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vide the mechanization needed to apply formal methods both rigorously andproductively.The speci�cation language of PVS is a higher-order logic with a rich type-system, and is quite expressive; we have found that most of the mathematicaland computational concepts we wish to describe can be formulated very directlyand naturally in PVS. Its theorem prover, or proof checker (we use either term,though the latter is more correct), is both interactive and highly mechanized:the user chooses each step that is to be applied and PVS performs it, displaysthe result, and then waits for the next command. PVS di�ers from most otherinteractive theorem provers in the power of its basic steps: these can invokedecision procedures for arithmetic and equality, a BDD-based propositional sim-pli�er, e�cient hashing-based automatic conditional rewriting, induction, andother relatively large units of deduction; it di�ers from other highly automatedtheorem provers in being directly controlled by the user. We have been able toperform some signi�cant new hardware veri�cation exercises quite economicallyusing PVS; we have also repeated some veri�cations �rst undertaken in othersystems and have usually been able to complete them in a fraction of the originaltime (of course, these are previously solved problems, which makes them mucheasier for us than for the original developers).PVS is the most recent in a line of speci�cation languages, theorem provers,and veri�cation systems developed at SRI, dating back over 20 years. Thatline includes the Jovial Veri�cation System [13], the Hierarchical DevelopmentMethodology (HDM) [25, 26], STP [30], and EHDM [22, 27]. We call PVS a\Prototype Veri�cation System," because it was built partly as a lightweightprototype to explore \next generation" technology for EHDM, our main, heavy-weight, veri�cation system. Another goal for PVS was that it should be freelyavailable, require no costly licenses, and be relatively easy to install, maintain,and use. Development of PVS was funded entirely by SRI International.The purpose of this tutorial is not to describe in detail the features of PVSand how to use the system. Rather, its purpose is to introduce some of the moreunique and powerful capabilities that are provided by PVS and demonstrate howthese features can be used in the context of hardware veri�cation. We presentcompletely worked out proofs of two hardware examples. One of the examplesis a pipelined microprocessor that has been used as benchmark for testing thecapacity of model checkers to handle datapath-oriented circuits. While the size ofthe datapath is irrelevant in a theorem proving exercise, we wanted to see if theproof would go through just as automatically as in a model checker. The secondexample is one of the circuits supplied as a TPCD benchmark: a parameterizedimplementation of an N-bit ripple-carry adder. The second example illustratesproof by induction.1.1 Design Goals for PVSThe design of PVS was shaped by our experience in doing or contemplatingearly-lifecycle applications of formal methods. Many of the larger examples we2



have done concern algorithms and architectures for fault-tolerance (see [23] foran overview). We found that many of the published proofs that we attemptedto check were in fact, incorrect, as was one of the important algorithms. Wehave also found that many of our own speci�cations are subtly awed when �rstwritten. For these reasons, PVS is designed to help in the detection of errorsas well as in the con�rmation of \correctness." One way it supports early errordetection is by having a very rich type-system and correspondingly rigoroustypechecking. A great deal of speci�cation can be embedded in PVS types (forexample, the invariant to be maintained by a state-machine can be expressed asa type constraint), and typechecking can generate proof obligations that amountto a very strong consistency check on some aspects of the speci�cation.Another way PVS helps eliminate certain kinds of errors is by providing veryrich mechanisms for conservative extension|that is, de�nitional forms that areguaranteed to preserve consistency. Axiomatic speci�cations can be very e�ec-tive for certain kinds of problem (e.g., for stating assumptions about the en-vironment), but axioms can also introduce inconsistencies|and our experiencehas been that this does happen rather more often than one would wish. De�ni-tional constructs avoid this problem, but a limited repertoire of such constructs(e.g., requiring everything to be speci�ed as a recursive function) can lead toexcessively constructive speci�cations: speci�cations that say \how" rather than\what." PVS provides both the freedom of axiomatic speci�cations, and thesafety of a generous collection of de�nitional and constructive forms, so thatusers may choose the style of speci�cation most appropriate to their problems.4The third way that PVS supports error detection is by providing an e�ec-tive theorem prover. The design rationale behind the PVS theorem prover wasto provide automatic support for obvious and tedious parts of a proof whilegiving the user the ability to guide the prover at higher levels of a proof. Thisgoal is accomplished by implementing the primitive inference steps of PVS usingautomatic rewriting and e�cient decision procedures for arithmetic and propo-sitional logic. This approach makes PVS an e�ective system for hardware veri�-cation since most hardware proofs need signi�cant amount of rewriting and caseanalyses.Our experience has been that the act of trying to prove properties aboutspeci�cations is the most e�ective way to truly understand their content andto identify errors. This can come about incidentally, while attempting to provea \real" theorem, such as that an algorithm achieves its purpose, or it can bedone deliberately through the process of \challenging" speci�cations as part ofa validation process. A challenge has the form \if this speci�cation is right, thenthe following ought to follow"|it is a test case posed as a putative theorem; we\execute" the speci�cation by proving theorems about it.54 Unlike EHDM, PVS does not provide special facilities for demonstrating the consis-tency of axiomatic speci�cations. We do expect to provide these in a later release,but using a di�erent approach than EHDM.5 Directly executable speci�cation languages (e.g., [2,17]) support validation of spec-3



