
E�ective Theorem Proving for HardwareVeri�cation???D. Cyrluk,1 S. Rajan,2 N. Shankar,3 and M.K. Srivas3fcyrluk, sree, shankar, srivasg@csl.sri.com1 Dept. of Computer Science, Stanford University, Stanford CA 94305 andComputer Science Laboratory, SRI International, Menlo Park, CA 940252 Integrated Systems Design Laboratory, Department of Computer Science,University of British Columbia, Vancouver, Canada andComputer Science Laboratory, SRI International, Menlo Park, CA 940253 Computer Science Laboratory, SRI International, Menlo Park CA 94025 USAAbstract. The attractiveness of using theorem provers for system de-sign veri�cation lies in their generality. The major practical challengeconfronting theorem proving technology is in combining this generalitywith an acceptable degree of automation. We describe an approach forenhancing the e�ectiveness of theorem provers for hardware veri�cationthrough the use of e�cient automatic procedures for rewriting, arith-metic and equality reasoning, and an o�-the-shelf BDD-based propo-sitional simpli�er. These automatic procedures can be combined intogeneral-purpose proof strategies that can e�ciently automate a numberof proofs including those of hardware correctness. The inference proce-dures and proof strategies have been implemented in the PVS veri�ca-tion system. They are applied to several examples including an N-bitadder, the Saxe pipelined processor, and the benchmark Tamarack mi-croprocessor design. These examples illustrate the basic design philoso-phy underlying PVS where powerful and e�cient low-level inferences areemployed within high-level user-de�ned proof strategies. This approachis contrasted with approaches based on tactics or batch-oriented theoremproving.1 IntroductionThe past decade has seen tremendous progress in the application of formal meth-ods for hardware design and veri�cation. Much of the early work was on apply-ing proof checking and theorem proving tools to the modeling and veri�cation? This work was supported in part by the following funding sources: NASA LangleyResearch Center contract NAS1-18969, ARPA Contract NAG2-891 administered byNASA Ames Research Center, NSF Grant CCR-930044, the Semiconductor ResearchCorporation contract 92-DJ-295 (to the University of British Columbia), and thePhilips Research Laboratories, Eindhoven, The Netherlands.?? This paper was presented at the Second International Conference on TheoremProvers in Circuit Design, Theory, Practice, and Experience, Bad Herrenalb, Ger-many, September 26-28, 1994.



of hardware designs [14, 16]. Though these approaches were quite general, theveri�cation process required a signi�cant human input. More recently, there hasbeen a large body of work devoted to the use of model-checking, language-containment, and reachability analysis to �nite-state machine models of hard-ware [8]. The latter class of systems work automatically but they do not yetscale up e�ciently to realistic hardware designs. The challenge then is to com-bine the generality of theorem proving with an acceptable and e�cient level ofautomation.Our main thesis is that in order to achieve a balance between generality, au-tomation, and e�ciency, a veri�cation system must provide powerful and e�cientprimitive inference procedures that can be combined by means of user-de�ned,general-purpose, high-level proof strategies. The e�ciency of the inference pro-cedures is important in order to verify complex designs with a greater level ofautomation. To achieve e�ciency, each individual primitive inference proceduremust itself perform a powerful and well-de�ned inference step using well-chosenalgorithms and data structures. A number of related deductive operations mustbe tightly integrated into such a step. The e�ciency resulting from a powerfuland tightly integrated inference procedure cannot typically be obtained by com-posing very low-level inference steps by means of tactics. On the other hand,a fully automatic batch-oriented theorem prover has the drawback of being atoolkit with only a single tool. Doing exploratory proof development with such atheorem prover is tedious because of the low bandwidth of interaction. It is dif-�cult to reconcile e�ciency with generality in a fully automated theorem proversince a single proof strategy is being applied to all theorems.The above design philosophy has formed the guiding principle for the im-plementation of the Prototype Veri�cation System (PVS) [22, 23] developed atSRI. PVS is designed to automate the tedious and obvious low-level inferenceswhile allowing the user to control the proof construction at a meaningful level.Exploratory proofs are usually carried out at a level close to the primitive infer-ence steps, but greater automation can be achieved by de�ning high-level proofstrategies.In this paper, we present some automatic inference procedures used in thePVS proof checker, show how these inference procedures can be combined intogeneral-purpose proof strategies, and examine the impact of these strategies onthe automation of hardware proofs. The primitive inference procedures in PVSinclude arithmetic and equality decision procedures, an e�cient hashing-basedconditional rewriter, and a propositional simpli�er based on binary decision dia-grams (BDDs). The interaction between rewriting, arithmetic, and BDD-basedpropositional simpli�cation yields a powerful basis for automation. The capabil-ities of the inference procedures are available to the user of the proof checkeras primitive inference steps. These primitive inference steps can either be usedas part of an interactive proof attempt or embedded inside a high-level proofstrategy. We have developed a basic proof strategy in terms of these inferencesteps that is particularly e�ective for automating proofs of microprocessors andinductively de�ned hardware circuits. The core of this strategy consists of �rst2



