
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 25, NO. 5, SEPTEMBER/OCTOBER 1999 651Systemati
 Formal Veri�
ation for Fault-TolerantTime-Triggered AlgorithmsJohn RushbyAbstra
t|Many
riti
al real-time appli
ations are imple-mented as time-triggered systems. We present a systemati
way to derive su
h time-triggered implementations from al-gorithms spe
i�ed as fun
tional programs (in whi
h formtheir
orre
tness and fault-toleran
e properties
an be for-mally and me
hani
ally veri�ed with relative ease). Thefun
tional program is �rst transformed into an untimed syn-
hronous system, and then to its time-triggered implemen-tation. The �rst step is spe
i�
 to the algorithm
on
erned,but the se
ond is generi
 and we prove its
orre
tness.This proof has been formalized and me
hani
ally
he
kedwith the PVS veri�
ation system. The approa
h providesa methodology that
an ease the formal spe
i�
ation andassuran
e of
riti
al fault-tolerant systems.Keywords|Formal methods, formal veri�
ation, time-triggered algorithms, syn
hronous systems, PVS.I. Introdu
tionSYNCHRONOUS systems are distributed
omputer sys-tems where there are known upper bounds on the timethat it takes nonfaulty pro
essors to perform
ertain oper-ations, and on the time that it takes for a message sent byone nonfaulty pro
essor to be re
eived by another. The ex-isten
e of these bounds simpli�es the development of fault-tolerant systems be
ause nonfaulty pro
esses exe
uting a
ommon algorithm
an use the passage of time to predi
tea
h others' progress. This property
ontrasts with asyn-
hronous systems, where there are no upper bounds onpro
essing and message delays, and where it is thereforeprovably impossible to a
hieve
ertain forms of
onsistentknowledge or
oordinated a
tion in the presen
e of evensimple faults [1, 2℄.For these reasons, fault-tolerant systems for
riti
al
on-trol appli
ations in air
raft, trains, automobiles, and indus-trial plants are usually based on the syn
hronous approa
h,though they di�er in the extent to whi
h the basi
 me
ha-nisms of the system really do guarantee satisfa
tion of thesyn
hrony assumption.With systems based on
onventional \
ommer
ial o�the shelf" (COTS)
omponents, syn
hrony is merely anassumption|these systems employ s
heduling algorithmsthat
an miss deadlines, their operating systems admit thepossibility of bu�er over
ows, they use
ontention busessu
h as Ethernet, and they have other
hara
teristi
s thatThe author is with the Computer S
ien
e Laboratory, SRI Interna-tional, Menlo Park CA 94025 USA. Email: Rushby�
sl.sri.
omThis work was supported by the Air For
e OÆ
e of S
ienti�
 Re-sear
h, Air For
e Materiel Command, USAF, under
ontra
t F49620-95-C0044, by the National S
ien
e Foundation under
ontra
t CCR-9509931, and by NASA Langley Resear
h Center under
ontra
tNAS1-20334.

allow o

asional violations of
laimed time bounds. Vio-lation of the syn
hrony assumption may lead to failure ofthe higher-level system
omponents that depend on it, soadopting this assumption when it is only probabilisti
allyvalid has rami�
ations on overall system reliability. No-ti
e that adding timeouts does not make an asyn
hronoussystem syn
hronous [3℄.While probabilisti
 satisfa
tion of the syn
hrony assump-tion may be \good enough" for less
riti
al appli
ations,those that are truly
riti
al must either rest on weaker as-sumptions, or must be spe
ially
onstru
ted to ensure thatthe assumption is un
onditionally valid. Those that takethe latter
ourse often build on me
hanisms that are notmerely syn
hronous, but syn
hronized and time-triggered:the
lo
ks of the di�erent pro
essors are kept
lose together,pro
essors perform their a
tions at spe
i�
 times, and tasksand messages are globally and stati
ally s
heduled. Thebuses and operating systems used in these
ontexts are spe-
ialized and dedi
ated to satisfa
tion of the syn
hrony hy-pothesis [4℄. The Honeywell SAFEbusTM [5,6℄ that providesthe safety-
riti
al ba
kplane for the Boeing 777 AirplaneInformation Management System (AIMS) [7, 8℄, the
on-trol system for the Shinkansen (Japanese Bullet Train) [9℄,and the Time-Triggered Proto
ol (TTP) for safety-
riti
alautomobile fun
tions [10℄ all use this approa
h.A number of basi
 fun
tions have been identi�ed thatprovide important building blo
ks in the
onstru
tionof fault-tolerant syn
hronous systems [11, 12℄; these in-
lude
onsensus (also known as intera
tive
onsisten
yand Byzantine agreement) [13℄, reliable and atomi
 broad-
ast [14℄, and group membership [15℄. Numerous algo-rithms have been developed to perform these fun
tions and,be
ause of their
riti
ality and subtlety, several of themhave been subje
ted to detailed formal [16{18℄ and me-
hani
ally
he
ked [19{23℄ veri�
ations, as have their
om-bination into larger fun
tions su
h as diagnosis [24℄, andtheir synthesis into a fault-tolerant ar
hite
ture based ona
tive (state-ma
hine) repli
ation [25, 26℄.Formal, and espe
ially me
hani
ally-
he
ked, veri�
a-tion of these algorithms is still something of a tour de for
e,however. To have real impa
t on pra
ti
e, we need to re-du
e the diÆ
ulty of formal veri�
ation in this domain to aroutine and largely automated pro
ess. In order to a
hievethis, we should study the sour
es of diÆ
ulty in existingtreatments and attempt to redu
e or eliminate them. Inparti
ular, we should look for opportunities for systemati
treatments: these may allow aspe
ts
ommon to a range ofalgorithms to be treated in a uniform way, and may even

652 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 25, NO. 5, SEPTEMBER/OCTOBER 1999allow some of those aspe
ts to be broken out and veri�edin a generi
 manner on
e and for all.There is a wide range in the apparent level of diÆ-
ulty and detail in the me
hanized veri�
ations
ited above.Some of the di�eren
es
an be attributed to the ways inwhi
h the problems are formalized or to the di�erent re-sour
es of the formal spe
i�
ation languages and theoremprovers employed. For example, Rushby [19℄ and Bevierand Young [23℄ des
ribe me
hani
ally
he
ked formal ver-i�
ations of the same \Oral Messages" algorithm [27℄ forthe
onsensus problem that were performed using di�erentveri�
ation systems. Young [28℄ argues that di�eren
es inthe diÆ
ulty of these treatments (that of [19℄ is generally
onsidered simpler and
learer than that of [23℄) are due to
hoi
es in the way things are formalized, and not to the
a-pabilities of the tools employed. We may assume that su
hdi�eren
es will be redu
ed or eliminated as experien
e isgained and the better
hoi
es be
ome more widely known.More signi�
ant than di�eren
es due to how things areformalized are di�eren
es due to what is formalized, andthe level of detail
onsidered ne
essary. For example, bothveri�
ations of the Oral Messages algorithm mentionedabove spe
ify the algorithm as a fun
tional program andthe proofs are
onventional indu
tions. Following this ap-proa
h, the spe
ial
ase of a two-round algorithm (a vari-ant of the algorithm known as OM(1)) is spe
i�ed in [22℄in a
ouple of lines and its veri�
ation is almost
ompletelyautomati
. In
ontrast, the treatment of OM(1) in [18℄is long and detailed and quite
ompli
ated. The reasonfor its length and
omplexity is that this treatment ex-pli
itly
onsiders the distributed, message passing
hara
-ter of the intended implementation, and
al
ulates tightreal-time bounds on the timeouts employed. All these de-tails are abstra
ted away in the treatments using fun
tionalprograms|but this does not mean these veri�
ations areinferior to the more detailed analyses: on the
ontrary, Iwould argue that they
apture the essen
e of the algorithms
on
erned (i.e., they explain why the algorithm is faulttolerant) and that message-passing and real-time boundsare implementation details that ought to be handled sep-arately. In fa
t, most of the papers that introdu
e thealgorithms
on
erned, and the standard textbook [29℄, usea similarly abstra
t and time-free treatment. On the otherhand, it is undeniably important also to verify a spe
i�
a-tion that is reasonably
lose to the intended implementa-tion, and to establish that the
orre
t timeouts are used,and that the
on
rete fault modes mat
h those assumed inthe more abstra
t treatment.The natural resolution for these
ompeting
laims forabstra
tness and
on
reteness is a hierar
hi
al approa
h inwhi
h the essen
e of the algorithm is veri�ed in an abstra
tformulation, and a more realisti
 formulation is then shownto be a re�nement, in some suitable sense, of the abstra
tformulation. This may not always be possible (e.g., forevent-based systems) but, when it is, we may hope thatthe re�nement argument will be a routine
al
ulation oftimeouts and other
on
rete details.