1.2 Uses of PVSPVS has so far been applied to several small demonstration examples, and agrowing number of signi�cant veri�cations. The smaller examples include thespeci�cation and veri�cation of ordered binary tree insertion [28], the Boyer-Moore majority algorithm, an abstract pipelined processor, Fischer's real-timemutual exclusion protocol, and the Oral Messages protocol for Byzantine agree-ment. Examples of this scale can typically be completed within a day. Moresubstantial examples include the correspondence between the programmer andRTL level of a simple hardware processor [11], the correctness of a real-timerailroad crossing controller [29], a variant of the Schr�oder-Bernstein theorem,and the correctness of a distributed agreement protocol for a hybrid fault modelconsisting of Byzantine, symmetric, and crash faults [19]. These harder examplescan take from several days to a week.Currently, PVS is being applied to the requirements speci�cation of selectedaspects of the control software for NASA's space shuttle project and to verify acommercial pipelined microprocessor, AAMP5, being built for avionics applica-tions at Rockwell International.2 The PVS LanguageThe PVS speci�cation language builds on a classical typed higher-order logic.The base types consist of booleans, real numbers, rationals, integers, nat-ural numbers, lists, and so forth. The primitive type constructors includethose for forming function (e.g., [nat -> nat]), record (e.g., [# a : nat, b: list[nat]#]), and tuple types (e.g., [int, list[nat]]). PVS departs fromsimply typed logics by allowing predicate subtypes. A predicate subtype consistsof exactly those elements of a given type satisfying a given predicate so that,for example, the subtype of positive numbers is given by the type fn : nat |n > 0g. Predicate subtypes are used to explicitly constrain the domains andranges of operations in a speci�cation and to de�ne partial functions, e.g., di-vision, as total functions on a speci�ed subtype. In general, typechecking withpredicate subtypes is undecidable.6 PVS contains a further useful enrichmentto the type system in the form of dependent function, record, and tuple con-structions where the type of one component of a compound value depends oni�cations by running conventional test cases. We think there can be merit in thisapproach, but that it should not compromise the e�ectiveness of the speci�cationlanguage as a tool for deductive analysis; we are considering supporting an executablesubset within PVS.6 PVS does have an algorithmic typechecker that checks for type correctness relative tothe simple types. It generates proof obligations corresponding to predicate subtypes.The typical proof obligations can be automatically discharged by the PVS decisionprocedures. The provability of such proof obligations is the only source of undecid-ability in the PVS type system so that none of the bene�ts of decidable typecheckingare lost. 4



the value of another component. PVS terms include constants, variables, ab-stractions (e.g., (LAMBDA (i : nat): i * i)), applications (e.g., mod(i, 5)),record constructions (e.g., (# a := 2, b := cons(1, null) #)), tuple con-structions (e.g., (-5, cons(1, null))), function updates (e.g., f WITH [(2):= 7]), and record updates (e.g., r WITH [a := 5, b := cons(3, b(r))]).PVS speci�cations are packaged as theories that can be parametric in typesand constants. Type parametricity (or polymorphism) is used to capture thoseconcepts or results that can be stated uniformly for all types. PVS also hasa facility for automatically generating abstract datatype theories (containingrecursion and induction schemes) for a class of abstract datatypes [28].3 The PVS Proof CheckerThe central design assumptions in PVS are that{ The purpose of an automated proof checker is not merely to prove theoremsbut also to provide useful feedback from failed and partial proofs by servingas a rigorous skeptic.{ Automation serves to minimize the tedious aspects of formal reasoning whilemaintaining a high level of accuracy in the book-keeping and formal manip-ulations.{ Automation should also be used to capture repetitive patterns of argumen-tation.{ The end product of a proof attempt should be a proof that, with only a smallamount of work, can be made humanly readable so that it can be subjectedto the social process of mathematical scrutiny.In following these design assumptions, the PVS proof checker is more automatedthan a low-level proof checker such as AUTOMATH [12], LCF [15], Nuprl [7],Coq [8], and HOL [16], but provides more user control over the structure of theproof than highly automated systems such as Nqthm [3,4] and Otter [21]. Wefeel that the low-level systems over-emphasize the formal correctness of proofsat the expense of their cogency, and the highly automated systems emphasizetheorems at the expense of their proofs.What is unusual about PVS is the extent to which aspects of the language,the typechecker, and proof checker are intertwined. The typechecker invokes theproof checker in order to discharge proof obligations that arise from typecheckingexpressions involving predicate subtypes or dependent types. The proof checkeralso makes heavy use of the typechecker to ensure that all expressions involved ina proof are well-typed. This use of the typechecker can also generate proof obli-gations that are either discharged automatically or are presented as additionalsubgoals. Several aspects of the language, particularly the type system, are builtinto the proof checker. These include the automatic use of type constraints by thedecision procedures, the simpli�cations given by the abstract datatype axioms,and forms of beta-reduction and extensionality.5