carrying out a symbolic execution of the hardware and its speci�cation by ex-panding and simplifying the relevant de�nitions; the case structure of the sym-bolic execution is then brought to the surface, and BDD-based propositionalsimpli�cation is used to generate subgoals that are typically proved by means ofthe decision procedures. We present the proof strategy and demonstrate its util-ity on a number of examples including an N-bit ripple carry adder circuit, Saxe'spipelined microprocessor [24] and the Tamarack processor [18]. The point ofthese examples is to illustrate e�ciency and generality that can be derived fromthe inference capabilities present in PVS. This work is still at a preliminary stageand we feel that there is plenty of scope for obtaining even greater generality,e�ciency, and automation by pursuing the line of development indicated in thispaper.The next section gives a brief overview of PVS. In section 3, we describe ageneral-purpose strategy for hardware proofs in PVS and illustrate this strategywith an N-bit adder circuit. Section 4 describes the use of the PVS inference pro-cedures in the development of veri�cation strategies for microprocessor designs.We present our conclusions in the last section.2 An Overview of PVSPVS is an environment for writing speci�cations and developing proofs [23]. Itserves as a prototype for exploring new approaches to mechanized formal meth-ods. The primary goal of PVS is to combine an expressive speci�cation languagewith a productive, interactive proof checker that has a reasonable amount oftheorem proving power. PVS has been strongly inuenced by the observationthat theorem proving capabilities can be employed to enrich the type system ofa typed logic, and conversely, that an enriched type system facilitates expressivespeci�cations and e�ective theorem proving. PVS has also been guided by theexperience that much of the time and e�ort in veri�cation is in debugging theinitial speci�cation or proof idea. A high bandwidth of interaction is useful atthe exploratory level whereas more automated high-level proof strategies are de-sirable at an advanced stage of proof development. PVS has been used to verifyseveral complex fault-tolerant algorithms, real-time and distributed protocols,and several other applications [20].2.1 The Speci�cation LanguageThe PVS speci�cation language builds on a classical typed higher-order logic.The base types consist of booleans, real numbers, rationals, integers, nat-ural numbers, lists, and so forth. The primitive type constructors includethose for forming function (e.g., [nat -> nat]), record (e.g., [# a : nat, b: list[nat]#]) , and tuple types (e.g., [int, list[nat]]). The type systemof PVS includes predicate subtypes that consist of exactly those elements of a3



given type satisfying a given predicate. PVS contains a further useful enrich-ment to the type system in the form of dependent function, record, and tupleconstructions where the type of one component of a compound value dependson the value of another component. PVS terms include constants, variables, ab-stractions (e.g., (LAMBDA (i : nat): i * i)), applications (e.g., mod(i, 5)),record constructions (e.g., (# a := 2, b := cons(1, null) #)), tuple con-structions (e.g., (-5, cons(1, null))), function updates (e.g., f WITH [(2):= 7]), and record updates (e.g., r WITH [a := 5, b := cons(3, b(r))]).Note that the application a(r) is used to access the a �eld of record r, and theapplication PROJ 2(t) is used to access the second component of a tuple t. PVSspeci�cations are packaged as theories.2.2 The Proof CheckerThe PVS proof checker is intended to serve as a productive medium for debuggingspeci�cations and constructing readable proofs. The human veri�er constructsproofs in PVS by repeatedly simplifying a conjecture into subgoals using infer-ence rules, until no further subgoals remain. A proof goal in PVS is representedby a sequent. PVS di�ers from most proof checkers in providing primitive infer-ence rules that are quite powerful, including decision procedures for ground lineararithmetic. The primitive rules also perform steps such as quanti�er instantia-tion, rewriting, beta-reduction, and boolean simpli�cation. PVS has a simplestrategy language for combining inference steps into more complicated proofstrategies. In interactive use, when prompted with a subgoal, the user typesin a proof command that either invokes a primitive inference rule or a com-pound proof strategy. For example, the skolem command introduces Skolemconstants for universal-strength quanti�ers while the inst command instanti-ates an existential-strength quanti�er with its witness. The lift-if commandinvokes a primitive inference step that moves a block of conditionals nestedwithin one or more sequent formulas to the top level of the formula. The propcommand invokes a compound propositional simpli�cation strategy (or tactic)that is a less e�cient alternative to the use of a BDD-based simpli�er describedbelow. Various other commands are discussed below. Proofs and partial proofscan be saved, edited, and rerun. It is possible to extend and modify speci�cationsduring a proof; the �nished proof has to be rerun to ensure that such changesare benign.While a number of other theorem provers do use decision procedures, PVSis distinguishing in the aggressiveness with which it uses them. It is also uniquein the manner in which the decision procedures and automatic rewriting areengineered to interact with each other in implementing the primitive inferencecommands of PVS. The user can invoke the functionality provided by the in-teracting decision procedures in its full power in a single command (assert)or in limited forms by means of a number of smaller commands. Some of theseprimitive commands are described in the following sections.4



2.3 The Ground Decision ProceduresThe ground decision procedures of PVS are used to simplify quanti�er-freeBoolean combinations of formulas involving arithmetic and equality, and topropagate type information. PVS makes extremely heavy use of these decisionprocedures.Consider a formula of the form f(x) = f(f(x)) IMPLIES f(f(f(x))) =f(x), where the variable x is implicitly universally quanti�ed. This is really aground (i.e., variable-free) formula since the universally quanti�ed variable x canbe replaced by a newly chosen (Skolem) constant, say c. We can then negatethis formula and express this negation as the conjunction of literals: f(c) =f(f(c)) AND NOT f(f(f(c))) = f(c). We can then prove the original formulaby refuting its negation. To refute the negation we can assert the informationin each literal into a data structure until a contradiction is found. In this case,we can use a congruence closure data structure to rapidly propagate equalityinformation.Congruence closure [12] plays a central role in several other systems includ-ing the Stanford Pascal Veri�er [21] and Ehdm [9]. This basic procedure canbe extended in several ways. One basic extension is to the case of ground lin-ear inequalities over the real numbers. In the example, a < 2*b AND b < 3*cAND NOT 3*a < 18*c, the refutation can be obtained by eliminating the vari-able b in the second inequality in favor of a. Another extension is to the caseof ground arrays or functions. This is important in hardware examples wherememory can be represented as a function from addresses to data. For example,the decision procedure can deduce (func WITH [(j) := val])(i) to be equalto func(i) under the assumption i < j. The PVS decision procedures combinecongruence closure over interpreted and uninterpreted functions and relationswith refutation procedures for ground linear inequalities over the real numbersand arrays [26]. This procedure is also extended to integer inequalities in anincomplete though e�ective manner. The ground decision procedures can, forexample, refute i > 1 AND 2*i < 5 AND NOT i = 2.2.4 The Simpli�erThe congruence closure data structure is used to maintain and update contex-tual information. Any relevant subtype constraints on terms are also recordedin these data structures. The beta-reduction of lambda-redexes, and datatypetuple, record and update access are among the automatic simpli�cations sup-ported by PVS. We do not describe the arithmetic simpli�cations except to saythat they evaluate expressions where the arithmetic operations (+, -, *, and/) are applied to numerical values and reduce any arithmetic expressions to asum-of-products form. The Boolean simpli�cations are similarly straightforwardand they simplify expressions involving the constants TRUE and FALSE and theoperators NOT, OR, AND, IMPLIES, and IFF. In the simpli�cation of conditional5