The purpose of this paper is to present su
h a hierar-
hi
al treatment for the important
ase of time-triggeredimplementations of round-based algorithms, and to showthat most of the details of re�nement to a
on
rete formu-lation
an be worked out on
e and for all.II. Round-Based AlgorithmsIn her textbook [29℄, Nan
y Lyn
h identi�es algorithmsfor the syn
hronous system model with those that exe
utein a series of \rounds." Rounds have two phases: in the�rst, ea
h pro
essor1 sends a message to some or all of theother pro
essors (di�erent messages may be sent to di�er-ent pro
essors; the messages depend on the
urrent state ofthe sending pro
essor); in the se
ond phase, ea
h pro
essor
hanges its state in a manner that depends on its
urrentstate and the
olle
tion of messages it re
eived in the �rstphase. There is no notion of real-time in this model: mes-sages are transferred \instantaneously" from senders to re-
ipients between the two phases. The pro
essors operate inlo
kstep: all of them perform the two phases of the
urrentround, then move on to the �rst phase of the next round,and so on.Several of the algorithms of interest here were expli
itlyformulated in terms of rounds when �rst presented, andothers
an easily be re
ast into this form. For example, theOral Messages algorithm for
onsensus, OM(1), requirestwo rounds as follows.Algorithm OM(1).Round 0:Communi
ation Phase: A distinguished pro
essor
alledthe transmitter sends a value to all the other pro
es-sors, whi
h are
alled re
eivers ; the re
eivers send nomessages.Computation Phase: Ea
h re
eiver stores the value re-
eived from the transmitter in its state.Round 1:Communi
ation Phase: Ea
h re
eiver sends the value itre
eived from the transmitter to all the other re
eivers;the transmitter sends no message.Computation Phase: Ea
h re
eiver sets the \de
ision"
omponent of its state to the majority value amongthose re
eived from the other re
eivers and that(stored in its state) re
eived from the transmitter.In the presen
e of one or fewer arbitrary faults, OM(1)ensures that all nonfaulty re
eivers de
ide on the samevalue and, if the transmitter is nonfaulty, that value is theone sent by the transmitter.There are two di�erent ways to implement round-basedalgorithms. In the time-triggered approa
h, the implemen-tation is very
lose to the model: the pro
essors are
loselysyn
hronized (e.g., to within a
ouple of bit-times in the
ase of SAFEbus) and all run a
ommon, deterministi
1I refer to the parti
ipants as pro
essors to stress that they areassumed to fail independently; the agents that perform these a
tionswill a
tually be pro
esses.

RUSHBY: FORMAL VERIFICATION FOR TIME-TRIGGERED ALGORITHMS 653s
hedule that will
ause them to exe
ute spe
i�
 algorithmsat spe
i�
 times (a

ording to their lo
al
lo
ks). The se-quen
ing of phases and rounds is similarly driven by thelo
al
lo
ks, and
ommuni
ation bandwidth is also allo-
ated as dedi
ated, �xed, time slots. The �rst (
ommuni-
ation) phase in ea
h round must be suÆ
iently long thatall nonfaulty pro
essors will be able to ex
hange messagessu

essfully;
onsequently, no expli
it timeouts are needed:a message that has not arrived by the time the se
ond(
omputation) phase of a round begins is impli
itly timedout.Whereas the allo
ation of resour
es is stati
ally deter-mined in the time-triggered approa
h, in the other, event-triggered, approa
h, resour
es are s
heduled dynami
allyand pro
essors respond to events as they o

ur. In this im-plementation style, the initiation of a proto
ol may be trig-gered by a lo
al
lo
k, but subsequent phases and roundsare driven by the arrival of messages. In Lamport andMerz' treatment of OM(1), for example, a re
eiver thathas re
eived a message from the transmitter may forwardit immediately to the other re
eivers without waiting forits
lo
k to indi
ate that the next round has started (inother words, the pa
ing of phases and rounds is deter-mined lo
ally by the availability of messages). Unlike thetime-triggered approa
h, messages may have to be expli
-itly timed out in the event-triggered approa
h. For exam-ple, in Lamport and Merz' treatment of OM(1), a re
eiverwill not wait for relayed messages from other re
eivers be-yond 2Æ + � past the start of the algorithm (where Æ is themaximum
ommuni
ation delay and � the maximum timethat it
an take a re
eiver to de
ide to relay a message).Event-triggered systems are generally easier to
onstru
tthan time-triggered ones (whi
h require a big planning ands
heduling e�ort upfront) and a
hieve better CPU utiliza-tion under light load. On the other hand, Kopetz [4,10,30℄argues persuasively that time-triggered systems are morepredi
table (and hen
e easier to verify), easier to test, eas-ier to
ompose together, make better use of broad
ast
om-muni
ations bandwidth,
an operate
loser to
apa
ity, andare generally to be preferred for truly
riti
al appli
ations.The previously mentioned SAFEbus for the Boeing 777, theShinkansen train
ontrol system, and the TTP proto
ol forautomobiles are all time-triggered.Our goal is a systemati
 method for transforming round-based proto
ols from very abstra
t fun
tional programs,whose properties are
omparatively easy to formally andme
hani
ally verify, down to time-triggered implementa-tions with appropriate timing
onstraints and
onsidera-tion for realisti
 fault modes. The transformation is a
-
omplished in two steps: �rst from a fun
tional program toan (untimed) syn
hronous system, then to a time-triggeredimplementation. The �rst step is systemati
 but must beundertaken separately for ea
h algorithm (see Se
tion IV);the other is generi
 and deals with a large
lass of algo-rithms and fault assumptions in a single veri�
ation. Thisgeneri
 treatment of the se
ond step is des
ribed in thefollowing se
tion.

III. Implementation of Round-Based Algorithmsas Time-Triggered SystemsThe issues in transforming an untimed round-based al-gorithm to a time-triggered implementation are basi
allyto ensure that the timing and duration of events in the
ommuni
ation phase are su
h that messages between non-faulty pro
essors always arrive in the
ommuni
ation phaseof the same round, and fault modes are interpreted ap-propriately. To verify the transformation, we introdu
eformal models for untimed syn
hronous systems and fortime-triggered systems, and then establish a simulation re-lation between them. We verify the simulation by meansof a traditional mathemati
al proof, and then des
ribe ame
hanized veri�
ation performed using the PVS veri�
a-tion system [31℄.A. Syn
hronous SystemsFor the untimed
ase, we use Nan
y Lyn
h's formalmodel for syn
hronous systems [29, Chapter 2℄, with someslight adjustments to the notation that make it easier tomat
h up with the me
hani
ally veri�ed treatment.De�nition 1: Untimed Syn
hronous Systems.We assume a set mess of messages that in
ludes a distin-guished value null , and a set pro
 of pro
essors. Pro
essorsare partially
onne
ted by dire
ted
hannels ; ea
h
hannel
an be thought of a bu�er that
an hold a single message.Asso
iated with ea
h pro
essor p are the following sets andfun
tions.� A set of pro
essors out-nbrsp to whi
h p is
onne
ted byoutgoing
hannels.� A set of pro
essors in-nbrsp to whi
h p is
onne
ted byin
oming
hannels; the fun
tion inputsp : in-nbrsp ! messgives the message
ontained in ea
h of those
hannels.� A set statesp of states with a nonempty subset initp ofinitial states. It is
onvenient to assume that there is a
omponent in the state that
ounts rounds; this
ounter iszero in initial states.� A fun
tion msgp : statesp � out-nbrsp ! mess that de-termines the message to be pla
ed in ea
h outgoing
hannelin a way that depends on the
urrent state.� A fun
tion transp : statesp � inputsp ! statesp that de-termines the next state, in a way that depends on the
ur-rent state and the messages re
eived in the in
oming
han-nels.The system starts with ea
h pro
essor in an initial state.All pro
essors p then repeatedly perform the following twoa
tions in lo
kstep.Communi
ation Phase: apply the message generationfun
tion msgp to the
urrent state to determine the mes-sages to be pla
ed in ea
h outgoing
hannel. (The mes-sage value null is used to indi
ate \no message.")Computation Phase: apply the state transition fun
tiontransp to the
urrent state and the message held in ea
h