Another less unusual aspect of PVS is the extent to which the automaticinference and decision procedures involving equalities and linear arithmetic in-equalities are employed.7 The most direct consequence of this is that the trivial,obvious, or tedious parts of the proof are often discharged so that the user canfocus on the intellectually demanding parts of the proof, and the resulting proofis also easier to read. PVS also provides an e�cient conditional rewriter thatinteracts very closely with its decision procedures to simplify conditions duringrewriting. More details about the rewriting and the decision procedures used inPVS are described in [10]. The capabilities of the inference and decision proce-dures, which play a central role in almost all proofs in PVS are made availableto the user by means of the following primitive inference steps.1. Bddsimp performs e�cient BDD-based propositional simpli�cation on thecurrent goal.2. Do-rewrite performs automatic conditional rewriting on expressions in thecurrent goal using rewrite rules stored in the underlying database used bythe inference procedures. PVS provides several commands for the user tomake rewrite rules out of de�nitions, lemmas and axioms and enter themin the database. The rewriter invokes the decision procedures to simplifyconditions of conditional rewrite rules.3. Assert invokes the arithmetic and equality decision procedures on the cur-rent goal. Besides trying to prove the subgoal using the decision procedures,it performs the following tasks{ it stores the subgoal information in the underlying database, allowingautomatic use to be made of it later.{ it simpli�es the subgoal using the decision procedures using rewriting aswell as other simpli�cation techniques.In order to learn how to use the PVS proof checker, one must �rst understandthe sequent representation used by PVS to represent proof goals, the commandsused to move around and undo parts of the proof tree, and the commands usedto get help. One must then understand the syntax and e�ects of proof commandsused to build proofs. Many of these commands are extremely powerful even intheir simplest usage. Several of these commands can be more carefully directedby supplying them with one or more optional arguments. The advanced user willalso need to understand how to de�ne proof strategies that capture repetitivepatterns of proof commands, and commands used for displaying, editing, andreplaying proofs. There are about 20 basic commands and a similar number ofcommonly used high-level strategies.7 The Ontic system [20] is a proof checker where decision procedures are ubiquitouslyused. Nqthm [3,4], Eves [24], and IMPS [14] also rely heavily on the use of decisionprocedures. 6



4 Rest of the TutorialIn the following sections we introduce some of the details of PVS system byworking the complete proof of correctness of two examples. This will introducesome of the most useful commands and provide a glimpse into the philosophybehind PVS. PVS uses EMACS as its interface by extending EMACS with PVSfunctions, but all the underlying capabilities of EMACS are available. Thus theuser can read mail and news, edit nonPVS �les, or execute commands in a shellbu�er in the usual way. All PVS commands are entered as extended EMACScommands. The proof checker runs as a subprocess inside EMACS.5 A Pipelined MicroprocessorIn this section we develop a complete proof of a correctness property of the con-troller logic of a simple pipelined processor design described at a register-transferlevel. The design and the property veri�ed are both based on the processor ex-ample given in [5]. The example has been used as a benchmark for evaluatinghow well �nite state-enumeration based tools, such as model checkers, can handledatapath-oriented circuits with a large number of states by varying the size ofthe datapath. From the perspective of a theorem prover, the size of the datapathis irrelevant because the speci�cation and proof are independent of the datapathsize. As a theorem proving exercise, the challenge is to see if the proof can bedone just as automatically as a model checker. As we will see in the following,in PVS the proof can be obtained by repeatedly invoking one of its primitivecommands assert.5.1 Informal DescriptionFigure 1 shows a block diagram of the pipeline design. The processor executesinstructions of the form (opcode src1 src2 dstn), i.e., \destination registerdstn in the register �le REGFILE becomes some ALU function determined byopcode of the contents of source registers src1 and src2. Every instruction isexecuted in three stages (cycles) by the processor:1. Read: Obtain the proper contents of the register �le at src1 and src2 andclock them into opreg1 and opreg2, respectively.2. Compute: Perform the ALU operation corresponding to the opcode (remem-bered in opcoded) of the instruction and clock the result into wbreg.3. Write: Update the register �le at the destination register (remembered indstndd) of the instruction with the value in wbreg.The processor uses a three-stage pipeline to simultaneously execute distinctstages of three successive instructions. That is, the read stage of the currentinstruction is executed along with the compute stage of the previous instruction7
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Fig. 1. A Pipelined Microprocessorand the write stage of the previous-to-previous instruction. Since the REGFILE isnot updated with the results of the previous and previous-to-previous instruc-tions while a read is being performed for the current instruction, the controller\bypasses" REGFILE, if necessary, to get the correct values for the read. The pro-cessor can abort, i.e., treat as NOP, the instruction in the read stage by assertingthe stall signal true. An instruction is aborted by inhibiting its write stage byremembering the stall signal until the write stage via the registers stalld andstalldd. We verify that an instruction entering the pipeline at any time getscompleted correctly, i.e., will write the correct result into the register �le, threecycles later, provided the instruction is not aborted.5.2 Formal Speci�cationPVS speci�cations consist of a number of �les, each of which contains one ormore theories. A theory is a collection of declarations: types, constants (includingfunctions), axioms that express properties about the constants, and theoremsand lemmas to be proved. Theories may import other theories; Every entityused in a theory must be either declared in an imported theory or be part of theprelude (the standard collection of theories built-in to PVS).The microprocessor speci�cation is organized into three theories, selectedparts of which are shown in Figures 2 and 3. (The complete speci�cation can befound in [31].) The theory pipe (Figure 2) contains a speci�cation of the designand a statement of the correctness property to be proved. The theories signaland time (Figure 3) imported by pipe declares the types signal and time usedin pipe.The theory pipe is parameterized with respect to the types of the registeraddress, data, and the opcode �eld of the instructions. A theory parameter in8