expressions, the test part of the conditional is used in the simpli�cation of thethen and else parts. These simpli�cations are shown below where `l simpli�es tor' is shown as `l =) r':1. (IF A THEN s ELSE t ENDIF) =) s, if A =) TRUE2. (IF A THEN s ELSE t ENDIF) =) t, if A =) FALSE3. (IF A THEN s ELSE s ENDIF) =) s4. (IF A THEN s ELSE t ENDIF) =) (IF A' THEN s' ELSE t' ENDIF),if A =) A', s =) s' assuming A', and t =) t' assuming :A'When the record command is invoked on a PVS sequent of the formA1; : : : ; Am ` B1; : : : ; Bn, the simpli�ed form of each atomic Ai (or :Bi) isrecorded in the congruence closure data structures. This information is then usedto simplify the remaining formulas in the sequent. The simplify command sim-pli�es the formulas using the ground decision procedures and simpli�er withoutrecording any new information into the data structures.2.5 The PVS RewriterA (conditional) rewrite rule is a formula of either the form A � p(b1; : : : ; bn)or A � l = r. The former case can be reduced to the latter form as A �p(b1; : : : ; bn) = TRUE. In the latter case, the PVS rewriter then simpli�es an in-stance �(l) of l to �(r) provided the hypothesis instance �(A) simpli�es (usingsimpli�cation with decision procedures and rewriting) to TRUE as must any typecorrectness conditions (TCCs) generated by the substitution �. The free vari-ables in A and r must be a subset of those in l. The hypothesis can be emptyand de�nitions can also be used as rewrite rules.There is also a restriction of rewriting where, if the right-hand side �(r) ofa rewrite is an IF-THEN-ELSE expression, then the rewrite is not applied unlessthe test part of the conditional simpli�es to TRUE or FALSE. This restrictedform of rewriting serves to prevent looping when recursive de�nitions are usedas rewrite rules and to control the size of the resulting expression. The aboveheuristic restriction on rewriting relies on the e�ectiveness of the simpli�cationsgiven by the decision procedures. This heuristic is quite important in the contextof processor proofs where the next state of the processor should be computed aslong as there is an explicit clock tick available.For e�ciency, PVS maintains a hash-table where corresponding to a term a,the result of the most recent rewriting of a is kept along with the logical contextat the time of the rewrite. A context consists of the congruence closure datastructures and the current set of rewrite rules stored internally at the time ofrewrite. This way, if the term a is encountered within the same logical context,the result of the rewrite is taken from this hash-table and the rewriting stepsare not repeated. The information that an expression could not be rewritten ina context is also cached. This information is perhaps the more heavily used thanthe information about successful rewriting.6



The context is modi�ed by the proof tree structure and the IF-THEN-ELSEstructure of an expression. In case the term a is encountered in a strictly largerlogical context (facts have been added to the congruence closure data structuresor the set of rewrite rules has been expanded) then the result of the rewrite istaken from the hash-table and further rewritten using the current larger logicalcontext.The rewriter described above is used automatically in simpli�cation. It canbe invoked by the do-rewrite command. The assert command combines thefunctionality of record, simplify, and do-rewrite.2.6 The Power of InteractionThe following example illustrates the power that a close interaction betweenrewriting and the decision procedures can provide for the user in PVS. Sucha close interaction is not as easily accomplished if the decision procedures andrewriting were implemented as separate tactics or strategies.t: nats: VAR stateMAR_t0: AXIOM t /= 0 => dest(IR(s)) = MAR(s)MDR5(s): data =IF t <= 2THEN IF p(t)THEN MDR(s)ELSE rf(s) WITH [(MAR(s)) := MDR(s)](dest(IR(s)))ENDIFELSE somedataENDIFproperty: THEOREM t < 3 & p(0) => MDR(s) = MDR5(s)In the PVS speci�cation shown above, the goal is to prove property fromthe axioms MAR t0 and the de�nition of MDR5, where the constants p, MDR, MAR,etc., are declared elsewhere. The constant rf is a function that maps addressesto data. Assuming that the de�nition of MDR5 and MAR t0 have been entered asrewrite rules (via the command auto-rewrite), property can be proved (afterskolemizing the variable s and attening the implication) by simply using thecommand assert on the resulting sequent twice. The �rst invocation of assertis able to rewrite MDR5(s) to the IF-THEN-ELSE expression beginning at p(t)since, when t is a nat, t <= 2 can be deduced from t < 3 by the decisionprocedure.A second invocation of assert attempts to rewrite each branch of the re-sulting IF-THEN-ELSE expression. The p(t) case is trivially true. In the NOTp(t) case, the decision procedures deduce that t = 0 is false from p(0). Thistriggers the rewrite rule MAR t0 so that the goal becomes MDR(s) = rf(s)7