654 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 25, NO. 5, SEPTEMBER/OCTOBER 1999in
oming
hannel to yield the next state (with the round
ounter in
remented).2A parti
ular algorithm is spe
i�ed by supplying interpre-tations to the various sets and fun
tions identi�ed above.A.1 FaultsDistributed algorithms are usually required to operate inthe presen
e of faults: the spe
i�
 kinds and numbers offaults that may arise
onstitute the fault hypothesis. Usu-ally, pro
essor faults are distinguished from
ommuni
ationfaults; the former
an be modeled by perturbations to thetransition fun
tions transp , and the latter by allowing themessages re
eived along a
hannel to be
hanged from thosesent. Following [29, page 20℄, an exe
ution of the system isthen an in�nite sequen
e of triples(S0;M0; N0); (S1;M1; N1); (S2;M2; N2); : : :where Sr is the global state at the start of round r, Mris the
olle
tion of messages pla
ed in the
ommuni
ation
hannels, and Nr is the (possibly di�erent)
olle
tion ofmessages re
eived.Be
ause our goal is to show that a time-triggered im-plementation a
hieves the same behavior as the untimedsyn
hronous system that serves as its spe
i�
ation, we willneed some way to ensure that faults mat
h up a
ross thetwo systems. For this reason, I prefer to model pro
essorand
ommuni
ation faults by perturbations to the transpandmsgp fun
tions, respe
tively (rather than allowing mes-sages re
eived to di�er from those sent); no faulty behaviorsare lost by this
hange. In parti
ular, I assume that the
urrent round number is re
orded as part of the state andthat if pro
essor p is faulty in round r, with
urrent states and the values of its input
hannels represented by thearray i, then transp(s ; i) may yield a value other than thatintended; similarly, if the
hannel from p to q is faulty, thenthe value msgp(s)(q) may be di�erent than intended (andmay be null). Exa
tly how these values may di�er fromthose intended depends on the fault assumption. For ex-ample, a
rash fault in round r results in transp(s ; i) = sand msg(s)(q) = null for all i, q, and states s whose round
omponent is r or greater. Noti
e that although transpand msgp may no longer be the intended fun
tions, theyare still fun
tions; in fa
t, there is no need to suppose thatthe transp and msgp were
hanged when the fault arrivedin round r: sin
e the round
ounter is part of the state, we
an just assume these fun
tions behave di�erently than in-tended when applied to states having round
ounters equalor greater than r.The bene�t of this treatment is that, sin
e transp andmsgp are uninterpreted, they
an represent any algorithmand any fault behavior whatsoever; if we
an show that atime-triggered system supplied with arbitrary transp andmsgp fun
tions has the same behavior as the untimed syn-
hronous system supplied with the same fun
tions, thenthis demonstration en
ompasses behavior in the presen
e

of faults as well as the fault-free
ase. Furthermore, sin
ewe no longer need to hypothesize that faults
an
ause dif-feren
es between those messages sent and those re
eived(we instead assume the fault is in msgp and the \di�erent"messages were a
tually sent), exe
utions
an be simpli�edfrom sequen
es of triples to simple sequen
es of statesS0; S1; S2; : : :where Sr is the global state at the start of round r. Conse-quently, to demonstrate that a time-triggered system im-plements the behavior spe
i�ed by an untimed syn
hronoussystem, we simply need to establish that both systems havethe same exe
ution sequen
es; by mathemati
al indu
tion,this will redu
e to showing that the global states of the twosystems are the same at the start of ea
h round r.B. Time-Triggered SystemsFor the time-triggered system, we elaborate the modelof the previous se
tion as follows.Ea
h pro
essor is supplied with a
lo
k that provides areasonably a

urate approximation to \real" time. Follow-ing [32℄, we distinguish two notions of time:
lo
ktime, de-noted C is the lo
al notion of time supplied by ea
h pro
es-sor's
lo
k, while realtime, denoted R is an abstra
t globalquantity. We follow the usual
onvention and denote
lo
k-time quantities by upper
ase Roman or Greek letters, andrealtime quantities by lower
ase letters.Formally, pro
essor p's
lo
k is a fun
tion Cp : R ! C.The intended interpretation is that Cp(t) is the value of p's
lo
k at realtime t.2 The
lo
ks of nonfaulty pro
essors areassumed to be well-behaved in the sense that they satisfythe following assumptions.Assumption 1: Monotoni
ity. Nonfaulty
lo
ks aremonotoni
 in
reasing fun
tions:t1 < t2 � Cp(t1) < Cp(t2):3Satisfying this assumption requires some
are in implemen-tation, be
ause
lo
k syn
hronization algorithms
an makeadjustments to
lo
ks that
ause them to jump ba
kwards.Lamport and Melliar-Smith des
ribe some solutions [32℄,and a parti
ularly
lever and e
onomi
al te
hnique for oneparti
ular algorithm is introdu
ed by Torres-Pomales [33℄and formally veri�ed by Miner and Johnson [34℄. S
hmu
kand Cristian [35℄ examine the general
ase and show thatmonotoni
ity
an be a
hieved with no loss of pre
ision.Assumption 2: Clo
k Drift Rate. Nonfaulty
lo
ks driftfrom realtime at a rate bounded by a small positive quan-tity �:(1� �)(t1 � t2) � Cp(t1)� Cp(t2) � (1 + �)(t1 � t2):This assumption
on
erns the hardware
lo
ks employedInexpensive devi
es
an a
hieve � < 10�6.2In the terminology of [32℄, these are a
tually \inverse"
lo
ks.3The symbol � indi
ates logi
al impli
ation.

RUSHBY: FORMAL VERIFICATION FOR TIME-TRIGGERED ALGORITHMS 655Assumption 3: Clo
k Syn
hronization. The
lo
ks ofnonfaulty pro
essors are syn
hronized within some small
lo
ktime bound �:jCp(t)� Cq(t)j � �:This assumption
an be dis
harged by a suitable
lo
k syn-
hronization algorithm. There are many su
h algorithms,several of whi
h have been formally veri�ed [36{41℄.De�nition 2: Time-Triggered Systems.The feature that
hara
terizes a time-triggered system isthat all a
tivity is driven by a global s
hedule: a pro
essorperforms an a
tion when the time on its lo
al
lo
k mat
hesthat for whi
h the a
tion is s
heduled. In our formal model,the s
hedule is a fun
tion s
hed : N ! C, where s
hed(r) isthe
lo
ktime at whi
h round r should begin. The durationof the r'th round is given bydur(r) = s
hed(r + 1)� s
hed(r):In addition, there are �xed global
lo
ktime
onstantsD and P that give the o�sets into ea
h round when mes-sages are sent, and when the
omputation phase begins,respe
tively. Obviously, we need the following
onstraint.Constraint 1: 0 < D < P < dur(r).Noti
e that the duration of the
ommuni
ation phase is�xed (by P); it is only the duration of the
omputationphase that
an di�er from one round to another.4The states, messages, and
hannels of a time-triggeredsystem are the same as those for the
orresponding un-timed syn
hronous system, as are the transition and mes-sage fun
tions. In addition, pro
essors have a one-pla
ebu�er for ea
h in
oming message
hannel.The time-triggered system operates as follows. Initiallyea
h pro
essor is in an initial state, with its round
ounterzero and its
lo
k syn
hronized with the others and ini-tialized so that Cp(t0) � s
hed(0), where t0 is the
urrentrealtime. All pro
essors p then repeatedly perform the fol-lowing two a
tions.Communi
ation Phase: This begins when the lo
al
lo
kreads s
hed (r), where r is the
urrent value of the round
ounter. Apply the message generation fun
tion msgp tothe
urrent state to determine the messages to be senton ea
h outgoing
hannel. The messages are pla
ed inthe
hannels at lo
al
lo
k time s
hed(r) +D . In
omingmessages that arrive during the
ommuni
ation phase(i.e., no later than s
hed (r)+P) are moved to the
orre-sponding input bu�er where they remain stable throughthe
omputation phase. These bu�ers are initialized tonull at the beginning of ea
h
ommuni
ation phase and4There is no diÆ
ulty in generalizing the treatment to allow thetime at whi
h messages are sent, and the duration of the
ommuni
a-tion phase, to vary from round to round. That is, the �xed
lo
ktime
onstants D and P
an be systemati
ally repla
ed by fun
tions D(r)and P (r), respe
tively. This generalization was developed during theme
hanized veri�
ation; see Se
tion III-D.