pipe[addr: TYPE, data: TYPE, opcodes: TYPE]: THEORYBEGINIMPORTING signal, timeASSUMINGaddr_nonempty: ASSUMPTION (EXISTS (a: addr): TRUE)data_nonempty: ASSUMPTION (EXISTS (d: data): TRUE)opcodes_nonempty: ASSUMPTION (EXISTS (o: opcodes): TRUE)ENDASSUMINGt: VAR time%% Signal declarationsopcode: signal[opcodes]src1, src2, dstn: signal[addr]stall: signal[bool]aluout: signal[data]regfile: signal[[addr -> data]]...%% Specification of constraints on the signalsdstnd_ax: AXIOM dstnd(t+1) = dstn(t)dstndd_ax: AXIOM dstndd(t+1)= dstnd(t).....regfile_ax: AXIOM regfile(t+1) =IF stalldd(t) THEN regfile(t)ELSE regfile(t)WITH [(dstndd(t)) := wbreg(t)]ENDIFopreg1_ax: AXIOM opreg1(t+1) =IF src1(t) = dstnd(t) & NOT stalld(t)THEN aluout(t)ELSIF src1(t) = dstndd(t) & NOT stalldd(t)THEN wbreg(t)ELSE regfile(t)(src1(t)) ENDIFopreg2_ax: AXIOM ...aluop: [opcodes, data, data -> data]ALU_ax: AXIOM aluout(t) = aluop(opcoded(t), opreg1(t),opreg2(t))correctness: THEOREM (FORALL t:NOT(stall(t)) IMPLIES regfile(t+3)(dstn(t)) =aluop(opcode(t), regfile(t+2)(src1(t)),regfile(t+2)(src2(t))) )END pipe Fig. 2. Microprocessor Speci�cationPVS can be either a type parameter or a parameter belonging to a particulartype, such as nat. Since pipe does not impose any restriction on its parame-ters, other than the requirement that they be nonempty, which is stated in theASSUMING part of the theory, one can instantiate them with any type. Every en-tity declared in a parameterized theory is implicitly parameterized with respectto the parameters of the theory. For example, the type signal declared in theparameterized theory signal is a parametric type denoting a function that mapstime (a synonym for nat) to the type parameter T. (The type signal is used tomodel the wires in our design.) By importing the theory signal uninstantiated9



signal[val: TYPE]: THEORYBEGINsignal: TYPE = [time -> val]END signaltime: THEORYBEGINtime: TYPE natEND signal Fig. 3. Signal Speci�cationin pipe, we have the freedom to create any desired instances of the type signal.In this tutorial, we use a functional style of speci�cation to model register-transfer-level digital hardware in logic. In this style, the inputs to the designand the outputs of every component in the design are modeled as signals. Everysignal that is an output of a component is speci�ed as a function of the signalsappearing at the inputs to the component.This style should be contrasted with a predicative style, which is commonlyused in most HOL applications. In the predicative style every hardware com-ponent is speci�ed as a predicate relating the input and output signals of thecomponent and a design is speci�ed as a conjunction of the component predi-cates, with all the internal signals used to connect the components hidden byexistential quanti�cation. A proof of correctness for a predicative style speci�ca-tion usually involves executing a few additional steps at the start of the proof toessentially transform the predictative speci�cation into an equivalent functionalstyle. After that, the proof proceeds similar to that of a proof in a functionalspeci�cation. The additional proof steps required for a predicative speci�cationessentially unwind the component predicates using their de�nitions and then ap-propriately instantiate the existentially quanti�ed variables. An automatic wayof performing this translation is discussed in [31], which illustrates more exam-ples of hardware design veri�cation using PVS.Getting back to our example, the microprocessor speci�cation in pipe con-sists of two parts. The �rst part declares all the signals used in the design|theinputs to the design and the internal wires that denote the outputs of compo-nents. The composite state of REGFILE, which is represented as a function fromaddr to data, is modeled by the signal regfile. The signals are declared as un-interpreted constants of appropriate types. The second part consists of a set ofAXIOMs that specify the the values of the signals over time. (To conserve space,we have only shown the speci�cation of a subset of the signals in the design.)For example, the signal value at the output of the register dstnd at time t+1 isde�ned to be that of its input a cycle earlier. The output of the ALU, which isa combinational component, is de�ned in terms of the inputs at the same timeinstant.In PVS, one can use a descriptive style of de�nition, as illustrated in this ex-ample, by selectively introducing properties of the constants declared in a theory10



