a methodology that an signi�-antly ease the spei�ation and assurane of ritial fault-tolerant systems. In ollaboration with olleagues fromUlm, I am urrently applying the methodology to someof the algorithms of TTP [10℄.AknowledgmentsDisussions with N. Shankar and advie from JosephSifakis were instrumental in the development of this work.Comments by the anonymous referees of both DCCA andTSE improved the presentation onsiderably.Referenes[1℄ Tushar D. Chandra, Vassos Hadzilaos, Sam Toueg, andBernadette Charron-Bost, \On the impossibility of group mem-bership," in Fifteenth ACM Symposium on Priniples of Dis-tributed Computing, Philadelphia, PA, May 1996, Assoiationfor Computing Mahinery, pp. 322{330.[2℄ Mihael J. Fisher, Nany A. Lynh, and Mihael S. Paterson,\Impossibility of distributed onsensus with one faulty proess,"Journal of the ACM, vol. 32, no. 2, pp. 374{382, Apr. 1985.[3℄ Rahid Guerraoui and Andr�e Shiper, \Consensus: The big mis-understanding," in 6th IEEE Workshop on Future Trends inDistributed Computing, Tunis, Tunisia, Ot. 1997, IEEE Com-puter Soiety, pp. 183{188.[4℄ Hermann Kopetz, Real-Time Systems: Design Prinples forDistributed Embedded Appliations, The Kluwer International
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