their value is unspe
i�ed if more than one message ar-rives on their asso
iated
ommuni
ations
hannel in agiven
ommuni
ation phase.Computation Phase: This begins at lo
al
lo
k times
hed (r)+P . Apply the state transition fun
tion transpto the
urrent state and the messages held in the in-put bu�ers to yield the next state. The
omputationwill be
omplete at some lo
al
lo
k time earlier thans
hed (r +1). In
rement the round
ounter, and wait forthe start of the next round.2Message transmission in the
ommuni
ation phase is ex-plained as follows. We use sent(p; q ;m; t) to indi
ate thatpro
essor p sent message m to pro
essor q (a member ofout-nbrs(p)) at real time t (whi
h must satisfy Cp(t) =s
hed (r) +D for some round r). We use re
v(q ; p;m; t) toindi
ate that pro
essor q re
eived message m from pro
es-sor p (a member of in-nbrs(q)) at real time t (whi
h mustsatisfy the
onstraint s
hed(r) � Cq (t) < s
hed (r) +P forsome round r). These two events are related as follows.Assumption 4: Maximum Delay. When p and q are non-faulty pro
essors,sent(p; q ;m; t) � re
v(q ; p;m; t + d)for some 0 � d � Æ.In addition, we require no spontaneous generation of mes-sages (i.e., re
v(q ; p;m; t) only if there is a
orrespondingsent(p; q ;m; t 0) with t0 < t).Provided there is exa
tly one re
v(q ; p;m; t) event forea
h p in the
ommuni
ation phase for round r on pro-
essor q (as there will be if p is nonfaulty), that uniquemessage m is moved into the input bu�er asso
iated withp on pro
essor q before the start of the
omputation phasefor that round and remains there throughout the phase.Be
ause the
lo
ks are not perfe
tly syn
hronized, it ispossible for a message sent by a pro
essor with a fast
lo
kto arrive while its re
ipient is still on the previous round.It is for this reason that we do not send messages until D
lo
ktime units into the start of the round. In general, weneed to ensure that a message from a pro
essor in roundr
annot arrive at its destination before that pro
essor hasstarted round r, nor after it has �nished the
ommuni
a-tion phase for round r. We must establish
onstraints onparameters to ensure these
onditions are satis�ed.Now pro
essor p sends its message to pro
essor q, say, atrealtime t where Cp(t) = s
hed(r) + D and, by the maxi-mum delay assumption, the message will arrive at realtimet+ d where d � Æ. We need to be sure thats
hed(r) � Cq (t + d) < s
hed(r) + P : (1)By
lo
k syn
hronization, we have jCq(t) � Cp(t)j � �;substituting Cp(t) = s
hed (r) +D we obtain�� � Cq(t)� s
hed(r)�D � � : (2)

656 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 25, NO. 5, SEPTEMBER/OCTOBER 1999By the monotoni

lo
ks assumption, this givess
hed (r) +D � � � Cq(t) � Cq(t + d)and so the �rst inequality in (1)
an be ensured byConstraint 2: D � �.The
lo
k syn
hronization
al
ulation (2) above alsogives Cq(t) � s
hed(r) +D + �and the
lo
k drift rate assumption gives(1� �)d � Cq(t+ d)� Cq(t) � (1 + �)dfrom whi
h it follows thatCq(t+ d) � Cq(t) + (1 + �)d:Combining these and re
alling that d � Æ, the se
ond in-equality in (1)
an be ensured byConstraint 3: P > D +�+ (1 + �)Æ.B.1 FaultsWe will prove that a time-triggered system satisfyingthe various assumptions and
onstraints identi�ed abovea
hieves the same behavior as an untimed syn
hronous sys-tem supplied with the same transp and msgp fun
tions. Iexplained earlier that faults are assumed to be modeled inthe transp and msgp fun
tions; by using the same fun
-tions in both the untimed and time-triggered systems, weensure that the latter inherits the same fault behavior andany fault-toleran
e properties of the former. Thus, if wehave an algorithm that has been shown, in its untimed for-mulation, to a
hieve some fault-toleran
e properties (e.g.,\this algorithm resists a single Byzantine fault or two
rashfaults"), then we may
on
lude that the implementationhas the same properties.This simple view is somewhat
ompromised, however,be
ause the time-triggered system
ontains a me
hanism|time triggering|that is not present in the untimed system.This me
hanism admits faults (notably, loss of
lo
k syn-
hronization) that do not arise in the untimed system.The implementation of a time-triggered system is re-quired to satisfy the syn
hrony hypothesis and the four as-sumptions about nonfaulty
lo
ks listed previously. These
an be a
hieved using a suitable fault-tolerant
lo
k syn-
hronization algorithm. The algorithm and its various pa-rameters must be
hosen to tolerate the number and kindsof faults spe
i�ed for the system
on
erned. For exam-ple, the
lo
k syn
hronization algorithm of TTP (whi
his based on that of [42℄) has re
ently been formally veri-�ed using PVS, and shown to satisfy the assumptions werequire [41℄. However, a
lo
k syn
hronization algorithmonly
onstrains the behavior of nonfaulty
lo
ks: a pro
es-sor with a faulty
lo
k may behave in a way that violatesthe fault model of our time-triggered
onstru
tion. For ex-ample, if one pro
essor's
lo
k drifts to su
h an extent thatit is in the wrong round, then it will exe
ute the transition

and message fun
tions appropriate to that round and willsupply systemati
ally in
orre
t messages to the other pro-
essors. This
ould appear as Byzantine behavior at thelevel of the untimed syn
hronous algorithm. Less drasti
syn
hronization faults may leave a pro
essor in the rightround, but sending messages at the wrong time, so thatthey arrive during the
omputation phases of other (
or-re
t) pro
essors, possibly disrupting their a
tivity.The implementation of the time-triggered system mustin
lude me
hanisms that transform faults (su
h as thosedue to loss of
lo
k syn
hronization) that are outside themodel
onsidered here, into those that are adequately mod-eled as perturbations to the transp and msgp fun
tions.For example, the round number should be in
luded inmessages, so that those from the wrong round
an be re-je
ted at the message
ommuni
ation layer (thereby redu
-ing the manifestation of su
h a syn
hronization fault to fail-silen
e). TTP goes further and in
ludes all
riti
al state in-formation (operating mode, time, and group membership)in its messages as part of the CRC
al
ulation [10℄; mes-sages from a pro
essor that is out of step with respe
t toany of these items will be reje
ted by the TTP
ontrollersof other pro
essors.The impa
t of messages that arrive in the right roundbut at the wrong time
an be partly
ountered by movingmessages from their input
hannels to an input bu�er at thestart of the
ommuni
ation phase: this shields the re
eivingpro
essor from any
hanges in
hannel
ontents during the
omputation phase. However, the performan
e of the
om-putation phase may be degraded by the need to handleinterrupts from messages arriving unexpe
tedly, thereby
hallenging the syn
hrony hypothesis. Strong eliminationof su
h timing faults is a
hieved in pra
ti
e by te
hniquesto
ontrol the \babbling idiot" fault mode. This fault modeo

urs when a faulty or unsyn
hronized pro
essor transmitsat arbitrarily wrong times. As well as undesirable mani-festations at the syn
hronous system level, this fault is po-tentially devastating to the underlying implementation ifthat implementation multiplexes its
ommuni
ation
han-nels onto shared buses|be
ause the faulty pro
essor
anthen disrupt the
ommuni
ations of nonfaulty pro
essors.Babbling is eliminated by use of a Bus Interfa
e Unit (BIU)that only grants its pro
essor a

ess to the bus at appropri-ate times. For example, in SAFEbus, pro
essors are paired,with ea
h member of a pair
ontrolling the other's BIU; inTTP, the BIU has an independent
lo
k and independentknowledge of the s
hedule [43℄. In both
ases, babbling
ano

ur only if there are undete
ted double failures. Theseme
hanisms prevent messages being sent at inappropriatetimes and ensure that the fault modes of the time-triggeredimplementation
orrespond those assumed for the untimedsyn
hronous system.C. Veri�
ationWe now need to show that a time-triggered systema
hieves the same behavior as its
orresponding untimedsyn
hronous system. We do this in the traditional way by