as AXIOMs. Or, one can use the de�nitional forms provided by the language tode�ne the constants. An advantage of using the de�nitions is that a speci�cationis guaranteed to be consistent, although it might be overspeci�ed. An advantageof the descriptive style is that it gives better control over the degree to which onewants to de�ne an entity. For example, one could have speci�ed dstnd prescrip-tively by using the conventional function de�nition mechanism of PVS. PVS'sfunction de�nition mechanism would have forced us to specify the value of thesignal at time t = 0 to ensure that the function is total. In the descriptive styleused, we have left the value of the signal at 0 unspeci�ed.In the present example, the speci�cations of the signals opreg1 and opreg2are the most interesting of all. They have to check for any register collisionsthat might exist between the instruction in the read stage and the instructionsin the later stages and bypass reading from the register �le in case of collisions.The regfile signal speci�cation is recursive since the register �le state remainsthe same as its previous state except, possibly, at a single register location. TheWITH expression is an abbreviation for the result of updating a function at agiven point in the domain value with a new value. Note that the function aluopthat denotes the operation ALU performs for a given opcode is left completelyunspeci�ed since it is irrelevant to the controller logic.The theorem correctness to be proved states a correctness property aboutthe execution of the instruction that enters the pipeline at t, provided the in-struction is not aborted, i.e., stall(t) is not true. The equation in the conclusionof the implication compares the actual value (left hand side) in the destinationregister three cycles later, when the result of the instruction would be in place,with the expected value. The expected value is the result of applying the aluopcorresponding to the opcode of the instruction to the values at the source �eldregisters in the register �le at t+2. We use the state of the register �le at t+2rather than t to allow for the results of the two previous instructions in thepipeline to be completed.5.3 Proof of CorrectnessThe next step is to typecheck the �le, which parses and checks for semanticerrors, such as undeclared names and ambiguous types. Typechecking may buildnew �les or internal structures such as type correctness conditions (TCCs). TheTCCs represent proof obligations that must be discharged before the pipe theorycan be considered typechecked. The typechecker does not generate any TCCs inthe present example. If, for example, one of the assumptions, say for addr, inthe ASSUMING part of the theory was missing, the typechecker would generatethe following TCC to show that the addr type is nonempty. The declaration ofthe signal src1 forces generation of this TCC because a function is nonexistentif its range is empty. 11



% Existence TCC generated (line 17) for src1: signal[addr]% May need to add an assuming clause to prove this.% unprovedsrc1_TCC1: OBLIGATION (EXISTS (x1: signal[addr]): TRUE);The PVS proof checker runs as a subprocess of Emacs. Once invoked on atheorem to be proved, it accepts commands directly from the user. The basicobjective of developing a proof in PVS as in other subgoal-directed proof checkers(e.g., HOL), is to generate a proof tree in which all of the leaves are triviallytrue. The nodes of the proof tree are sequents, and while in the prover you willalways be looking at an unproved leaf of the tree. The current branch of a proofis the branch leading back to the root from the current sequent. When a givenbranch is complete (i.e., ends in a true leaf), the prover automatically moves onto the next unproved branch, or, if there are no more unproven branches, noti�esyou that the proof is complete.The primitive inference steps in PVS are a lot more powerful than in HOL.So, it is not necessary to build complex tactics to handle tedious lower levelproofs in PVS. A user knowledgeable in the ways of PVS can typically getproofs to go through mostly automatically by making a few critical decisions atthe start of the proof. However, PVS does provide the user with the equivalentof HOL's tacticals, called strategies, and other features to control the desiredlevel of automation in a proof.The proof of the microprocessor property shown below follows a certain gen-eral pattern that works successfully for most hardware proofs. This general proofpattern, variants of which have been used in other veri�cation exercises [1, 18],consists of the following sequence of general proof tasks.Quanti�er elimination: Since the decision procedures work on ground formu-las, the user must eliminate the relevant universal quanti�ers by skolemiza-tion or selecting variables on which to induct and existential quanti�ers bysuitable instantiation.Unfolding de�nitions: The user may have to simplify selected expressions andde�ned function symbols in the goal by rewriting using de�nitions, axiomsor lemmas. The user may also have to decide the level to which the functionsymbols have to rewritten.Case analysis: The user may have to split the proof based on selected booleanexpressions in the current goal and simplify the resulting goals further.Each of the above tasks can be accomplished automatically using a shortsequence of primitive PVS proof commands. The complete proof of the theoremis shown below. Selected parts of the proof session is reproduced below as wedescribe the proof. 12



1: ( then* (skosimp)2: (auto-rewrite-theory ``pipe'' :always? t)3: (repeat (do-rewrite))4: (apply (then* (repeat (lift-if))5: (bddsimp)6: (assert))))In the proof, the names of strategies are shown in italics and the primitiveinference steps in type-writer font. (We have numbered the lines in the prooffor reference.) Then* applies the �rst command in the list that follows to thecurrent goal; the rest of the commands in the list are then applied to each ofthe subgoals generated by the �rst command application. The apply commandused in line 5 makes the application of a compound proof step implemented bya strategy behave as an atomic step.The �rst goal in the proof session is shown below. It consists of a singleformula (labeled f1g) under a dashed line. This is a sequent ; formulas above thedashed lines are called antecedents and those below are called succedents. Theinterpretation of a sequent is that the conjunction of the antecedents implies thedisjunction of the succedents.correctness :|-------f1g (FORALL t: NOT (stall(t))IMPLIES regfile(t + 3)(dstn(t)) =aluop(opcode(t), regfile(t + 2)(src1(t)),regfile(t + 2)(src2(t))))The quanti�er elimination task of the proof is accomplished by the commandskosimp, which skolemizes all the universally quanti�ed variables in a formulaand attens the sequent resulting in the following goal. Note that stall(t!1)has been moved to the succedent in the sequent because PVS displays everyatomic formula in its positive form.Rule? (skosimp)Skolemizing and flattening, this simplifies to:correctness :|-------f1g (stall(t!1))f2g regfile(t!1 + 3)(dstn(t!1))=aluop(opcode(t!1), regfile(t!1 + 2)(src1(t!1)),regfile(t!1 + 2)(src2(t!1)))13