WITH [(MAR(s)) := MDR(s)](MAR(s)), which the equality procedures simplifyto true.2.7 BDD Simpli�erBinary decision diagrams (BDDs) are widely used in the design, synthesis, andveri�cation of digital logic. They provide an e�cient representation for the sim-pli�cation of propositional formulas. A BDD-based propositional simpli�er wasrecently added to PVS as a primitive inference step. Prior to the introduction ofthis simpli�er, PVS used a propositional simpli�cation tactic called prop thatwas found to be unsatisfactory since it could generate subgoals that were justpermutations of other subgoals.The basic idea behind the use of BDD-based simpli�cation in PVS is to trans-form the goal sequent into a Boolean expression where the atomic formulas havebeen replaced by propositional variables. This formula is given as input to ano�-the-shelf BDD package by means of an external function call. Note that PVSis implemented in Common Lisp whereas the BDD package is a C program. TheBDD package simpli�es the given formula into an equivalent formula in conjunc-tive normal form that is easily translated into a collection of subgoal sequentsby replacing the propositional variables back to the corresponding atomic for-mulas. It is also possible to provide the BDD simpli�er with some contextualinformation using the restriction operator, also known as cofactoring, providedby the BDD package. The restriction operation is used to simplify one BDDrepresentation assuming another containing the contextual assumptions.The BDD simpli�er we use is an e�cient implementation fromEUT [17]. Thesimpli�er uses Reduced Ordered BDD (ROBDD), a canonical representation ofboolean expressions, with an associated set of algorithms [5]. The BDD simpli�eris invoked in a PVS proof with the command bddsimp.3 The Nature of Hardware Proofs, and Our ThesisWe have described some of the built-in deductive capabilities of PVS. A PVSproof is constructed by interactively (or automatically) invoking these infer-ence steps to simplify the given goal into simpler subgoals until all the subgoalsare trivially true. At the highest level, the user directs the veri�cation processby elaborating and modifying the speci�cation, providing relevant lemmas, andbacktracking on the fruitless paths in a proof attempt. At the next level of aninteractive PVS proof, particularly a hardware proof, the user provides the fol-lowing crucial inputs:Quanti�er elimination: Since the decision procedures work on ground for-mulas, the user must eliminate the relevant universal-strength quanti�ers byintroducing Skolem constants or suggesting induction schemes. Existential-strength quanti�ers are eliminated by suitable instantiation.8



Unfolding de�nitions: The user may have to simplify selected expressions andde�ned function symbols in the goal by rewriting using de�nitions, axiomsor lemmas.Case analysis: The user may have to split the proof based on selected booleanexpressions in the current goal.The use of decision procedures for arithmetic and equality yields a signi�cantadvantage in that the outcome of a proof attempt is not as logically sensitiveto the decisions made in performing the second and third tasks as is the casein provers without decision procedures. However, decisions made during the sec-ond and the third tasks critically impact the e�ciency of the proof. For example,the extent to which the de�ned function symbols are unfolded determines thenumber of cases to be considered during case analysis. Performing case analysison selected boolean expressions before rewriting can make rewriting more pro-ductive and reduce the size of the resulting expressions, whereas a naive caseanalysis can lead to a needless combinatorial blowup in proof size.In most of our experiments with hardware proofs, we found that we neededto intervene manually during rewriting and case analysis tasks only to controlthe complexity of the proof. Our experience suggested that the second and thethird tasks could be completely automated for most hardware proofs given ane�cient rewriting and propositional simpli�cation engine used in conjunctionwith the arithmetic decision procedures. In the next section, we illustrate theabove thesis on an N-bit ripple-carry adder example.3.1 An N-bit AdderThe theory adder shown below describes the implementation and the correctnessstatement of the adder. The theory is parameterized with respect to the length ofthe bit-vectors. It imports the theory full adder which contains a speci�cationof a full adder circuit with output carry bit fa cout and the sum bit fa sum,and the theory bv which speci�es the bit-vector type (bvec[N]) and related bit-vector functions. An N-bit bit-vector is represented as an array, i.e., a functionfrom the type below[N] of natural numbers less than N to bool; the index 0denotes the least signi�cant bit. Note that the parameter N is constrained to bea posnat since we do not permit bit-vectors of length 0.The carry bit that ripples through the full adders is speci�ed recursivelyby means of the function nth cin4. The function bv cout and bv sum de�nethe carry output and the bit-vector sum of the adder, respectively. The theoremadder correct expresses the conventional correctness statement of an adder cir-cuit using bvec2nat, which returns the natural number equivalent of the least4 Recursive function de�nitions in PVS must have an associated MEASURE function toensure termination. The typechecker automatically generates type correctness proofobligations to show that the measure of the argument to every recursive invocationthe function is less than the measure of the original argument.9



signi�cant n-bits of a given bit-vector and bool2bit converts the boolean con-stants TRUE and FALSE into the natural numbers 1 and 0, respectively.adder[N: posnat] : THEORYBEGINIMPORTING bv[N], full_addern: VAR below[N]bv, bv1, bv2: VAR bvecnth_cin(n, cin, bv1, bv2): RECURSIVE bool =IF n = 0 THEN cinELSE fa_cout(bv_cin(n - 1, cin, bv1, bv2),bv1(n - 1),bv2(n - 1))ENDIFMEASURE nbv_sum(cin, bv1, bv2)(n): bvec =fa_sum(bv1(n), bv2(n), nth_cin(n, cin, bv1, bv2))bv_cout(n, cin, bv1, bv2): bool =fa_cout(nth_cin(n, cin, bv1, bv2), bv1(n), bv2(n))full_adder_correct:LEMMAbool2bit(a) + bool2bit(b) + bool2bit(c)= 2 * bool2bit(fa_cout(c, a, b))+ bool2bit(fa_sum(a, b, c))adder_correct: LEMMA (FORALL n:bvec2nat(n, bv1) + bvec2nat(n, bv2) + bool2bit(cin)= exp2(n + 1) * bool2bit(bv_cout(n, cin, bv1, bv2))+ bvec2nat(n, bv_sum(cin, bv1, bv2))END adderThe proof of adder correct proceeds by induction on the variable n usingan induction scheme for the type below[N]. This results in a base case thatis easily proved by assert and an induction case that is displayed below as asequent containing only one formula. 10