RUSHBY: FORMAL VERIFICATION FOR TIME-TRIGGERED ALGORITHMS 657establishing a simulation relationship between the states ofan exe
ution of the time-triggered system and those of the
orresponding untimed exe
ution. It is usually ne
essary toinvent an \abstra
tion fun
tion" to relate the states of animplementation to those of its spe
i�
ation; here, however,the states of the two systems are the same, and the onlydiÆ
ult point is to sele
t the moments in time at whi
hstates of the time-triggered system should
orrespond tothose of the untimed system.The untimed system makes progress in dis
rete globalsteps: all
omponent pro
essors perform their
ommuni
a-tion and
omputation phases in lo
kstep, so it is possibleto speak of the
omplete system being in a round r. Thepro
essors of the time-triggered system, however, progressseparately at a rate governed by their internal
lo
ks, whi
hare imperfe
tly syn
hronized, so that one pro
essor maystill be on round r while another has moved on to roundr+1. We need to establish some
onsistent \
ut" throughthe time-triggered system that provides a global state inwhi
h all pro
essors are at the same point in the sameround. In some treatments of distributed systems, it is notne
essary for the global
ut to
orrespond to a snapshot ofthe system at a parti
ular realtime instant: the
ut maybe an abstra
t
onstru
tion that has no dire
t realization.In our
ase, however, it is natural to assume that the time-triggered system is used in some
ontrol appli
ation andthat outputs of the individual pro
essors (i.e., some fun
-tions of their states) are used to provide redundant
ontrolsignals in real time|for example, a typi
al appli
ation willbe one in whi
h the outputs of the pro
essors are subje
tedto majority voting, or separately drive some a
tuator ina \for
e-summing"
on�guration.5 Consequently, we dowant to identify the
ut through the system with its globalstate at a spe
i�
 real time instant.In parti
ular, we need some realtime instant gs(r) that
orresponds to the \global start" of the r'th round. Wewant this instant to be one in whi
h all nonfaulty pro
essorshave started the r'th round, but have not yet started its
omputation phase (when they will
hange their states).We
an a
hieve this by de�ning the global start timegs(r) for round r to be the realtime when the pro
essor withthe slowest
lo
k begins round r. That is, gs(r) satis�esthe following
onditions:8q : Cq(gs(r)) � s
hed (r); (3)and 9p : Cp(gs(r)) = s
hed(r) (4)(intuitively, p is the pro
essor with the slowest
lo
k).Sin
e the pro
essors are not perfe
tly syn
hronized, weneed to be sure that they
annot drift so far apart that somepro
essor q has already rea
hed its
omputation phase|oris even on the next round|at gs(r). Thus, we need8q : Cq(gs(r)) < s
hed (r) + P : (5)5For example, the outputs of di�erent pro
essors may energize sep-arate
oils of a single solenoid, or multiple hydrauli
 pistons may belinked to a single shaft (see, e.g., [44, Figure 3.2{2℄).

By (3) we have Cq(gs(r)) = s
hed(r) +X for some X � 0,and (4) plus the
lo
k syn
hronization assumption thengives X � �. Now pro
essor q will still be on round r andin its
ommuni
ation phase provided X < P and this isensured by the inequality just derived when taken togetherwith Constraint 3.We now wish to establish that the global state of a time-triggered system at time gs(r) will be the same as that ofthe
orresponding untimed syn
hronous system at the startof its r'th round. We denote the global state of the untimedsystem at the start of the r'th round by gu(r) (for globaluntimed). Global states are simply arrays of the states ofthe individual pro
essors, so that the state of pro
essor pat this point is gu(r)(p). Similarly, the global state of thetime-triggered system at time gs(r) is denoted gt(r) (forglobal timed), and the state of its pro
essor p is gt(r)(p).We
an now state and prove the desired result.Theorem 1: Given the same initial states, the globalstates of the untimed and time-triggered systems are thesame at the beginning of ea
h round:8r : gt(r) = gu(r):Proof: The proof is by indu
tion.Base
ase. This is the
ase r = 0. Both systems are thenin their initial states whi
h, by hypothesis, are the same.Indu
tive step. We assume the result for r and prove itfor r + 1. For the untimed
ase, the message inputsq(p)from pro
essor p re
eived by q in the r'th round ismsgp(gu(r)(p))(q).6By the indu
tive hypothesis, the global state of pro
essorp in the time-triggered system at time gs(r) is gu(r)(p)also. Furthermore, pro
essor p is in its
ommuni
ationphase (ensured by (5)) and has not
hanged its state sin
estarting the round. Thus, at lo
al
lo
ktime s
hed(r) +D ,it sends msgp(gu(r)(p))(q) to q. By (1), this is re
eivedby q while in the
ommuni
ation phase of round r, andtransferred to its input bu�er inputsq(p). Thus, the
or-responding pro
essors of the untimed and time-triggeredsystems have the same state and input
omponents whenthey begin the
omputation phase of round r. The samestate transition fun
tions transp are then applied by the
orresponding pro
essors of the two systems to yield thesame values for the
orresponding elements of gu(r + 1)and gt(r + 1), thereby
ompleting the indu
tive proof.D. Me
hanized Veri�
ationThe treatment of syn
hronous and time-triggered sys-tems in Se
tions III-A and III-B has been formally spe
i-�ed in the language of the PVS veri�
ation system [31℄,and the veri�
ation of Se
tion III-C has been me
han-i
ally
he
ked using PVS's theorem prover. The PVS6For the bene�t of those not used to reading Curried higher-orderfun
tion appli
ations, this is de
oded as follows: gu(r)(p) is p's statein round r; p's message fun
tion msgp applied to that state givesmsgp(gu(r)(p)), whi
h is an array of the messages sent to its outgoing
hannels; q's
omponent of that array is msgp(gu(r)(p))(q).

658 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 25, NO. 5, SEPTEMBER/OCTOBER 1999language is a higher-order logi
 with subtyping, and for-malization of the semiformal treatment in Se
tions III-Aand III-B was quite straightforward. The PVS theoremprover in
ludes de
ision pro
edures for integer and reallinear arithmeti
 and me
hanized
he
king of the
al
u-lations in Se
tion III-C, and the proof of the Theorem,were also quite straightforward. The
omplete formaliza-tion and me
hani
al veri�
ation took less than a day, andno errors were dis
overed. A des
ription, and the formalspe
i�
ations and proofs themselves, are available at URLhttp://www.
sl.sri.
om/d

a97.html.While it is reassuring to know that the semiformal de-velopment of the previous se
tions withstands me
hani-
al s
rutiny, we have argued before (for example, [31, 39℄)that me
hanized formal veri�
ation provides several bene-�ts in addition to the \
erti�
ation" of proofs. In parti
u-lar, me
hanization supports reliable and inexpensive explo-ration of alternative designs, assumptions, and
onstraints.After
ompleting the �rst version of the work reported here,I wondered whether the requirement that messages be sentat the �xed o�set D
lo
ktime units into ea
h round, andthat the
omputation phase begin at the �xed o�set P ,might not be unduly restri
tive. It was the work of a fewminutes to generalize the formal spe
i�
ation to allow theseo�sets to be
ome fun
tions of the round, and to adjust theme
hanized proofs. I
ontend that
orresponding revisionsto the semiformal development in Se
tions III-B and III-Cwould take longer than this, and that it would be diÆ
ultto summon the fortitude to s
rutinize the revised proofswith the same
are as the originals.IV. Round-Based Algorithms as Fun
tionalProgramsThe Theorem of Se
tion III-C ensures that syn
hronousalgorithms are
orre
tly implemented by time-triggered im-plementations that satisfy the various assumptions,
on-straints, and
onstru
tions introdu
ed in the previous se
-tion. The next (though logi
ally pre
eding) step is to askhow one might verify properties of a parti
ular algorithmexpressed as an untimed syn
hronous system.Although simpler than its time-triggered implementa-tion, the spe
i�
ation of an algorithm as a syn
hronoussystem is not espe
ially
onvenient for formal (and par-ti
ularly me
hanized) veri�
ation be
ause it requires rea-soning about attributes of imperative programs: expli
itstate and
ontrol. It is generally easier to verify fun
tional,rather than imperative, programs be
ause these representstate and
ontrol in an appli
ative manner that
an be ex-pressed dire
tly in
onventional logi
.There is a fairly systemati
 transformation between syn-
hronous systems and fun
tional programs that
an easethe veri�
ation task by allowing it to be performed ona fun
tional program. I illustrate the idea (whi
h
omesfrom Bevier and Young [23℄) using the OM(1) algorithmfrom Se
tion II. Be
ause that algorithm has already beenintrodu
ed as a syn
hronous system, I will illustrate itstransformation to a fun
tional program; on
e the te
hnique