The next task|unfolding de�nitions|is performed by the commands in lines2 through 3. PVS provides a number of ways of unfolding de�nitions ranging fromunfolding one step at a time to automatic rewriting that performs unfolding ina brute-force fashion. Brute-force rewriting usually results in larger expressionsthan controlled unfolding and, hence, potentially larger number of cases to con-sider. If a system provides automatic and e�cient rewriting and case analysisfacilities, then one can dare to use the automatic approach, as we do here. InPVS automatic rewriting is performed by �rst entering the de�nitions and AX-IOMs that one wants to be used for unfolding as rewrite rules. Once entered,the commands, such as do-rewrite and assert, that perform rewriting as partof their repertoire repeatedly apply the rewrite rules until none of the rules isapplicable. To control the size of the expression resulting from rewriting and thepotential for looping, the rewriter uses the following restriction for stopping arewrite: If the right-hand-side of a rewrite is a conditional expression, then therule is applied only if the condition simpli�es to true or false.Here our aim is to unfold every signal in the sequent so that every signal ex-pression contains only the start time t!1. So, we make a rewrite rule out of everyAXIOM in the theory pipe by means of the command auto-rewrite-theoryon line 2. We also force an over-ride of the default restriction for stopping rewrit-ing by setting the tag8 always? to true in the auto-rewrite-theory commandand embed do-rewrite inside a repeat loop to force maximum rewriting. Inthe present example, the rewriting is guaranteed to terminate because everyfeedback loop is cut by a sequential component.At the end of automatic rewriting, the succedent we are trying to prove is inthe form of an equation on two deeply nested conditional expressions as shownbelow in an abbreviated fashion. The various cases in conditional expressionshown above arise as a result of the di�erent possible conicts between instruc-tions in the pipeline. The equation we are trying to prove contains two distinct,but equivalent conditional expressions, as in IF a THEN b ELSE c ENDIF = IFNOT a THEN c ELSE b ENDIF, that can only be proved to be equal by perform-ing a case-split on one or more of the conditions. While assert simpli�es theleaves of a conditional expression assuming every condition along the path to theleaves holds, it does not split propositions. One way to perform the case-splittingtask automatically is to \lift" all the IF-THEN-ELSEs to the top so that the equa-tion is transformed into a propositional formula with unconditional equalities asatomic predicates. After performing such a lifting, one can try to reduce theresulting proposition to true using the propositional simpli�cation commandbddsimp. If bddsimp does not simplify the proposition to true, then it is mostlikely the case that equations at one or more of the leaves of the propositionneed to be further simpli�ed, by assert, for instance, using the conditions alongthe path. If the propositional formula does not reduce to true or false, bddsimp8 Tags are one of the ways in which PVS permits the user to modify the functionalityof proof commands. 14



produces a set of subgoals to be proved. In the present case, each of these goalscan be discharged by assert. The compound proof step appearing on lines 4through 6 of the proof accomplishes the case-splitting task.correctness :|-------[1] (stall(t!1))f2g aluop(opcode(t!1),IF src1(t!1) = dstnd(t!1) & NOT stalld(t!1)THEN aluop(opcoded(t!1), opreg1(t!1), opreg2(t!1))ELSIF src1(t!1) = dstndd(t!1) & NOT stalldd(t!1)THEN wbreg(t!1)ELSE regfile(t!1)(src1(t!1)) ENDIF,....ENDIF)= aluop(opcode(t!1),IF stalld(t!1) THEN IF stalldd(t!1) THEN regfile(t!1)ELSE regfile(t!1) WITH [(dstndd(t!1)) := wbreg(t!1)]ENDIFELSE ...ENDIF(src1(t!1)),IF stalld(t!1) THEN IF stalldd(t!1) THEN regfile(t!1)ELSE ... ENDIFELSE ...ENDIF(src2(t!1)))We have found that the sequence of steps shown above works successfullyfor proving safety properties of �nite state machines that relate states of themachine that are �nite distance apart. If the strategy does not succeed then themost likely cause is that either the property is not true or that a certain propertyabout some of the functions in the speci�cation unknown to the prover need tobe proved as a lemma. In either case, the unproven goals remaining at the endof the proof should give information about the probable cause.6 An N-bit Ripple-Carry AdderThe second example we consider is the veri�cation of a parametrized N-bit ripple-carry adder circuit. The theory adder, shown in Figure 4, speci�es a ripple-carryadder circuit and a statement of correctness for the circuit.The theory is parameterized with respect to the length of the bit-vectors. Itimports the theories (not shown here) full adder, which contains a speci�cationof a full adder circuit (fa cout and fa sum), and bv, which speci�es the bit-vector type (bvec[N]) and functions. An N-bit bit-vector is represented as an15