adder_correct2 :|-------f1g (FORALL (r: below[N]):r < N - 1AND (FORALL (bv1, bv2: bvec[N]), (cin: bool):bvec2nat(r, bv1) + bvec2nat(r, bv2)+ bool2bit(cin)= exp2(r + 1)* bool2bit(bv_cout(r, cin, bv1, bv2))+bvec2nat_rec(r, bv_sum(cin, bv1, bv2)))IMPLIES (FORALL (bv1, bv2: bvec[N]), (cin: bool):bvec2nat(r + 1, bv1)+ bvec2nat(r + 1, bv2)+ bool2bit(cin)= exp2(r + 1 + 1)* bool2bit(bv_cout(r + 1, cin, bv1, bv2))+bvec2nat(r + 1,bv_sum(cin, bv1, bv2))))The general strategy to prove the above goal, as in any inductive proof, isto �rst introduce skolem constants for the universal-strength variables in thegoal and atten the sequent into a form where the inductive hypothesis is in theantecedent. After that, one has to simplify the conclusion to a point where aninstance of the induction hypothesis can be used to discharge the conclusion. Thesimpli�cation of the conclusion can either be done under control or by brute-forceautomation. We contrast the two approaches for the adder example below. Inboth approaches, the �rst step (skosimp*) performs the repeated skolemizationand attening of the sequent required at the start of the proof.Guided Proof Automatic Proof(skosimp*) (skosimp*)(expand "exp2" 1) (auto-rewrite-explicit)(expand "bvec2nat" 1) (do-rewrite)(expand "bv sum" 1 1) (inst?)(expand "bv cout") (repeat (lift-if))(expand "nth cin" 1) (simplify)(lemma "full adder correct") (then* (bddsimp)(assert))(inst?)(inst?)(assert)In the guided proof, shown on the left, we carefully control the rewritingprocess by selecting a subset of the de�ned function symbols in the sequent11



to unfold in order to keep the size of the proof tree under control. The PVScommand expand is used to expand function de�nitions in a controlled manner.The optional second and the third argument to expand respectively specify theformula and the occurrence of the symbol to be expanded.At this point, a careful case analysis on the bool2bit values of the threemost signi�cant boolean bits under consideration would lead to eight subgoals.We construct a shorter proof by using the lemma full adder correct aboutthe full adder to eliminate the bit-level case analysis required. The inst? com-mand attempts to �nd a suitable set of instantiations for existential-strengthquanti�ers in the sequent formulas of a subgoal5 which in this case include thelemma as well as the induction hypothesis. In this case, it manages to instantiateboth the inductive hypothesis and the lemma to the desired substitutions. Thelemma full adder correct cannot be successfully applied as a rewriting rulein this proof because the instances of bool2bit do not appear contiguously inthe expression to be simpli�ed. The last step in the proof, assert, invokes thearithmetic and equality decision procedures of PVS to complete the proof.A More Automatic ProofWe now describe a more automatic proof of the same theorem, shown on theright side of the above table, that takes a brute-force approach by employingautomated rewriting and BDD-based propositional simpli�cation. This strat-egy is part of a general strategy for proofs involving induction and rewritingthat has been used on several other examples. Using this strategy we wereable to verify the adder in 130 seconds. Every de�ned function symbol useddirectly or indirectly in the sequent is set up as a rewrite rule by invokingauto-rewrite-explicit. This set of function symbols includes not only thoseappearing in the adder theory but also those in the theories full adder and bvimported by adder. The automatic rewriter of PVS is then invoked by meansof the do-rewrite command to rewrite all the expressions in the sequent usingthe rewrite rules introduced above. The rewriting process simpli�es the conclu-sion into an equation on two nested conditional (IF-THEN-ELSE) expressions.Not surprisingly, the size of the expressions resulting from the rewriting is muchlarger here than in the intelligent proof.To automate the case analysis, we repeatedly (using repeat6) lift all theIF-THEN-ELSE conditionals to the topmost level (using lift-if). The lifting5 It can be used either in a mode in which all possible instances of the lemma areproduced or only a single instance is produced.6 Repeat and then* are among the tacticals provided by PVS for constructing proofstrategies from primitive inference steps and other prede�ned proof strategies. Repeatapplies a given proof step repeatedly until its application has no change on the currentgoal; then* applies the �rst goal from the given list of proof steps to the current goal,and the rest of the steps in the list to each of the subgoals, if any, resulting from the�rst application. 12



process transforms the conclusion into a propositional expression in the formof nested IF-THEN-ELSE expressions whose leaf nodes are equalities on uncon-ditional expressions. The propositional expression is simpli�ed using bddsimp.Rewriting and decision procedures (using assert) are applied to any subgoalsgenerated by bddsimp.The latter proof is automatic in the sense that it applies certain coarse-graininference steps under a simple control strategy without requiring any speci�cinformation from the user to guide the proof. Three elements are crucial to mak-ing the automatic proof successful. Firstly, we need e�cient rewriting that canrewrite large expressions while exploiting contextual information. Second, weneed an e�cient propositional simpli�er to perform the automatic case analy-sis on very large formulas. The above automatic proof blows up if bddsimp isreplaced with the tactic-based simpli�er (prop) of PVS. The third element isthe availability of powerful arithmetic decision procedures. This makes the ex-act syntactic form of the expressions in the simpli�ed sequent less relevant thanwhether the sequent has enough (semantic) information to complete the proof.The automatic proof used above can be packaged in a PVS proof strategyand used on other hardware examples. The core of our strategy for automatinghardware proofs begins with the user suggesting the initial induction variableand the induction scheme when this is not obvious from the type of inductionvariable. An automatic strategy takes over from that point and completes theproof in the following manner. First, the PVS rewriter is set up to automat-ically rewrite every de�ned function symbol directly or indirectly used in thethe theorem to be proved until rewriting is no longer productive. In the nextstep, all the boolean conditions appearing as the boolean part of conditionalexpressions in the formulas are lifted to the topmost level. The resulting nestedboolean expression is propositionally simpli�ed into a �nite number of subgoals.The last step consists of applying arithmetic and equality decision procedureson each of the subgoals resulting from the propositional simpli�cation. We haveapplied this strategy to an n-bit ALU [7] that executes 12 microoperations. Thecompletely automatic veri�cation took 90 seconds on a SPARC 10. The samestrategy is also e�ective on several non-hardware examples [25].4 Microprocessor Veri�cationThe automatic inference procedures used in the PVS proof checker have alsoallowed us to highly automate the task of microprocessor veri�cation. PVS isa relatively new system that has been evolving over the course of our proces-sor veri�cation e�ort. As more automatic inference procedures have been addedto PVS, our e�ectiveness at automating microprocessor veri�cation has signi�-cantly increased. Here we illustrate the usefulness and importance of automaticinference procedures in PVS from the point of view of processor veri�cation.These examples are quite di�erent from the N-bit adder described in Section 313