be
omes familiar, it is easy to perform the transformationin the other dire
tion.We begin by introdu
ing a fun
tion send(r ; v ; p; q) torepresent the sending of a message with value v from pro-
essor p to pro
essor q in round r. The value of the fun
tionis the message re
eived by q. If p and q are nonfaulty, thenthis value is v:nonfaulty(p) ^ nonfaulty(q) � send(r ; v ; p; q) = v ;otherwise it depends on the fault modes
onsidered (in theByzantine
ase it is left entirely un
onstrained, as here).If T represents the transmitter, v its value, and q anarbitrary re
eiver, then the
ommuni
ation phase of the�rst round of OM(1) is represented bysend(0 ; v ;T ; q):The
omputation phase of this round simply moves themessages re
eived into the states of the pro
essors
on-
erned, and
an be ignored in the fun
tional treatment(though see Footnote 7).In the
ommuni
ation phase of the se
ond round, ea
hpro
essor q sends the value re
eived in the �rst round (i.e.,send(0 ; v ;T ; q)) on to the other re
eivers. If p is one su
hre
eiver, then this is des
ribed by the fun
tional
omposi-tion send(1 ; send (0 ; v ;T ; q); q ; p): (6)In the
omputation phase for the se
ond round, pro
essorp gathers all the messages re
eived in the
ommuni
ationphase and subje
ts them to majority voting.7 Now (6) rep-resents the value p re
eives from q, so we need to gathertogether in some way the values in the messages p re
eivesfrom all the other re
eivers q, and use that
ombinationas an argument to the majority vote fun
tion. How this\gathering together" is represented will depend on the re-sour
es of the spe
i�
ation language and logi

on
erned:in the treatment using the Boyer-Moore logi
, for example,it is represented by a list of values [23℄. In a higher-orderlogi
 su
h as PVS [31℄, however, it
an be represented bya fun
tion, spe
i�ed as a �-abstra
tion:�q : send(1 ; send (0 ; v ;T ; q); q ; p)(i.e., a fun
tion that, when applied to q, returns the valuethat p re
eived from q).Majority voting is represented by a fun
tion maj thattakes two arguments: the \parti
ipants" in the vote, anda fun
tion over those parti
ipants that returns the valueasso
iated with ea
h of them. The fun
tion maj returns themajority value if one exists; otherwise some fun
tionallydetermined value. (This behavior
an either be spe
i�ed7 In the formulation of the algorithm as a syn
hronous system,p votes on the messages from the other re
eivers, and the messagethat it re
eived dire
tly from the transmitter, whi
h it has saved inits state. In the fun
tional treatment, q in
ludes itself among there
ipients of the message that it sends in the
ommuni
ation phaseof the se
ond round, and so the vote is simply over messages re
eivedin that round.

RUSHBY: FORMAL VERIFICATION FOR TIME-TRIGGERED ALGORITHMS 659axiomati
ally, or de�ned
onstru
tively using an algorithmsu
h as Boyer and Moore's linear time MJRTY [45℄.) Thus,p's de
ision in the
omputation phase of the se
ond roundis represented bymaj (r
vrs ; �q : send(1 ; send (0 ; v ;T ; q); q ; p))where r
vrs is the set of all re
eiver pro
essors. We
an usethis formula as the de�nition for a higher-order fun
tionOM1(T; v) whose value is a fun
tion that gives the de
i-sion rea
hed by ea
h re
eiver p when the (possibly faulty)transmitter T sends the value v :OM1(T; v)(p) (7)= maj (r
vrs ; �q : send(1 ; send(0 ; v ;T ; q); q ; p)):The properties required of this algorithm are the follow-ing, whenever the number of re
eivers is three or more, andat most one pro
essor is faulty.Requirement 1: Agreementnonfaulty(p) ^ nonfaulty(q)� OM1(T; v)(p) = OM1(T; v)(q);Requirement 2: Validitynonfaulty(T) ^ nonfaulty(p) � OM1 (T ; v)(p) = v :De�nition (7) and the requirements for Agreement and Va-lidity stated above are a

eptable as spe
i�
ations to PVSalmost as given (PVS requires us to be a little more ex-pli
it about the types and quanti�
ation involved). Usinga
onstru
tive de�nition for maj, PVS
an prove Agree-ment and Validity for a spe
i�
 number of pro
essors (e.g.,4)
ompletely automati
ally. For the general
ase of n � 4pro
essors, PVS is able to prove Agreement with only asingle user-supplied proof dire
tive, while Validity requireshalf a dozen (the only one requiring \insight" is a
ase-spliton whether the transmitter is faulty).Not all syn
hronous systems
an be so easily transformedinto a re
ursive fun
tion, nor
an their properties alwaysbe formally veri�ed so easily. Nonetheless, I believe theapproa
h has promise for many algorithms of pra
ti
al in-terest. V. Con
lusionMany round-based fault-tolerant algorithms
an be for-mulated as syn
hronous systems. I have shown that syn-
hronous systems
an be implemented as time-triggeredsystems and have proved that, provided
are is taken withfault modes, the
orre
tness and fault-toleran
e propertiesof an algorithm expressed as a syn
hronous system are in-herited by its time-triggered implementation. The proofidenti�es ne
essary timing
onstraints and is independentof the parti
ular algorithm
on
erned; it
an be
onsidereda more general and abstra
t treatment of the analysis per-formed for a parti
ular system by Di Vito and Butler [46℄.The relative simpli
ity of the proof supports the argument

that time-triggered systems allow for straightforward anal-ysis and should be preferred in
riti
al appli
ations for thatreason [30℄.In re
ent work, Pfeifer, S
hwier, and von Henke of Uni-versit�at Ulm have formally veri�ed the
lo
k syn
hroniza-tion algorithm used in TTP [41℄. Their veri�
ation was
ondu
ted in PVS and expli
itly in
orporates the PVSspe
i�
ation, des
ribed in Se
tion III-D, that establishes
onditions under whi
h syn
hronous systems
an be im-plemented as time-triggered systems. Thus, in parti
ular,their work provides a me
hani
ally
he
ked formal veri�
a-tion that the TTP
lo
k syn
hronization algorithm satis�esthe four assumptions of Se
tion III-B.I also showed, by example in Se
tion IV, how a round-based algorithm formulated as a syn
hronous system
anbe transformed into a fun
tional \program" in a spe
i�
a-tion logi
, where its properties
an be veri�ed more easily,and more me
hani
ally. I have used the same te
hniqueto me
hani
ally verify the three-phase
ommit algorithm(with its termination proto
ol) [29, Se
tion 7.3.3℄. This isa more diÆ
ult algorithm than OM(1) and its veri�
ationrequires proof by indu
tion (in this respe
t, it is
ompara-ble to the r-round algorithm OM(r)), but its representationas a fun
tional program made the me
hanized veri�
ationquite straightforward and allowed it to be a