adder[N: posnat] : THEORYBEGINIMPORTING bv[N], full_addern: VAR below[N]bv, bv1, bv2: VAR bveccin: VAR boolnth_cin(n, cin, bv1, bv2): RECURSIVE bool =IF n = 0 THEN cinELSE fa_cout(nth_cin(n - 1, cin, bv1, bv2), bv1(n - 1), bv2(n - 1))ENDIFMEASURE nbv_sum(cin, bv1, bv2): bvec =(LAMBDA n: fa_sum(bv1(n), bv2(n), nth_cin(n, cin, bv1, bv2)))bv_cout(n, cin, bv1, bv2): bool =fa_cout(nth_cin(n, cin, bv1, bv2), bv1(n), bv2(n))adder_correct_n: LEMMAbvec2nat_rec(n, bv1) + bvec2nat_rec(n, bv2) + bool2bit(cin)= exp2(n + 1) * bool2bit(bv_cout(n, cin, bv1, bv2))+ bvec2nat_rec(n, bv_sum(cin, bv1, bv2))adder_correct: THEOREMbvec2nat(bv1) + bvec2nat(bv2) + bool2bit(cin)= exp2(N) * bool2bit(bv_cout(N - 1, cin, bv1, bv2))+ bvec2nat(bv_sum(cin, bv1, bv2))END adder Fig. 4. Adder Speci�cationarray, i.e., a function, from the the type below[N], a subtype of nat rangingfrom 0 through N-1, to bool; the index 0 denotes the least signi�cant bit. Notethat the parameter N is constrained to be a �posnat since we do not permit bitvectors of length 0. The adder theory contains several declarations includinga set of variable declarations in the beginning. PVS allows logical variables tobe declared globally within a theory so that the variables can be used later infunction de�nitions and quanti�ed formulas.The carry bit that ripples through the full adder is speci�ed recursively bymeans of the function nth cin. Associated with this de�nition is a measurefunction, following the MEASURE keyword, which will be explained below. Thefunction bv cout and bv sum de�ne the carry output and the bit-vector sum ofthe adder, respectively. The theorem adder correct expresses the conventionalcorrectness statement of an adder circuit using bvec2nat, which returns thenatural number equivalent of an N-bit bit-vector. Note that variables that are leftfree in a formula are assumed to be universally quanti�ed. We state and prove amore general lemma adder correct rec of which adder correct is an instance.For a given n < N, bvec2nat rec returns the natural number equivalent of theleast signi�cant n-bits of a given bit-vector and bool2bit converts the booleanconstants TRUE and FALSE into the natural numbers 1 and 0, respectively.16



6.1 TypecheckingThe typechecker generates several TCCs (shown in Figure 5 below) for adder.These TCCs represent proof obligations that must be discharged before the addertheory can be considered typechecked. The proofs of the TCCs may be postponeduntil it is convenient to prove them, though it is a good idea to view them tosee if they are provable.% Subtype TCC generated (line 13) for n - 1% unprovednth_cin_TCC1: OBLIGATION (FORALL n: NOT n = 0 IMPLIES n - 1 >= 0 AND n - 1 < N)% Subtype TCC generated (line 31) for N - 1% unprovedadder_correct_TCC1: OBLIGATION N - 1 >= 0Fig. 5. TCCs for Theory adderThe �rst TCC is due to the fact that the �rst argument to nth cin is oftype below[N], but the type of the argument (n-1) in the recursive call tonth cin is integer, since below[N] is not closed under subtraction. Note thatthe TCC includes the condition NOT n = 0, which holds in the branch of theIF-THEN-ELSE in which the expression n - 1 occurs. A TCC identical to thethis one is generated for each of the two other occurrences of the expression n-1because bv1 and bv2 also expect arguments of type below[N]. These TCCs arenot retained because they are subsumed by the �rst one.The second TCC is generated by the expression N-1 in the de�nition of thetheorem adder correct because the �rst argument to bv cout is expected tobe the subtype below[N].There is yet another TCC that is internally generated by PVS but is noteven included in the TCCs �le because it can be discharged trivially by the type-checker, which calls the prover to perform simple normalizations of expressions.This TCC is generated to ensure that the recursive de�nition of nth cin ter-minates. PVS does not directly support partial functions, although its powerfulsubtyping mechanism allows PVS to express many operations that are tradi-tionally regarded as partial. The measure function is used to show that recursivede�nitions are total by requiring the measure to decrease with each recursivecall. For the de�nition of nth cin, this entails showing n-1 < n, which the type-checker trivially deduces.In the present case, all the remaining TCCs are simple, and in fact can bedischarged automatically by using the typecheck-prove command, which at-tempts to prove all TCCs that have been generated using a prede�ned proofstrategy called tcc. 17



6.2 Proof of Adder correct nThe proof of the lemma uses the same core strategy as in the microprocessorproof except for the quanti�er elimination step. Since the speci�cation is re-cursive in the length of the bit-vector, we need to perform induction on thevariable n. The user invokes an inductive proof in PVS by means of the com-mand induct with the variable to induct on (n) and the induction scheme tobe used (below induction[N]) as arguments. The induction used in this case isde�ned in the PVS prelude and is parameterized, as is the type below[N], withrespect to the upper limit of the subrange.This command generates two subgoals: the subgoal corresponding to the basecase, which is the �rst goal presented to prove, is shown in Figure 6.adder_correct.1 :|-------1 (N > 0IMPLIES(FORALL(bv1: bvec[N], bv2: bvec[N], cin: bool):bvec2nat_rec(0, bv1) + bvec2nat_rec(0, bv2)+ bool2bit(cin)= exp2(0 + 1) * bool2bit(bv_cout(0, cin, bv1, bv2))+ bvec2nat_rec(0, bv_sum(cin, bv1, bv2))))Fig. 6. Base StepThe goal corresponding to the inductive case is shown below.The remaining siblings are:adder_correct_n.2 :|-------f1g (FORALL (r: below[N]):r < N - 1AND (FORALL (bv1, bv2: bvec[N]), (cin: bool):bvec2nat_rec(r, bv1) + bvec2nat_rec(r, bv2)+ bool2bit(cin)= exp2(r + 1) * bool2bit(bv_cout(r, cin, bv1, bv2))+ bvec2nat_rec(r, bv_sum(cin, bv1, bv2)))IMPLIES (FORALL (bv1, bv2: bvec[N]), (cin: bool):bvec2nat_rec(r + 1, bv1)+ bvec2nat_rec(r + 1, bv2)+ bool2bit(cin)= exp2(r + 1 + 1)* bool2bit(bv_cout(r + 1, cin, bv1, bv2))+bvec2nat_rec(r + 1,bv_sum(cin, bv1, bv2))))Fig. 7. Inductive Step18