but the basic idea underlying the proof strategy given there is easily adapted forour present purpose.We take the approach of describing the speci�cation and implementation ofmicroprocessors in terms of state transition systems. The state of the micropro-cessor consists of the state of the memory, register �le, and internal registersof the processor (these would generally include the program counter, memoryaddress register, and pipeline registers if the processor is pipelined, etc.).The microprocessor veri�cation problem is to show that the traces inducedby the implementation transition system are a subset of the traces induced bythe speci�cation transition system, where subset has to be carefully de�ned byuse of an abstraction mapping. The details of this approach are beyond thescope of this paper (see [2,11,24,27,29]7).In this approach, the proof of correctness makes use of an abstraction func-tion that maps an implementation state into a corresponding speci�cation state.Correctness can then be reduced to showing that for any execution trace ofthe implementation machine there exists a corresponding execution trace of thespeci�cation machine.The implementation machine may run at a di�erent rate than the speci�ca-tion machine [11,27]. For example, in the case of the Saxe pipeline example [24],the speci�cation machine takes one state transition to execute each instruction,but the implementation machine might take �ve cycles to execute branch in-structions, but only one cycle for non-branch instructions. In the following weassume that the speci�cation machine always takes one cycle to execute an in-struction. We also assume that the number of cycles that the implementationmachine takes to execute an instruction can be given as a function of the currentstate and current input. (This restriction can be slightly relaxed to deal withinterrupts which might arrive a bounded number of cycles into the future.)4.1 A Proof Strategy for Microprocessor CorrectnessWe denote the function that determines the number of cycles that the imple-mentation machine takes to complete an instruction as num cycles. We assumethat this information is provided by the hardware designer or veri�er.The �rst step in verifying the correctness of the microprocessor is to splitthe proof into cases based on the de�nition of num cycles. Thus for each casewe have a precise number through which we have to cycle the implementationmachine.In the microprocessor veri�cations we have looked at, the state variables ofthe speci�cation state are simply a subset of the state variables of the imple-mentation state. The abstraction mapping maps to each speci�cation registerthe corresponding implementation register, but not necessarily from the exactly7 The precise details followed in these papers are somewhat di�erent.14



corresponding state. For example, the abstraction mapping for the Saxe pipelineis such that the speci�cation program counter is mapped from the correspond-ing implementation program counter and the speci�cation register �le is mappedfrom the implementation register �le, but three cycles into the future. See [11,24]for details. If the abstraction mapping is given this way, then once the proof issplit according to the de�nition of num cycles, the resulting statement of cor-rectness is usually an instance of a decidable fragment of the theory GroundTemporal Logic (GTL2) [10].The problem is to come up with an e�ective procedure for deciding thistheory. One obvious strategy is to completely rewrite the next-state functionsand abstraction mapping until a large IF-THEN-ELSE is generated, then performa case analysis on the resulting expression and check that each resulting case isvalid. This naive strategy has proven to be ine�ective for both the Saxe pipelineand Tamarack microprocessors, let alone anything more complex. However, theautomatic inference procedures of PVS have allowed us to develop a less naivestrategy that is still highly automatic and does succeed in proving the correctnessof both the Saxe pipeline and Tamarack microprocessors:(then* (skosimp*)(auto-rewrite-all-theories)(typepred-impl-state)(record)(cycle-split)(record)(rewrite-lift-if-simplify-and-assert)(auto-rewrite-all-theories!)(rewrite-lift-if-simplify-and-assert))where the rewrite-lift-if-simplify-and-assert strategy is just:(then* (assert) (repeat (lift-if)) (bddsimp) (assert)).The above strategy consists of �rst skolemizing, then instructing PVSto use the axioms and de�nitions of the processor as rewrite rules(auto-rewrite-all-theories), then invoking the type predicate of the im-plementation state-type ((typepred-impl-state)). This is necessary in casethere is a pipeline invariant associated with the machine state [11, 27]. Theproof goal is then split (cycle-split) according to the num cycles function.The current case is recorded in the ground decision procedures and assert iscalled which invokes automatic rewriting. The rewriting here will halt once itis incapable of simplifying a right hand side that is an IF-THEN-ELSE. Any re-sulting IF-THEN-ELSEs are then lifted and bddsimp is called to generate theresulting cases. The assert command is used to �nish up each of these cases.Sometimes this is enough to complete the proof. If it is not then the (assert,lift-if, bddsimp, assert) cycle is repeated, but this time with PVS directedto completely rewrite, even through unsimpli�able IF-THEN-ELSEs.15



The intuition behind this strategy is that the �rst form of rewriting takescare of the simple parts of the proof that require only rewriting and limitedamount of case analysis. The second, unrestricted, rewriting takes care of theresulting cases that need to expand to large IF-THEN-ELSEs and require lotsof case analysis. In the Saxe pipeline this type of reasoning is needed to verifythe correctness of the register bypass logic. Note that this strategy, while notidentical to the basic hardware strategy described earlier, has the same corestrategy, namely the (do-rewrite, lift-if, bddsimp, assert) cycle.We have also applied the same strategy to the Tamarack microprocessor �rstveri�ed by Joyce [18]. This microprocessor is microcoded but not pipelined. Onlythe �rst restricted form of rewriting is necessary to �nish the Tamarack's proofof correctness. This is because the case splitting generated by the num cyclesfunction is su�cient to generate all the relevant cases and to direct the rewriterthrough a single path through the microcode. In the Saxe pipeline more caseanalysis is needed to deal with the register bypass logic.Note that prior to adding hashing and bddsimp to PVS we had veri�ed thecorrectness of the Saxe pipeline, but only with manual assistance. The veri�ca-tion originally done by Saxe et al [24] also required user assistance.5 Experimental ResultsThe following table summarizes the performance of PVS's automatic strategywith and without the improvements to PVS's automatic inference procedures.The timings were made on a SPARC 10.Processor Hashing and BDDs No Hashing NeitherAdder 127 sec. 160 sec. un�n.ALU 87 sec. 92 sec. un�n.Saxe Pipeline 605 sec. 1400 sec. un�n.Tamarack 545 sec. un�n. un�n.Note that hashing was much more important in the microprocessor examples.These examples typically use more rewriting. In the ongoing veri�cation of asimpli�ed version of the MIPS R3000 we �nd that we get exponential savingsdue to hashing.6 Related WorkThe HOL system [13] is prototypical of the proof checkers that are based onvery simple primitive inference rules combined using tactics. The more powerfulprimitive inference mechanisms of PVS can, in principle, be developed as tacticsin HOL. For example, Boulton [3] has implemented a decision procedure forPresburger arithmetic as a tactic in HOL. However, this procedure does not16