omplished ina
ouple of days. Re
ently, I have veri�ed a group member-ship algorithm based on [47℄ (whi
h is related to the groupmembership algorithm of TTP) using a similar representa-tion. This is a mu
h more
hallenging exer
ise and requiredfurther methodologi
al development to make it tra
table.I hope this paper has demonstrated that systemati
transformations of fault-tolerant algorithms from fun
-tional programs to syn
hronous systems to time-triggeredimplementations provides a methodology that
an signi�-
antly ease the spe
i�
ation and assuran
e of
riti
al fault-tolerant systems. In
ollaboration with
olleagues fromUlm, I am
urrently applying the methodology to someof the algorithms of TTP [10℄.A
knowledgmentsDis
ussions with N. Shankar and advi
e from JosephSifakis were instrumental in the development of this work.Comments by the anonymous referees of both DCCA andTSE improved the presentation
onsiderably.Referen
es[1℄ Tushar D. Chandra, Vassos Hadzila
os, Sam Toueg, andBernadette Charron-Bost, \On the impossibility of group mem-bership," in Fifteenth ACM Symposium on Prin
iples of Dis-tributed Computing, Philadelphia, PA, May 1996, Asso
iationfor Computing Ma
hinery, pp. 322{330.[2℄ Mi
hael J. Fis
her, Nan
y A. Lyn
h, and Mi
hael S. Paterson,\Impossibility of distributed
onsensus with one faulty pro
ess,"Journal of the ACM, vol. 32, no. 2, pp. 374{382, Apr. 1985.[3℄ Ra
hid Guerraoui and Andr�e S
hiper, \Consensus: The big mis-understanding," in 6th IEEE Workshop on Future Trends inDistributed Computing, Tunis, Tunisia, O
t. 1997, IEEE Com-puter So
iety, pp. 183{188.[4℄ Hermann Kopetz, Real-Time Systems: Design Prin
ples forDistributed Embedded Appli
ations, The Kluwer International

660 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 25, NO. 5, SEPTEMBER/OCTOBER 1999Series in Engineering and Computer S
ien
e. Kluwer, Dordre
ht,The Netherlands, 1997.[5℄ Kenneth Hoyme and Kevin Dris
oll, \SAFEbusTM," IEEEAerospa
e and Ele
troni
 Systems Magazine, vol. 8, no. 3, pp.34{39, Mar. 1993.[6℄ Aeronauti
al Radio, In
, Annapolis, MD, ARINC Spe
i�
ation659: Ba
kplane Data Bus, De
. 1993, Prepared by the AirlinesEle
troni
 Engineering Committee.[7℄ William Sweet and Dave Dooling, \Boeing's seventh wonder,"IEEE Spe
trum, vol. 32, no. 10, pp. 20{23, O
t. 1995.[8℄ Mi
hael J. Morgan, \Integrated modular avioni
s for next-generation
ommer
ial airplanes," IEEE Aerospa
e and Ele
-troni
 Systems Magazine, vol. 6, no. 8, pp. 9{12, Aug. 1991.[9℄ Akira Ha
higa, \The
on
epts and te
hnologies of dependableand real-time
omputer systems for Shinkansen train
ontrol,"in Responsive Computer Systems, H. Kopetz and Y. Kakuda,Eds. 1993, vol. 7 of Dependable Computing and Fault-TolerantSystems, pp. 225{252, Springer-Verlag, Vienna, Austria.[10℄ Hermann Kopetz and G�unter Gr�unsteidl, \TTP|a proto
ol forfault-tolerant real-time systems," IEEE Computer, vol. 27, no.1, pp. 14{23, Jan. 1994.[11℄ Flaviu Cristian, \Understanding fault-tolerant distributed sys-tems," Communi
ations of the ACM, vol. 34, no. 2, pp. 56{78,Feb. 1991.[12℄ Flaviu Cristian, Bob Dan
ey, and Jon Dehn, \Fault-toleran
ein air traÆ

ontrol systems," ACM Transa
tions on ComputerSystems, vol. 14, no. 3, pp. 265{286, Aug. 1996.[13℄ M. Pease, R. Shostak, and L. Lamport, \Rea
hing agreement inthe presen
e of faults," Journal of the ACM, vol. 27, no. 2, pp.228{234, Apr. 1980.[14℄ Flaviu Cristian, Houtan Aghili, Ray Strong, and Danny Dolev,\Atomi
 broad
ast: From simple message di�usion to Byzantineagreement," in Fault Tolerant Computing Symposium 15, AnnArbor, MI, June 1985, IEEE Computer So
iety, pp. 200{206,Reprinted in [48, pp. 431{437℄.[15℄ Flaviu Cristian, \Rea
hing agreement on pro
essor-group mem-bership in syn
hronous distributed systems," Distributed Sys-tems, vol. 4, pp. 175{187, 1991.[16℄ Ping Zhou and Jozef Hooman, \Formal spe
i�
ation and
ompo-sitional veri�
ation of an atomi
 broad
ast proto
ol," Real-TimeSystems, vol. 9, no. 2, pp. 119{145, 1995.[17℄ Yuri Gurevi
h and Raghu Mani, \Group membership proto
ol:Spe
i�
ation and veri�
ation," in Spe
i�
ation and ValidationMethods, Egon B�orger, Ed., International S
hools for ComputerS
ientists, pp. 295{328. Oxford University Press, Oxford, UK,1995.[18℄ Leslie Lamport and Stephan Merz, \Spe
ifying and verifyingfault-tolerant systems," in Formal Te
hniques in Real-Timeand Fault-Tolerant Systems, H. Langmaa
k, W.-P. de Roever,and J. Vytopil, Eds., L�ube
k, Germany, Sept. 1994, vol. 863 ofLe
ture Notes in Computer S
ien
e, pp. 41{76, Springer-Verlag.[19℄ John Rushby, \Formal veri�
ation of an Oral Messages algo-rithm for intera
tive
onsisten
y," Te
h. Rep. SRI-CSL-92-1,Computer S
ien
e Laboratory, SRI International, Menlo Park,CA, July 1992, Also available as NASA Contra
tor Report189704, O
tober 1992.[20℄ Patri
k Lin
oln and John Rushby, \Formal veri�
ation of an al-gorithm for intera
tive
onsisten
y under a hybrid fault model,"in Computer-Aided Veri�
ation, CAV '93, Costas Cour
oubetis,Ed., Elounda, Gree
e, June/July 1993, vol. 697 of Le
ture Notesin Computer S
ien
e, pp. 292{304, Springer-Verlag.[21℄ Patri
k Lin
oln and John Rushby, \A formally veri�ed algo-rithm for intera
tive
onsisten
y under a hybrid fault model,"in Fault Tolerant Computing Symposium 23, Toulouse, Fran
e,June 1993, IEEE Computer So
iety, pp. 402{411, Reprintedin [48, pp. 438{447℄.[22℄ Patri
k Lin
oln and John Rushby, \Formal veri�
ation of anintera
tive
onsisten
y algorithm for the Draper FTP ar
hite
-ture under a hybrid fault model," in COMPASS '94 (Pro
eed-ings of the Ninth Annual Conferen
e on Computer Assuran
e),Gaithersburg, MD, June 1994, IEEE Washington Se
tion, pp.107{120.[23℄ W. R. Bevier and W. D. Young, \The design and proof of
or-re
tness of a fault-tolerant
ir
uit," in Dependable Computingfor Criti
al Appli
ations|2, J. F. Meyer and R. D. S
hli
ht-ing, Eds. Feb. 1991, vol. 6 of Dependable Computing and Fault-Tolerant Systems, pp. 243{260, Springer-Verlag, Vienna, Aus-tria.