The base and the inductive steps can be proved automatically using essen-tially the same strategy used in the microprocessor proof. A complete proof ofadder correct n is shown in Figure 7.1: ( spread (induct ``n'' 1 ``below_induction[N]'')2: ( ( then* (skosimp*)3: (auto-rewrite-defs :always? t)4: (do-rewrite)5: ( repeat (lift-if))6: ( apply ( then* (bddsimp)(assert))))7: ( then* (skosimp*)8: (inst?)9: (auto-rewrite-defs :always? t)10: (do-rewrite)11: ( repeat (lift-if))12: ( apply ( then* (bddsimp)(assert))))))The strategy spread used on line 1 applies the �rst proof step (induct) andthen applies the ith element of the list of commands that follow to the ith subgoalresulting from the application of the �rst prof step. Thus, the proof steps listedon lines 2 through 6 prove the base case of induction, the steps on lines 7 through12 prove the inductive case, and the proof step on line 13 takes care of the thirdTCC subgoal.Let us consider the base case �rst. The induct command has already in-stantiated the variable n to 0. The remaining variables are skolemized away byskosimp*. To unfold the de�nitions in the resulting goal, we use the commandauto-rewrite-defs, which makes rewrite rules out of the de�nition of everyfunction either directly or indirectly used in the given formula. The rest of theproof proceeds exactly as for the microprocessor.The proof of the inductive step follows exactly the same pattern except thatwe need to instantiate the induction hypothesis and use it in the process ofunfolding and case-analysis. PVS provides a command inst? that tries to �ndinstantiations for existential-strength variables in a formula by searching for pos-sible matches between terms involving these variables with ground terms insideformulas in the rest of the sequent. This command �nds the desired instantia-tions in the present case. The rest of the proof proceeds as in the basis case.Since the inductive proof pattern shown above is applicable to any iterativelygenerated hardware designs we have packaged it into a general proof strategycalled name-induct-and-bddrewrite. The strategy is parameterized with re-spect to induction scheme to be used and the set of rewrite rules to be used forunfolding. We have used the strategy to prove an N-bit ALU [6] that executes12 microoperations by cascading N 1-bit ALU slices.19



7 SummaryThis tutorial gives an overview of some of the unique and important capabil-ities of PVS. PVS is built to combine a very expressive speci�cation languagewith e�ective theorem proving to produce a system to apply formal methodsproductively. PVS does pay a performance penalty because of the need for theprover to invoke the typechecker more often than in other provers that supporta less expressive type system. We are working on reducing the amount of typeinformation that the prover needs to generate and maintain during a proof andalso on further optimizing some of our inference procedures. These optimizationsshould be available with future releases of PVS. In the following, we summarizesome of the language and system features that were not covered in the tutorial.PVS provides a fairly extensive set of commands for determining the status ofspeci�cation elements such as theories and formulas. For example, the user caninquire whether a theory has been typechecked or a proof has been completedand if the proof is current. It has commands that perform proof chain analysisto see the proof status of all the lemmas that a theorem is dependent on.When a formal speci�cation and veri�cation is complete, it is usually de-sirable to present it to others in as readable a form as possible. PVS providescommands for generating Latex versions of the speci�cations and proofs that canbe included in typeset documents. The output produced can be controlled byuser-supplied tables so that mathematical notation, including in�x and mis-�xsymbols and sub and superscripts can be created easily.An important language feature that we haven't illustrated here is the abstractdata type feature. This feature is similar to the de�nitional principle supportedby the Boyer-Moore theorem prover, but is generalized to abstract data typeswith arbitrary constructors. The system provides facility for automatically gen-erating abstract data type theories (containing recursion and induction schemes)from a syntactic de�nition of the operations of the data type.7.1 Getting and Using PVSAt the moment, PVS is readily available only for Sun SPARC workstations,although versions of the system do exist for the IBM Risc 6000 (under AIX)and DECSystems (under Ultrix). PVS is implemented in Common Lisp (withCLOS), and has been ported to Lucid and Allegro. All versions of PVS requireGnu Emacs, which must be obtained separately.PVS requires about 30 megabytes of disk space. In addition, any system onwhich it is to be run should have a minimum of 100 megabytes of swap spaceand 32 megabytes of real memory (more is better).To obtain the PVS system, send a request to pvs-request@csl.sri.com,and we will provide further instructions for obtaining a tape or for getting thesystem by FTP. All installations of PVS must be licensed by SRI. A nominaldistribution fee is charged for tapes; there is no charge for obtaining PVS byFTP. 20
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