handle equality over uninterpreted function symbols and, unlike in PVS, is nottightly integrated with the simpli�cation and rewriting procedures. It wouldbe interesting to see if the same degree of integration can be accomplished ase�ectively in a tactic-based approach and whether individual tactics can matchthe performance of inference procedures that use specialized algorithms anddata structures. The HOL system favors tactics over special-purpose inferenceprocedures since the latter might introduce unsoundness. This is an importantconsideration: the inference procedures of PVS do need to be scrutinized andtested with great care and rigor, but once this is done, they do not need to bejusti�ed down to basic inference steps with each application.The \super-duper" tactic developed in [1] for hardware proofs is similar tothe core strategy described in this paper. The similarity lies in the fact that bothcombine rewriting, case-splitting and simpli�cations in a loop for automatinghardware proofs. The main di�erences are in (1) our use of decision proceduresfor congruence closure, arithmetic, and BDDs, and (2) our conditional rewriterinteracts very closely with the decisions procedures and uses several optimiza-tions. This interaction allows rewriting to be more e�ective, i.e., successful insimplifying more often, and e�cient. We have found that the e�ciency and ef-fectiveness of rewriting are very crucial in the core strategy being applicable forlarge examples. The tactic in [1] is also designed to process predicative style ofhardware speci�cations, whereas ours is suited for functional style.Kumar, Schneider, and Kropf have developed a system MEPHISTO and asequent calculus prover FAUST [19] which jointly can automatically verify aclass of bit-level hardware circuits speci�ed in a relational style popularized byMichael Gordon. Their system cannot automate proofs of complex circuits, suchas microprocessors, that use data types since they do not have rewriting andarithmetic capability. This system does incorporate �rst-order BDD-based tech-niques that can handle some data types and parameterized hardware. Althoughour automatic strategy presented in this paper is designed for proving hardwarespeci�ed in a functional style, we were able to automatically prove all but two oftheir eight circuits by modifying our strategy slightly to use the heuristic instan-tiation capability supported by PVS. We had to provide manual instantiationsfor the other two examples.The Boyer-Moore theorem prover, Nqthm, is the best known of the batch-oriented theorem proving systems used in hardware veri�cation [4]. Many ofits deductive components are quite similar to those in PVS. The system usesa fast propositional simpli�er, and also includes a rewriter and a linear arith-metic package. The latest release of the system has been heavily optimized fore�ciency. As an experiment, we used Nqthm without any libraries to prove theN-bit adder. The Nqthm formalization of this theorem was slightly di�erent fromthat of PVS. We found that the theorem could not be proved automatically. Ittook several hours of e�ort to �ne-tune the de�nitions and to determine thelemmas needed to help the theorem prover with its proof. Though a signi�canthuman e�ort was required to complete the proof, Nqthm was eventually able toprove the main theorem in about 14 seconds of CPU time (on a Sparc 10/41).17



The same example was proved in PVS without any lemmas and very little humaninput in about 130 seconds.Burch and Dill [6] report on an automatic stand-alone strategy for micropro-cessor veri�cation. Although they have not attempted the two examples reportedhere they report impressive timings for the automatic veri�cation of a small ver-sion of the DLX processor [15]. They also describe a method for automating thegeneration of the abstraction mapping.7 ConclusionsAutomated theorem proving technology clearly has a great deal to contribute tohardware veri�cation since hardware proofs tend to fall into certain systematicpatterns. Our contention is that if theorem provers are to be e�ective in hard-ware veri�cation, we must employ powerful and e�cient deductive componentswithin high-level strategies that capture the patterns of hardware proofs. Morespeci�cally, we have argued that:{ Hardware proofs tend to fall into certain patterns so that it is possible toobtain greater automation.{ E�ective theorem proving is best achieved by mechanizing the tedious androutine deductive steps so that the human e�ort can be concentrated on thedi�cult parts of the proof.{ We can combine automation with e�ciency by employing powerful and well-integrated mechanized procedures as can be obtained through the use ofdecision procedures and BDD-based propositional simpli�cation.{ Batch-oriented theorem provers like Nqthm do contain tightly integratedand highly mechanized inference procedures, but they require a signi�cantamount of tedious human e�ort in the exploratory phase of proof develop-ment.{ PVS strikes a balance between the tactic-based approach and those based onbatch-oriented theorem proving. In PVS, e�cient mechanization is used toautomate the tedious and obvious deductive steps. Proofs can be constructedinteractively under human control. Further mechanization can be obtainedby de�ning high-level strategies in terms of tactics.We have shown how hardware proofs can be automated in PVS throughthe use of a powerful mechanization of various useful inference steps and thede�nition of simple proof strategies that invoke these inference steps. We haveillustrated the use of PVS an N-bit adder, a pipelined processor, and a simpleunpipelined processor. The basic approach shown here is being applied to themechanization of the correctness proofs of industrial-strength processors includ-ing the MIPS R3000 architecture and a commercial avionics processor AAMP5.AAMP5 is a microcoded pipelined processor built at the Collins AvionicsDivision of Rockwell International for Avionics applications. It is a complex18