[24℄ Chris J. Walter, Patri
k Lin
oln, and Neeraj Suri, \Formallyveri�ed on-line diagnosis," IEEE Transa
tions on Software En-gineering, vol. 23, no. 11, pp. 684{721, Nov. 1997.[25℄ John Rushby, \A fault-masking and transient-re
overy modelfor digital
ight-
ontrol systems," in Formal Te
hniques in Real-Time and Fault-Tolerant Systems, Jan Vytopil, Ed., Kluwer In-ternational Series in Engineering and Computer S
ien
e,
hap-ter 5, pp. 109{136. Kluwer, Boston, Dorde
ht, London, 1993, Anearlier version is available as [49, pp. 237{257℄.[26℄ Ben L. Di Vito and Ri
ky W. Butler, \Formal te
hniques forsyn
hronized fault-tolerant systems," in Dependable Computingfor Criti
al Appli
ations|3, C. E. Landwehr, B. Randell, andL. Simon
ini, Eds. Sept. 1992, vol. 8 of Dependable Comput-ing and Fault-Tolerant Systems, pp. 163{188, Springer-Verlag,Vienna, Austria.[27℄ Leslie Lamport, Robert Shostak, and Marshall Pease, \TheByzantine Generals problem," ACM Transa
tions on Program-ming Languages and Systems, vol. 4, no. 3, pp. 382{401, July1982.[28℄ William D. Young, \Comparing veri�
ation systems: Intera
-tive Consisten
y in ACL2," IEEE Transa
tions on SoftwareEngineering, vol. 23, no. 4, pp. 214{223, Apr. 1997.[29℄ Nan
y A. Lyn
h, Distributed Algorithms, Morgan KaufmannSeries in Data Management Systems. Morgan Kaufmann, SanFran
is
o, CA, 1996.[30℄ Hermann Kopetz, \Should responsive systems be event-triggeredor time-triggered?," IEICE Transa
tions on Information andSystems, vol. E76-D, no. 11, pp. 1325{1332, Nov. 1993, In-stitute of Ele
troni
s, Information, and Communi
ations Engi-neers, Japan.[31℄ Sam Owre, John Rushby, Natarajan Shankar, and Friedri
h vonHenke, \Formal veri�
ation for fault-tolerant ar
hite
tures: Pro-legomena to the design of PVS," IEEE Transa
tions on SoftwareEngineering, vol. 21, no. 2, pp. 107{125, Feb. 1995.[32℄ L. Lamport and P. M. Melliar-Smith, \Syn
hronizing
lo
ks inthe presen
e of faults," Journal of the ACM, vol. 32, no. 1, pp.52{78, Jan. 1985.[33℄ Wilfredo Torres-Pomales, \An optimized implementation of afault-tolerant
lo
k syn
hronization
ir
uit," NASA Te
hni
alMemorandum 109176, NASA Langley Resear
h Center, Hamp-ton, VA, Feb. 1995.[34℄ Paul S. Miner and Steven D. Johnson, \Veri�
ation of an opti-mized fault-tolerant
lo
k syn
hronization
ir
uit: A
ase studyexploring the boundary between formal reasoning systems," inDesigning Corre
t Cir
uits, Mary Sheeran and Satnam Singh,Eds., Bastad, Sweden, Sept. 1996, Ele
troni
 Workshops in Com-puting (http://ewi
.org.uk/ewi
/).[35℄ Frank S
hmu
k and Flaviu Cristian, \Continuous
lo
k amor-tization need not a�e
t the pre
ision of a
lo
k syn
hronizationalgorithm," in Ninth ACM Symposium on Prin
iples of Dis-tributed Computing, Qu�ebe
 City, Qu�ebe
, Canada, Aug. 1990,Asso
iation for Computing Ma
hinery, pp. 133{143.[36℄ John Rushby and Friedri
h von Henke, \Formal veri�
ation ofalgorithms for
riti
al systems," IEEE Transa
tions on SoftwareEngineering, vol. 19, no. 1, pp. 13{23, Jan. 1993.[37℄ Natarajan Shankar, \Me
hani
al veri�
ation of a generalizedproto
ol for Byzantine fault-tolerant
lo
k syn
hronization," InVytopil [49℄, pp. 217{236.[38℄ Paul S. Miner, \Veri�
ation of fault-tolerant
lo
k syn
hroniza-tion systems," NASA Te
hni
al Paper 3349, NASA LangleyResear
h Center, Hampton, VA, Nov. 1993.[39℄ John Rushby, \A formally veri�ed algorithm for
lo
k syn
hro-nization under a hybrid fault model," in Thirteenth ACM Sym-posium on Prin
iples of Distributed Computing, Los Angeles,CA, Aug. 1994, Asso
iation for Computing Ma
hinery, pp. 304{313, Also available as NASA Contra
tor Report 198289.[40℄ D. S
hwier and F. von Henke, \Me
hani
al veri�
ation of
lo
k syn
hronization algorithms," in Formal Te
hniques inReal-Time and Fault-Tolerant Systems, Lyngby, Denmark, Sept.1998, vol. 1486 of Le
ture Notes in Computer S
ien
e, pp. 262{271, Springer-Verlag.[41℄ Holger Pfeifer, Detlef S
hwier, and Friedri
h W. von Henke,\Formal veri�
ation for time-triggered
lo
k syn
hroniza-tion," in Dependable Computing for Criti
al Appli
ations|7,Charles B. Weinsto
k and John Rushby, Eds., San Jose, CA,Jan. 1999, vol. 12 of Dependable Computing and Fault TolerantSystems, pp. 207{226, IEEE Computer So
iety.

RUSHBY: FORMAL VERIFICATION FOR TIME-TRIGGERED ALGORITHMS 661[42℄ Herman Kopetz and Wilhelm O
hsenreiter, \Clo
k syn
hroniza-tion in distributed real-time systems," IEEE Transa
tions onComputers, vol. C-36, no. 8, pp. 933{940, Aug. 1987.[43℄ Christopher Temple, \Avoiding the babbling-idiot failure ina time-triggered
ommuni
ation system," in Fault TolerantComputing Symposium 28, Muni
h, Germany, June 1998, IEEEComputer So
iety, pp. 218{227.[44℄ Carl S. Droste and James E. Walker, The General Dynam-i
s Case Study on the F16 Fly-by-Wire Flight Control System,AIAA Professional Study Series. Ameri
an Institute of Aeronau-ti
s and Astronauti
s, Undated.[45℄ Robert S. Boyer and J Strother Moore, \MJRTY|a fast major-ity vote algorithm," in Automated Reasoning: Essays in Honorof Woody Bledsoe, Robert S. Boyer, Ed., vol. 1 of AutomatedReasoning Series, pp. 105{117. Kluwer A
ademi
 Publishers,Dordre
ht, The Netherlands, 1991.[46℄ Ri
ky W. Butler and Ben L. Di Vito, \Formal design and ver-i�
ation of a reliable
omputing platform for real-time
ontrol:Phase 2 results," NASA Te
hni
al Memorandum 104196, NASALangley Resear
h Center, Hampton, VA, Jan. 1992.[47℄ Shmuel Katz, Pat Lin
oln, and John Rushby, \Low-overheadtime-triggered group membership," in 11th International Work-shop on Distributed Algorithms (WDAG '97), Marios Mavron-i
olas and Philippas Tsigas, Eds., Saarbr�u
ken Germany, Sept.1997, vol. 1320 of Le
ture Notes in Computer S
ien
e, pp. 155{169, Springer-Verlag.[48℄ IEEE Computer So
iety, Fault Tolerant Computing Symposium25: Highlights from 25 Years, Pasadena, CA, June 1995.[49℄ J. Vytopil, Ed., Formal Te
hniques in Real-Time and Fault-Tolerant Systems, vol. 571 of Le
ture Notes in Computer S
i-en
e, Nijmegen, The Netherlands, Jan. 1992. Springer-Verlag.The views and
on
lusions
ontained herein are those of the authorand should not be interpreted as ne
essarily representing the oÆ
ialpoli
ies or endorsements, either expressed or implied, of the Air For
eOÆ
e of S
ienti�
 Resear
h or the U.S. Government.John Rushby re
eived B.S
. and Ph.D. de-grees in
omputing s
ien
e from the Univer-sity of New
astle upon Tyne in 1971 and 1977,respe
tively. He joined the Computer S
ien
eLaboratory of SRI International in 1983, andserved as its dire
tor from 1986 to 1990; he
urrently manages its resear
h program in for-mal methods and dependable systems. Priorto joining SRI, he held a
ademi
 positions atthe Universities of Man
hester and New
astleupon Tyne in England. His resear
h interests
enter on the use of formal methods for problems in the design andassuran
e of dependable systems.Dr. Rushby is a member of the IEEE, the Asso
iation for Com-puting Ma
hinery, the Ameri
an Institute of Aeronauti
s and Astro-nauti
s, and the Ameri
an Mathemati
al So
iety. He is an asso
iateeditor for these Transa
tions, and a member of the editorial boardfor the journal \Formal Aspe
ts of Computing."