CISC processor containing more than half a million transistors and is designedto execute a stack-oriented machine. One of the main purposes in undertakingthis project [28], which is sponsored by NASA Langley Research Center andRockwell International, was to see how well techniques developed and tested onsmall examples would scale to a commercial processor of signi�cant complexity.We have successfully used the core strategy described in the paper to verifya number of instructions (identi�ed by Rockwell engineers) of AAMP5. Theveri�cation revealed several errors some unknown to Rockwell and some plantedby Rockwell engineers as a challenge to us.Acknowledgements. John Rushby provided a great deal of support and encour-agement for this work and supplied detailed comments on drafts of this paper.Sam Owre answered a number of questions regarding PVS and also proofreadthe paper. The N-bit ripple-carry adder example comes from a PVS library forbit-vectors being developed by Rick Butler and Paul Miner of NASA.References1. Mark D. Aagard, Miriam E. Leeser, and Phillip J. Windley. Toward a super duperhardware tactic. In Proceedings of the HOL User's Group Workshop, pages 401{414, 1993.2. Mart��n Abadi and Leslie Lamport. The existence of re�nement mappings. InThird Annual Symposium on Logic in Computer Science, pages 165{175. IEEE,Computer Society Press, July 1988.3. R. J. Boulton. The HOL arith library. Technical report, University of CambridgeComputer Laboratory, 1992.4. R. S. Boyer and J S. Moore. A Computational Logic Handbook. Academic Press,New York, NY, 1988.5. K. S. Brace, R. L. Rudell, and R. E. Bryant. E�cient implementation of a BDDpackage. In Proc. of the 27th ACM/IEEE Design Automation Conference, pages40{45, 1990.6. J. R. Burch and D. L. Dill. Automated veri�cation of pipelined microprocessorcontrol. In David Dill, editor, Computer-Aided Veri�cation '94, pages 68{80. Vol-ume 818 of Lecture Notes in Computer Science, Springer-Verlag, 1994.7. F. J. Cantu. Verifying an n-bit arithmetic logic unit. Blue book note 935, Univer-sity of Edinburgh, June 1994.8. E. M. Clarke and O. Gr�umberg. Research on automatic veri�cation of �nite-stateconcurrent systems. In Joseph F. Traub, Barbara J. Grosz, Butler W. Lampson,and Nils J. Nilsson, editors, Annual Review of Computer Science, Volume 2, pages269{290. Annual Reviews, Inc., Palo Alto, CA, 1987.9. User Guide for the Ehdm Speci�cation Language and Veri�cation System, Version6.1. Computer Science Laboratory, SRI International, Menlo Park, CA, February1993. Three volumes.10. D. Cyrluk and P. Narendran. Ground temporal logic|a logic for hardware ver-i�cation. In David Dill, editor, Computer-Aided Veri�cation '94, pages 247{259.Volume 818 of Lecture Notes in Computer Science, Springer-Verlag, 1994.19



11. David Cyrluk. Microprocessor veri�cation in PVS: A methodology and simpleexample. Technical Report SRI-CSL-93-12, SRI Computer Science Laboratory,December 1993.12. P. J. Downey, R. Sethi, and R. E. Tarjan. Variations on the common subexpres-sions problem. Journal of the ACM, 27(4):758{771, October 1980.13. M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL: A TheoremProving Environment for Higher-Order Logic. Cambridge University Press, Cam-bridge, UK, 1993.14. Mike Gordon. Proving a computer correct. Technical Report TR 42, University ofCambridge, Computer Laboratory, 1983.15. J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Ap-proach. Morgan Kaufmann, 1990.16. Warren A. Hunt, Jr. Microprocessor design veri�cation. Journal of AutomatedReasoning, 5(4):429{460, December 1989.17. G. Janssen. ROBDD Software. Department of Electrical Engineering, EindhovenUniversity of Technology, October 1993.18. J. Joyce, G. Birtwistle, and M. Gordon. Proving a computer correct in higherorder logic. Technical Report 100, Computer Lab., University of Cambridge, 1986.19. R. Kumar, K. Schneider, and T. Kropf. Structuring and automating hardwareproofs in a higher-order therem proving environment. Formal Methods in SystemDesign, 2(2):165{223, 1993.20. Patrick Lincoln, Sam Owre, John Rushby, N. Shankar, and Friedrich von Henke.Eight papers on formal veri�cation. Technical Report SRI-CSL-93-4, ComputerScience Laboratory, SRI International, Menlo Park, CA, May 1993.21. D. C. Luckham, S. M. German, F. W. von Henke, R. A. Karp, P. W. Milne, D. C.Oppen, W. Polak, and W. L. Scherlis. Stanford Pascal Veri�er user manual. CSDReport STAN-CS-79-731, Stanford University, Stanford, CA, March 1979.22. S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype veri�cation system.In Deepak Kapur, editor, 11th International Conference on Automated Deduction(CADE), pages 748{752, Saratoga, NY, June 1992. Volume 607 of Lecture Notesin Arti�cial Intelligence, Springer-Verlag.23. S. Owre, N. Shankar, and J. M. Rushby. User Guide for the PVS Speci�cationand Veri�cation System, Language, and Proof Checker (Beta Release). ComputerScience Laboratory, SRI International, Menlo Park, CA, February 1993. Threevolumes.24. James B. Saxe, Stephen J. Garland, John V. Guttag, and James J. Horning. Us-ing transformations and veri�cation in circuit design. Formal Methods in SystemDesign, 4(1):181{210, 1994.25. N. Shankar. Abstract datatypes in PVS. Technical Report SRI-CSL-93-9, Com-puter Science Laboratory, SRI International, Menlo Park, CA, December 1993.26. Robert E. Shostak. Deciding combinations of theories. Journal of the ACM,31(1):1{12, January 1984.27. Mandayam Srivas and Mark Bickford. Formal veri�cation of a pipelined micropro-cessor. IEEE Software, 7(5):52{64, September 1990.28. Mandayam Srivas and Steve Miller. Formal veri�cation of the AAMP5 micropro-cessor: A case study in the industrial use of formal methods. Technical report. AForthcoming NASA Contractor Report.29. P. Windley and M. Coe. A correctness model for pipelined microprocessors. InProceedings of Theorem Provers in Circuit Design, 1994.20


